Marine Technology Society

Similar documents
Marine Technology Society

OFFICIAL MESSAGE CIRCULAR

Nautical Institute Standard for DP Knowledge for Technical Staff

Guidelines on Surveys for Dynamic Positioning System

Advanced Training for DP Operators

Marine Technology Society

Dynamic Positioning: Method for Disaster Prevention and Risk Management

OIL & GAS. MTS DP Committee. Workshop in Singapore Session 4 Day 2. Unwanted Thrust

IMCA DP Station Keeping Bulletin 04/18 November 2018

DP Ice Model Test of Arctic Drillship

IMCA Competence Assessment Portfolio June 2013

EVALUATING CRITERIA FOR DP VESSELS

Risk Management. Risk Analysis of a Dynamic Positioning Diving Vessel Up Weather of a Platform and Jack Up

IMCA Competence Assessment Portfolio June 2013

DYNAMIC POSITIONING SYSTEMS

DP Station Keeping Event Bulletin

Dynamic Positioning Control Augmentation for Jack-up Vessels

Learn more at

Operations and Requirements A Practical Approach to Managing DP Operations

STATIONKEEPING DYNAMIC POSITIONING FOR YACHTS. Hans Cozijn

Operability Study for DP Vessel Operations at a Deep water Spar-A Decision Support Tool

ANNUAL DYNAMIC POSITIONING TRIALS FOR DYNAMICALLY POSITIONED VESSELS

RPSEA UDW Forum June 22 & 23, Secure Energy for America

OSVDPA CT-1-001, the OSVDPA Competency Standard

Subsea Wellhead and Conductor Fatigue

Author s Name Name of the Paper Session. Positioning Committee. Marine Technology Society. DYNAMIC POSITIONING CONFERENCE September 18-19, 2001

DP OPERATIONS GUIDANCE

FMEA Proving Trials and Offloading Simulations

Return to Session Menu DYNAMIC POSITIONING CONFERENCE QUALITY ASSURANCE SESSION. The Meaning of LIFE. Richard Purser GL Noble Denton

The topics I will briefly cover, are; Stack Configurations Wellhead Connector Considerations Control Systems Tensioning Systems will be discussed by

Challenges in estimating the vessel station-keeping performance

Managing Dynamic Positioning (DP) Operations

Operations. On The Use of Safety Moorings in DP Operations

Application Research for DP Enhanced Notation

FPSO and Shuttle Tanker Positioning

RESOLUTION MSC.94(72) (adopted on 22 May 2000) PERFORMANCE STANDARDS FOR NIGHT VISION EQUIPMENT FOR HIGH-SPEED CRAFT (HSC)

Yokogawa Systems and PCI Training

SEAEYE FALCON & FALCON DR

SWS Option: Well Pressures. SWS Option: Stretch Correction (Corrected depth) SWS Option: MMD (Magnetic Marks Detection) ASEP Products

Technical Specifications of Hydrogen Isotope Handling and Recovery System

DIVERLESS SUBSEA HOT TAPPING OF PRODUCTION PIPELINES

Dynamic positioning systems - operation guidance

Dynamic Positioning Systems

FMEA Proving Trials and Offloading Simulations - Lessons Learned -

TASK BOOK REPORT FORM

TR Electronic Pressure Regulator. User s Manual

TARPON A Minimal Facilities Platform

REDUNDANT PROPULSION SHIPS RULES FOR CLASSIFICATION OF NEWBUILDINGS DET NORSKE VERITAS SPECIAL EQUIPMENT AND SYSTEMS ADDITIONAL CLASS PART 6 CHAPTER 2

Deploying the TCM-1 Tilt Current Meter in an Inverted (Hanging) Orientation By: Nick Lowell, Founder & President

Introduction. DEEPWATER DRILLING RISER INTEGRITY - FATIGUE, WEAR, INSPECTION AND MONITORING by Dr Hugh Howells and Dave Walters 2H Offshore Inc

IMCA DP Station Keeping Bulletin 03/18 August 2018

Improving Cost Efficiency of DP Operations by Enhanced Thruster Allocation Strategy

Risk Analysis of a DP Diving Vessel Up Weather Of Platform and Jack Up.

Fault Diagnosis based on Particle Filter - with applications to marine crafts

Trim and Stabilisation systems NEXT GENERATION IN BOAT CONTROL.

