ScienceDirect. Investigation of the aerodynamic characteristics of an aerofoil shaped fuselage UAV model

Similar documents
Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped Fuselage

INTERFERENCE EFFECT AND FLOW PATTERN OF FOUR BIPLANE CONFIGURATIONS USING NACA 0024 PROFILE

Aerodynamic Analysis of a Symmetric Aerofoil

Numerical Analysis of Wings for UAV based on High-Lift Airfoils

Design and Development of Micro Aerial Vehicle

Investigation on 3-D Wing of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent

Experimental and Theoretical Investigation for the Improvement of the Aerodynamic Characteristic of NACA 0012 airfoil

Aerodynamic Design, Fabrication and Testing of Wind Turbine Rotor Blades

Numerical Simulation And Aerodynamic Performance Comparison Between Seagull Aerofoil and NACA 4412 Aerofoil under Low-Reynolds 1

AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK

Aerodynamic Analysis of Blended Winglet for Low Speed Aircraft

University of Bristol - Explore Bristol Research. Publisher's PDF, also known as Version of record

Aerodynamics of Winglet: A Computational Fluid Dynamics Study Using Fluent

Reduction of Skin Friction Drag in Wings by Employing Riblets

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool)

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

EXPERIMENTAL ANALYSIS OF FLOW OVER SYMMETRICAL AEROFOIL Mayank Pawar 1, Zankhan Sonara 2 1,2

A COMPUTATIONAL STUDY ON THE DESIGN OF AIRFOILS FOR A FIXED WING MAV AND THE AERODYNAMIC CHARACTERISTIC OF THE VEHICLE

Effect of Co-Flow Jet over an Airfoil: Numerical Approach

The Effect of Canard Configurations to the Aerodynamics of the Blended Wing Body

Aerodynamic Analyses of Horizontal Axis Wind Turbine By Different Blade Airfoil Using Computer Program

STUDIES ON THE OPTIMUM PERFORMANCE OF TAPERED VORTEX FLAPS

ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT

The effect of back spin on a table tennis ball moving in a viscous fluid.

PRESSURE DISTRIBUTION OF SMALL WIND TURBINE BLADE WITH WINGLETS ON ROTATING CONDITION USING WIND TUNNEL

AE Dept., KFUPM. Dr. Abdullah M. Al-Garni. Fuel Economy. Emissions Maximum Speed Acceleration Directional Stability Stability.

Incompressible Flow over Airfoils

AF101 to AF109. Subsonic Wind Tunnel Models AERODYNAMICS. A selection of optional models for use with TecQuipment s Subsonic Wind Tunnel (AF100)

Flow Field Investigation of Flat Bottom Aerofoil under Ground Effect

CFD Study of Solid Wind Tunnel Wall Effects on Wing Characteristics

An Analysis of Lift and Drag Forces of NACA Airfoils Using Python

COMPUTER-AIDED DESIGN AND PERFORMANCE ANALYSIS OF HAWT BLADES

Induced Drag Reduction for Modern Aircraft without Increasing the Span of the Wing by Using Winglet

Aerodynamic behavior of a discus

External Tank- Drag Reduction Methods and Flow Analysis

Aircraft Design Prof. A.K Ghosh Department of Aerospace Engineering Indian Institute of Technology, Kanpur

AF100. Subsonic Wind Tunnel AERODYNAMICS. Open-circuit subsonic wind tunnel for a wide range of investigations into aerodynamics

Effects of seam and surface texture on tennis balls aerodynamics

AERODYNAMIC CHARACTERISTICS OF SPIN PHENOMENON FOR DELTA WING

Design & Analysis of Natural Laminar Flow Supercritical Aerofoil for Increasing L/D Ratio Using Gurney Flap

EXPERIMENTAL INVESTIGATION OF LIFT & DRAG PERFORMANCE OF NACA0012 WIND TURBINE AEROFOIL

Low Speed Wind Tunnel Wing Performance

CHAPTER-1 INTRODUCTION

Subsonic wind tunnel models

CFD ANALYSIS OF FLOW AROUND AEROFOIL FOR DIFFERENT ANGLE OF ATTACKS

Computational Analysis of Cavity Effect over Aircraft Wing

Volume 2, Issue 5, May- 2015, Impact Factor: Structural Analysis of Formula One Racing Car

JJMIE Jordan Journal of Mechanical and Industrial Engineering

COMPUTATIONAL FLUID DYNAMIC ANALYSIS OF AIRFOIL NACA0015

SEMI-SPAN TESTING IN WIND TUNNELS

Study on Bi-Plane Airfoils

Lecture # 08: Boundary Layer Flows and Drag

Aircraft Design: A Systems Engineering Approach, M. Sadraey, Wiley, Figures

STUDY OF VARIOUS NACA SERIES AEROFOIL SECTIONS AND WING CONTOUR GENERATION USING CATIA V5

Chapter 5 Wing design - selection of wing parameters - 3 Lecture 21 Topics

The Influence of Battle Damage on the Aerodynamic Characteristics of a Model of an Aircraft

CFD Analysis of Supercritical Airfoil with Different Camber

EFFECT OF GURNEY FLAPS AND WINGLETS ON THE PERFORMANCE OF THE HAWT

Air Craft Winglet Design and Performance: Cant Angle Effect

DESIGN OF AN AERODYNAMIC MEASUREMENT SYSTEM FOR UNMANNED AERIAL VEHICLE AIRFOILS

PASSIVE FLOW SEPARATION CONTROL BY STATIC EXTENDED TRAILING EDGE

THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL. By Mehrdad Ghods

AERODYNAMIC ANALYSIS OF MULTI-WINGLETS FOR LOW SPEED AIRCRAFT

Aerofoil Profile Analysis and Design Optimisation

Available online at ScienceDirect. Procedia Engineering 112 (2015 )

OUTLINE FOR Chapter 4

WHAT IS GLIDER? A light engineless aircraft designed to glide after being towed aloft or launched from a catapult.

NUMERICAL INVESTIGATION FOR THE ENHANCEMENT OF THE AERODYNAMIC CHARACTERISTICS OF AN AEROFOIL BY USING A GURNEY FLAP

Effect of High-Lift Devices on Aircraft Wing

The Aerodynamic Design and Investigation of Loading Distribution of a Mixed Flow Compressor

ScienceDirect. Aerodynamic body position of the brakeman of a 2-man bobsleigh

WINGLET CANT AND SWEEP ANGLES EFFECT ON AIRCRAFT WING PERFORMANCE

THE COLLEGE OF AERONAUTICS CRANFIELD

Subsonic Wind Tunnel 300 mm

Computational Analysis of the S Airfoil Aerodynamic Performance

The subsonic compressibility effect is added by replacing. with

Lift for a Finite Wing. all real wings are finite in span (airfoils are considered as infinite in the span)

Welcome to Aerospace Engineering

THE CONCEPT OF HIGH-LIFT, MILD STALL WING

EXPERIMENTAL ANALYSIS OF THE CONFLUENT BOUNDARY LAYER BETWEEN A FLAP AND A MAIN ELEMENT WITH SAW-TOOTHED TRAILING EDGE

DEFINITIONS. Aerofoil

NUMERICAL INVESTIGATION OF AERODYNAMIC CHARACTERISTICS OF NACA AIRFOIL WITH A GURNEY FLAP

ANALYSIS OF TRANSONIC FLOW OVER SUPERCRITICAL AIRFOIL USING CFD FOR GAS TURBINE BLADES

CFD Analysis of Effect of Variation in Angle of Attack over NACA 2412 Airfoil through the Shear Stress Transport Turbulence Model

CFD ANALYSIS OF AIRFOIL SECTIONS

Anna University Regional office Tirunelveli

Principles of glider flight

A Practice of Developing New Environment-friendly System by Composites

Static Extended Trailing Edge for Lift Enhancement: Experimental and Computational Studies

INVESTIGATION OF HIGH-LIFT, MILD-STALL WINGS

Effect of Dimple on Aerodynamic Behaviour of Airfoil

STUDY OF MODEL DEFORMATION AND STING INTERFERENCE TO THE AERODYNAMIC ESTIMATIONS OF THE CAE-AVM MODEL

CIRCULATION CONTROLLED AIRFOIL ANALYSIS THROUGH 360 DEGREES ANGLE OF ATTACK

CFD Analysis ofwind Turbine Airfoil at Various Angles of Attack

Experimental Investigation of End Plate Effects on the Vertical Axis Wind Turbine Airfoil Blade

It should be noted that the symmetrical airfoil at zero lift has no pitching moment about the aerodynamic center because the upper and

J. Szantyr Lecture No. 21 Aerodynamics of the lifting foils Lifting foils are important parts of many products of contemporary technology.