New Petrobras Concepts for WSOG (Well Specific Operating Guidelines)

Safety of DP Drilling Operations in the South China Sea

Field Instrumentation Training Strategy

ZIPWAKE DYNAMIC TRIM CONTROL SYSTEM OUTLINE OF OPERATING PRINCIPLES BEHIND THE AUTOMATIC MOTION CONTROL FEATURES

MP15 Jockey Pump Controller

IMCA Competence Assessment Portfolio June 2013

RAMSTM. 360 Riser and Anchor-Chain Integrity Monitoring for FPSOs

Level MEASUREMENT 1/2016

LSG Single Point Failure Analysis

IMCA Competence Assessment Portfolio April 2016

T e l N o : F a x N o : E m a i l : a i s h c m c - m e. c o m w w w. c m c - m e.

Dynamically Positioned (DP) Mobile Offshore Drilling Unit (MODU) Critical Systems, Personnel and Training

ICE LOADS MONITORING SYSTEMS

IMCA Competence Assessment Portfolio June 2013

ROV Development ROV Function. ROV Crew Navigation IRATECH SUB SYSTEMS 2010

BUBBLER CONTROL SYSTEM

3. Real-time operation and review of complex circuits, allowing the weighing of alternative design actions.

Improving distillation tower operation

Advanced Applications in Naval Architecture Beyond the Prescriptions in Class Society Rules

Hazard Operability Analysis

Deepwater Horizon Incident Internal Investigation

BAPI Pressure Line of Products - FAQs

Planning of Drilling Operations in Extreme Ocean Currents

EL-O-Matic E and P Series Pneumatic Actuator SIL Safety Manual

properly applied assessment in the use.1 landmarks.1 approved in-service of ECDIS is not experience The primary method of fixing required for those

UNDERWATER SERVICES COMPANY PROFILE

Industrial Compressor Controls Standard Custom

Precision Liquid Settlement Array Manual

Guidance on Operational Activity Planning

GUIDELINES FOR VESSELS WITH DYNAMIC POSITIONING SYSTEMS ***

DYNAMIC POSITIONING CONFERENCE. October 13-14, Arctic. DP In Ice Conditions

ACCURACY, PERFORMANCE, AND HANDLING OF OIL-FILLED DIGIQUARTZ PRESSURE INSTRUMENTATION

GAS FUEL VALVE FORM AGV5 OM 8-03

Electrical, electronic and control engineering at the operational level

Introducing STAMP in Road Tunnel Safety

Session One: A Practical Approach to Managing Safety Critical Equipment and Systems in Process Plants

PHASE 1 WIND STUDIES REPORT

DP Induction Course OBJECTIVE TARGET AUDIENCIE DURATION CONTENT ENTRY REQUIREMENT NUMBER OF PARTICIPANTS

(Dynamic Positioning System (DPS) Risk Analysis Using Probabilistic Risk Assessment (PRA))

Sea Gyro SG series K. Technical Information 2011

Fail Operational Controls for an Independent Metering Valve

Subj: USE OF DYNAMIC POSITIONING (DP) BY OFFSHORE SUPPLY VESSELS (OSVs) FOR OIL AND HAZMAT TRANSFERS

Seaeye Falcon powerful portable versatile

Why Do Not Disturb Is a Safety Message for Well Integrity

RIGID RISERS FOR TANKER FPSOs

Transcription:

Marine Technology Society Dynamic Positioning Conference 21-22 October, 1997 Session 3 Operator Training Dynamic Positioning Familiarization Course By: Greg Navarre Global Marine (Houston) Session Planner Greg Navarre Global Marine (Houston) DP Conference Houston October 21-22 1997 Page 1

DYNAMIC POSITIONING FAMILIARIZATION COURSE COURSE DESCRIPTION - The familiarization course on Dynamic Positioning (DP) is intended to proved a general understand of how these positioning systems are used in the maritime industry. It provides insight into the control systems, vessel sensors and how position referencing systems operate. It will describe the system s components, how they interact and possible results due to failure of one or more components. There will be some discussion of the various Societies that set standards for DP systems and different applications for DP systems. WHO SHOULD ATTEND - Attendees would have little to no working knowledge of DP systems. They might be part of a larger project in which DP plays a critical role. Completion of this course would not qualify an individual to operate or make a decision in the operation of a DP system. I. INTRODUCTION - In a Familiarization Course, this section is intended to introduce uses of a DP system and terminology associated with those systems. There would also be a brief discussion of classification societies as they apply to DP systems. A. Objective of the Familiarization Course B. Definition of Dynamic Positioning Systems 1. Terminology C. Objective of a Dynamic Positioning System D. Required Training and Experience of Personnel to IMCA Standards E. Classification Society Rules 1. Intent of the Rules 2. Consequence Classes 3. Vessel Operational Capabilities DP Conference Houston October 21-22 1997 Page 2