Research on Small Wind Power System Based on H-type Vertical Wind Turbine Rong-Qiang GUAN a, Jing YU b

Available online at Procedia Engineering 200 (2010) (2009)

Flow and Heat Transfer Characteristics Over a NACA0018 Aerofoil and a Test Aerofoil A Comparative Study

Transcription:

Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 90 (2014 ) 225 231 10th International Conference on Mechanical Engineering, ICME 2013 Investigation of the aerodynamic characteristics of an aerofoil shaped fuselage UAV model G.M. Jahangir Alam a *, Md. Mamun b, Md. Abu. Taher Ali b, Md. Quamrul Islam b, A. K. M. Sadrul Islam c a Department of Mechanical Engineering, Military Institute of Science & Engineering (MIST), Dhaka, Bangladesh b Department of Mechanical Engineering, BUET, Dhaka, Bangladesh, c Department of Mechanical and Chemical Engineering, Islamic University of Technology (IUT), Gazipur, Bangladesh Abstract This paper explains the fabrication of an UAV having aerofoil shaped fuselage using NACA 4416 profile and compare the result between the aerodynamic characteristics with that of the same model obtained from CFD investigation. Open circuit subsonic wind tunnel has been used to test the fabricated UAV model and collection of data. The wind tunnel is associated with Versatile Data Acquisition System (VDAS) to measure the lift & drag force coefficients and point surface pressures. This paper explains the design parameters and investigation of the aerodynamic characteristics of the fabricated Aerofoil Shaped Fuselage UAV model. This type of model might be used for many military and civil applications like scientific data gathering, surveillance for law enforcement & homeland security, precision agriculture, forest fire monitoring, geological survey etc. The aerodynamic characteristics of Aerofoil Shaped Fuselage UAV model have been carried out at two different Reynolds Number (1.37 x 10 5 and 2.74 x 10 5 respectively) with different angles of attack from -3 o to 18 o. The stalling angle of this design is found at about 14 o during experimental investigation. The aerofoil shaped fuselage UAV model might be used for designing the future UAV. 2014 The The Authors. Published by Elsevier by Elsevier Ltd. This Ltd. is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). Selection and peer-review under responsibility of the Department of Mechanical Engineering, Bangladesh University of Selection Engineering and peer-review and Technology under responsibility (BUET). of the Department of Mechanical Engineering, Bangladesh University of Engineering and Technology (BUET) Keywords: Unmanned air vehicles (UAV); aerofoil shaped fuselage; aerodynamic characteristics; lift coefficient; drag coefficient; angle of attack; stalling angle. 1. Introduction An air vehicle having no onboard pilot and capable of pre-programmed operation as well as reception of * Corresponding author. Tel.: +88-0171-2030061. E-mail address: jahangiralam105@yahoo.com 1877-7058 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). Selection and peer-review under responsibility of the Department of Mechanical Engineering, Bangladesh University of Engineering and Technology (BUET) doi:10.1016/j.proeng.2014.11.841