I. INTRODUCTION (cont d) F. DP Applications 1. Dive Support 2. Drilling 3. ROV Support 4. Cable 5. Pipe Lay 6. Military 7. OSV Offshore Supply Vessel 8. Mooring Assist 9. AHTS Anchor Handling/Tug Assist 10. Trenching II. BASIC CONCEPTS - The student should have a working knowledge of these basic concepts as they apply to; DP control systems, sensor systems, thruster systems and power systems. A. Triangulation B. Oceanography/Meteorology 1. Waves 2. Ocean Currents 3. Weather Systems 4. Wave Drift DP Conference Houston October 21-22 1997 Page 3

III. CONTROL THEORY - In the Familiarization Course, the following topics would be defined and their applicability to DP Operations discussed. At the school or instructor s discretion, some of the items under these topics maybe omitted altogether. A. Basic Theory of Operation 1. Definitions 2. Types 3. Classifications 4. Block Diagrams B. Closed Loop (Feedback) Control Systems 1. The Model 2. Terminology 3. Application to DP 4. Feed Forward Applications C. PID Controllers 1. Proportional Force 2. Damping Force 3. Integral Force D. State Estimator (Kalman Filter) 1. Behavior Characteristics 2. Implementation 3. Block Diagrams E. Basic Time Response Characteristics 1. Effects of Gain Change 2. Effects of Damping 3. Effects of Integral Term F. Stability Characteristics 1. Stable Conditions 2. Unstable Conditions 3. Characteristics and Causes and Effects 4. Gain and Stability Margins Test G. Thrusters 1. Hardware Description 2. Fundamental of Pitch and Azimuth Control a. Thruster Control Loops External to DP System b. DP System Interface 3. Thruster Efficiencies a. Thrust-Power Characteristics b. Inflow Characteristics c. Cross-Coupling Effect 4. Thruster Drive Systems 5. Thruster Response Characteristics DP Conference Houston October 21-22 1997 Page 4

6. Thruster Allocation Logic IV. ENVIRONMENTAL AND THRUSTER FORCES -The familiarization course should introduce these environmental forces and describe how they act upon the vessel. Likewise the vessel s holding capabilities used to counteract environmental forces would be explained. A. Station keeping Capability 1. Thruster and Power System Reliability 2. Quasi-Static and Dynamic Loading a. Mean and Maximum Offset. b. Reserved Margin for Dynamic Loading c. Other Forces 3. Thruster Characteristics 4. Collinear and Non-Collinear Environments 5. Holding Capability Study 6. Survival Criteria 7. Operation Criteria 8. Damage Criteria B. Environmental Forces 1. Wave Forces a. First Order Forces b. Second Order Forces c. Model Testing 2. Wind and Current Forces a. Square Law b. Drag Tables c. Model Testing V. POWER PLANT SYSTEMS - In this section, students should be provided a basic explanation of a vessel s power systems and requirements followed by an analysis of possible failure scenarios. A. Basic Power System 1. Requirements 2. Types of Loads 3. High Voltage Switch Gear 4. Low Voltage Switch Gear 5. Emergency Switch Boards 6. Redundancy Configurations 7. Basic Engine Control 8. Breaker Coordination B. Basic Power Distribution Control System C. Basic Power Management Theory 1. Skid Auto-Start and Advise Logic 2. Power Calculation and Monitoring 3. Load Shed Logic 4. Loss of an Engine 5. Basic Power Management Programs 6. Operator Interface 7. Operating Examples DP Conference Houston October 21-22 1997 Page 5