226 G.M. Jahangir Alam et al. / Procedia Engineering 90 ( 2014 ) 225 231 intermittent commands either independently or from a human operator at a distance from the ground is called unmanned air vehicle (UAV). UAVs can carry out both military and civil applications like scientific data gathering, surveillance for law enforcement and homeland security, precision agriculture, forest fire monitoring, geological survey etc [1 & 2]. UAVs mostly fly under low speed conditions. The aerodynamic characteristics of the UAVs have many similarities than that of the monoplane configuration. Due to the UAV s potential for carrying out so many tasks without direct risk to the crew or humans in general, they are ideal for testing new concepts which have been put forward as a means to further increase the vehicle s capability [3]. This paper explains about the detail parameters for fabrication of an UAV having Aerofoil Shaped Fuselage using NACA 4416 profile. The wings of a conventional UAV are producing the lift and it s fuselage has very little or no contribution on producing lift. But UAV requires higher lifting force with a smaller size. As such, in order to maximize the efficiency of an UAV, it is assumed that the basic design of UAV could be changed and it should be such that all components of an UAV should contribute to the total lift. In such case, the concept of development of all lifting vehicle technology would bring good result for research on design of future UAV. Hence, this paper explains the aerodynamic characteristics of aerofoil shaped fuselage UAV model at different angles of attack and compare the result between the aerodynamic characteristics with that of the same model obtained from CFD investigation [1]. 2. Experimental Design Four major parts of the aerofoil shaped fuselage UAV model are wing, fuselage, horizontal stabilizer and vertical stabilizer. Up wing type model has been selected for fabrication. NACA 4416 cambered aerofoil has been used for fabrication of wing, fuselage, horizontal stabilizer and vertical stabilizer of said model. Important features of experimental design are shown in Table 1. 3. Subsonic Wind Tunnel Open circuit subsonic wind tunnel has been used to test the fabricated aerofoil shaped fuselage UAV model. The dimensions of the working section of said wind tunnel are 60 cm (length) x 32 cm (width) x 30 cm (height). Air enters the wind tunnel through an aerodynamically designed diffuser (cone) and a control knob could be rotated to control the air speed from 0 to 40 m/s. The 3-Component Balance is fitted with the working section of the wind tunnel to measure the lift, drag, pitching moment and their coefficients. Photograph of subsonic wind tunnel and aerofoil shaped fuselage UAV model fitted with the working section of the subsonic wind tunnel are shown in Figs. 1 and 2 respectively. Table 1. Important Features of Experimental Design Nomenclature Type Wing Design (Chord length, 55 mm, 114 mm (either left or span and maximum right) and 7 mm at 16% chord thickness of each wing) length from the root Fuselage Design (Chord 108 mm, 45 mm (left + right) and length, span and maximum 15 mm at 16% chord length from thickness of fuselage) the root Horizontal and Vertical As suitable for this design by Stabilizer maintaining the scale factor Air speed (v) 20 m/s and 40 m/s Reynold s Number (Re) 1.37 x 10 5 and 2.74 x 10 5 Angles of attack (α) -3 to 18

G.M. Jahangir Alam et al. / Procedia Engineering 90 ( 2014 ) 225 231 227 Fig. 1. Photograph of Subsonic Wind tunnel Fig. 2. Photograph of Aerofoil Shaped Fuselage UAV Model Fitted with the Working Section of Wind Tunnel 4. Aerodynamic Characteristics for Experimental Design 4.1 Aerodynamic characteristics of aerofoil shaped fuselage model at 20 m/s The variation of lift coefficient with angle of attack at 20 m/s for aerofoil shaped fuselage UAV model at different angle of attack is shown in Figure 3. The zero lift angles have been found at -3º angle of attack. Then the lift coefficient increases almost linearly with the increase of angle of attack up to approximately 14 o. Afterwards, the lift coefficient decreases with the further increase of angle of attack. As such, the stalling angle of this model is found at about 14. The maximum lift coefficient, C Lmax for this type of model is found approximately 0.78. The variation of drag coefficient with angle of attack at 20 m/s for aerofoil shaped fuselage model at different angle of attack is shown in Fig. 4. The shape of the drag coefficient vs angle of attack curve is found parabolic nature. As such, the drag coefficient increases with the increase of angle of attack. The value of drag coefficient for this type of model at 14 o angle of attack is found approximately 0.089. Fig. 3. Variation of with Angle of Attack for Aerofoil Shaped Fuselage UAV Model at 20 m/s Fig. 4. Variation of with Angle of Attack for Aerofoil Shaped Fuselage UAV Model at 20 m/s The lift drag ratio curve of aerofoil shaped fuselage UAV model at 20 m/s is shown in Fig. 5. The aerofoil shaped wing and fuselage tips experienced induced drag due to tip vortices and trailing edge vortices. A significant amount of drag is also produced due to shape and skin friction effects of the aerofoil shaped fuselage UAV model which are termed as profile drag. So, both induced and profile drags have been experienced by this type of model. But it is assumed that said model has also increased a significant amount of extra lift from it s fuselage due to it s aerofoil shape. From Figure 5, it is found that at low and moderate lift coefficients, there is no appreciable flow separation. As the lift coefficient increases, drag coefficient also increases exponentially up to stall angle of attack