VI. THRUSTERS AND DRIVE SYSTEMS -The basis of thruster and drive systems were covered in Section III Control Theory subsection G. This section will build on those fundamentals, followed by an analysis of possible failure scenarios. Having completed this section, the student should be able to recognize if his thrusters are working as designed and if not, what thruster problems he might be experiencing and why. A. Thrust Required and Holding Capability 1. Survival in Maximum Environmental Conditions, 2. Sudden Squalls with Rapid Changes in Direction (available weather data), 3. Beam Thrust for Ship Shape Vessels a. the need for rapid turns 4. Vessel Drag Factors for Wind and Current a. calculated values, b. wind tunnel and c. tank tests B. Control of Thrust 1. Fixed Pitch vs. Controllable Pitch 2. Fixed vs. Azimuthing C. Thruster Drive Systems 1. Fixed Speed Drives 2. Variable Speed Drives a. DC Variable Voltage b. AC Variable Frequency D. Thrust Efficiency and Losses E. Propeller/Hull Interaction F. Thrust Degradation, Hull Drag, Current Effects, Inflow, Cross Forces and Compensation G. Access for Repair H. Reliability, Failure Modes, Thruster Down Time for Service/Repair. VII. DP SYSTEMS - In this section emphasis should be placed on the equipment that makes up Dynamic Positioning systems. An explanation of the fundamental equipment should be followed by how these systems interact to maintain position and how the systems are monitored. Finally there should be a brief explanation of operator training A. Redundancy Concepts and Reliability 1. Single Point Failure Analysis a. Failure Mode Effect Analysis (FMEA) b. Mean Time Between Failure c. Mean Time To Repair 2. Automatic Switching 3. System Modifications B. Basic System Hardware Layout and 3-Axis Diagram 1. DP System Hardware a. Position Sensors 1. Acoustic Position 2. DGPS 3. ARA - Acoustic Riser Angle 4. ERA - Electric Riser Angle 5. Taut Wire 6. Land Based Radio Positioning System DP Conference Houston October 21-22 1997 Page 6

7. Laser Radar b. Attitude Sensors c. Environmental Sensors 1. Current 2. Wind d. Controller e. Operator Interface and Controls f. System Power g. UPS h. Fiber Optics C. Position Reference Systems 1. Acoustics a. Hardware Description b. Baselines 1. Ultra-Short 2. Short 3. Long 4. Combined Techniques c. Fundamentals of Acoustic Systems 1. Theory of Operation 2. Environmental Considerations a. Ambient Sea Noise b. Signal to Noise Ratio c. Water Temperature d. Other Acoustic Noise Sources 3. System Accuracy a. Vertical Reference Sensor b. Alignments (Offsets, azimuth and tilts) c. Incident Angle (Offset and range) 4. Display and Performance Monitoring a. Display and Control b. Alarm Monitoring c. Status Monitoring 5. Modes of Operation 6. Operating Practices and Procedures a. Normal Positioning b. Re-Entry 7. Operating Practices and Procedures a. Parameter Setup b. Alarm Monitoring c. Status Monitoring 8. System Limitation and Field Experience 2. Taut Wire a. Hardware b. Principals of Operation c. Operational Practices 1. Initial System Setup 2. Normal Operation 3. Position Limitations 4. Dragging of Anchor 5. Potential Operational Problems DP Conference Houston October 21-22 1997 Page 7

d. System Limitation and Field Experience 3. Electric Riser Angle a. Hardware b. Theory of Operation c. Static and Dynamic Operational Characteristics 1. Sensor and Riser Sections 2. Riser Dynamics/Response 3. Vessel Motion d. Operating Practices and Modes 1. Sensor Selection 2. Sensor Zero Calibration 3. BOP Stack Tilt 4. BOP Stack Rotation and Azimuth e. System Limitation and Field Experience 4. Differential Global Positioning System a. Hardware b. Theory of Operation c. Operational Characteristics d. Vessel Motions e. Operational Practices 1. Sensor Selection 2. Glonass f. System Limitation and Field Experience 1. Acoustic Noise 2. Taut Wire 3. Electric Riser Angle 4. DGPS and Selective Availability 5. Sensor Selection D. Position Data Processing 1. First Order Wave Filters 2. Position Error Detection and Rejection Logic a. Triple Voting b. Multiple Sensor Variations 3. Position Sensor Data Blending Logic a. Sensor Switch Selection b. Automatic Transfer Logic c. Bumpless Transfer Logic d. Noise Rejection Logic e. Kalman Filters 4. Dead Reckoning Mode E. Thruster Allocation Logic 1. Optimal Thruster Allocation 2. Control and Power Biasing 3. Power Limiting a. Modes of Operation b. Power Plant Interface 4. Selection of On-Line Thrusters DP Conference Houston October 21-22 1997 Page 8

F. Operator Interface 1. Setup Pages 2. Vessel Position and Heading Commands a. Control Panel and Display Pages b. Setpoint Changes 3. DP System Performance Monitoring a. Position b. Heading c. Attitude d. Environmental 4. Thrust Control 5. Consequence Analysis G. Data Logging 1. On-Line Capability 2. Post Event Analysis 3. Troubleshooting G. DP Operator 1. Training and Experience 2. Organization and Procedures a. Chain of Command b. Normal Operating Procedures c. Emergency Operating Procedures d. DP Operator Logbook 3. Communications Systems H. Simulation 1. Onshore Training 2. Offshore On-station Training VIII. DP SYSTEM OPERATIONAL CHARACTERISTICS - This section should take into consideration external forces that effect DP performance. These may differ according to operations. A. Normal Operation B. Environmental Effects on DP Performance 1. Support Vessels Effect on DP Performance IX. SYSTEM TESTING A. System Testing 1. Dockside Tests 2. Sea Trials 3. First Location Setup/Testing 4. Between Operations 5. Stability Gain Margin Checks DP Conference Houston October 21-22 1997 Page 9

6. Hydrophone Alignment 7. Other Tests X. DRILLING OPERATING REQUIREMENTS -For purposes of a Familiarization Course, sections VIII, IX and X might be combined, and depending upon the audience, emphasis might be placed on only one of these DP applications. There are some issues that would be germane to all applications, such as ROV s, Severe Environments Procedures, System Testing, Redundancy Concepts and Reliability. A. Drilling Operating Procedures and Contingence Planning B. Emergency Disconnect Procedures 1. Limiting Criteria 2. Drive-Off and Drift-Off Analysis C. Operation Considerations of Dynamic Positioned Drilling 1. Guidelineless Drilling from DP Vessels a. Pre-Planning for Efficient Operation 1. Typical Drilling Program 2. Planned Loading 3. Pre-Operational Checks 4. Location Staking b. Setting Up on Location 1. Drill Pilot Hole 2. Determine Mud Line Depth 3. Conduct jet test c. Jet 30, GRA and Drill 26 Hole 1. Space Out Bit at 30 Shoe 2. Double J Tool d. Drill 36 Hole (Alternative) 1. Land TGB with 36 Drilling Assembly 2. Re-enter with 30 Casing e. Run 18-3/4 Wellhead on 20 Casing 1. Re-entry with Subsea TV and ROV 2. Land and Cement Casing/Wellhead f. Run BOP Stack and Riser 1. Re-entry with Bombshell TV or ROV 2. Install Slip Joint and Diverter 3. Continue Drilling Program 4. Verify BOP Stack/Riser Angle Axis Heading 5. Riser Management g. Re-entry with LMRP 2. Severe Environment Procedures a. BOP Control System 1. Subsea BOP Control System Evolution 2. Multiplex System Operation a. Major Components b. How does Multiplex Control Work DP Conference Houston October 21-22 1997 Page 10

c. Acoustic back up BOP controls d. Stack mounted TV 3. Re-Entry a. Deep Water Re-Entry Systems Evolution 1. Sonar Re-Entry 2. Stack TV Re-Entry 3. Combination Sonar/TV Re-Entry 4. Vibration Isolated TV (Drill Pipe & Casing Guide) b. Re-Entry Systems 1. Guideline Telescoping TV 2. Drill Pipe or Casing Guided TV 3. Inside Riser TV (Bombshell TV) 4. ROV Systems 4. ROV s 1. Garaged or Top Hat 2. Non-Garaged 5. Diving Operations XI. MANNED DIVING OPERATING REQUIREMENTS - The amount of training and experience needed by personnel to perform their functions safely varies. However the following minimum standards are recommended, but some may need to be exceeded in some cases: A. Minimum Standards for Operation 1. Supervised Operations 2. Minimal Practical experience 3. Supervised Watch keeping 4. Training of Maintenance Personnel XII. SUPPORT VESSEL OPERATING REQUIREMENTS A. Preparations 1. Approach a. Drilling Vessel b. Support Vessel 2. Moored Condition a. Drilling Vessel b. Support Vessel B. Communications XIII. DYNAMIC POSITIONING INCIDENTS - This final section should emphasize the importance of maintaining a reliable system and the consequences of system failure. A. Events and/or Incidents 1. Design Faults 2. DP Operator and Other Personnel 3. Environmental a. Wind b. Current 4. Drift Off 5. Drive Off DP Conference Houston October 21-22 1997 Page 11

B. Consequences and Cost 1. Drilling 2. Manned Diving 3. Pipelaying 4. Cable Laying 5. Coiled Tubing 6. Workovers C. Lesson Learned 1. Report and Documentation DP Conference Houston October 21-22 1997 Page 12