228 G.M. Jahangir Alam et al. / Procedia Engineering 90 ( 2014 ) 225 231 i.e. 14º angle of attack. Afterwards, a sharp increase of drag coefficient with reduction of lift coefficient occurs for this type of model at the stall angle due to flow separation. The lift drag ratio at the stall angle for this model is found 8.76. 4.2 Aerodynamic characteristics of aerofoil shaped fuselage model at 40 m/s The variation of lift coefficient with angle of attack at 40 m/sec for aerofoil shaped fuselage model at different angle of attack is shown in Fig. 6. The zero lift angle has been found at -3º angle of attack. Then the lift coefficient increases almost linearly with the increase of angle of attack up to approximately 14 o. After wards, the lift coefficient decreases with the further increase of angle of attack. As such, the stalling angle of this model is found at about 14. The maximum lift coefficient, C Lmax for this type of model is approximately 0.81. Fig. 5. Lift Drag Ratio Curve of Aerofoil Shaped Fuselage UAV model at 20 m/s The variation of drag coefficient with angle of attack at 40 m/s for aerofoil shaped fuselage model at different angle of attack is shown in Fig. 7. The shape of the drag coefficient vs angle of attack curve is found parabolic nature. As such, the drag coefficient increases with the increase of angle of attack. The value of drag coefficient for this type of model at 14 o angle of attack is found 0.086. The lift drag ratio curve of aerofoil shaped fuselage UAV model at 40 m/s is shown in Fig. 8. The aerofoil shaped wing and fuselage tips experienced induced drag due to tip vortices and trailing edge vortices. A significant amount of drag is also produced due to shape and skin friction effects of the aerofoil shaped fuselage UAV model which are termed as profile drag. So, both induced and profile drags have been experienced by this type of model. But it is assumed that said model has also increased a significant amount of extra lift from it s fuselage due to it s aerofoil shape. From Figure 8, it is found that at low and moderate lift coefficients, there is no appreciable flow separation. As the lift coefficient increases, drag coefficient also increases exponentially up to stall angle of attack i.e. 14º angle of attack. Afterwards, a sharp increase of drag coefficient with reduction of lift coefficient occurs for this type of model at the stall angle due to flow separation. The lift drag ratio at the stall angle for this model is found 9.42. Fig. 6. Variation of with Angle of Attack for Aerofoil Shaped Fuselage UAV Model at 40 m/s Fig. 7. Variation of with Angle of Attack for Aerofoil Shaped Fuselage UAV Model at 40 Fig. 8. Lift Drag Ratio Curve of Aerofoil Shaped Fuselage UAV model at 40 m/s

G.M. Jahangir Alam et al. / Procedia Engineering 90 ( 2014 ) 225 231 229 5. Comparison of Aerodynamic Characteristics between Experimental and Computational Design 5.1 Aerodynamic characteristics of aerofoil shaped fuselage model at 20 m/s The maximum lift coefficient, C Lmax for aerofoil shaped fuselage UAV model is found approximately 1.20 during computational design. The zero lift angle has been found at -3º angle of attack. Then the lift coefficient increases almost linearly with the increase of angle of attack up to approximately 15 o. Afterwards, the lift coefficient decreases with the further increase of angle of attack. As such, the stalling angle of this model is found at about 15 during computational design [1 and 4]. The value of drag coefficient for this model at 15 o angle of attack is found 0.166. The shape of the drag coefficient vs angle of attack curve is found parabolic nature and the drag coefficient increases with the increase of angle of attack during computational design [1 and 4]. The variation of lift and drag coefficient with angle of attack between computational and experimental data of aerofoil shaped fuselage UAV models is shown in Figure 9 and 10 respectively. It is seen that the lift and drag force coefficients obtained from computational result is more than that of the experimental result for both the configurations. 5.2 Aerodynamic characteristics of aerofoil shaped fuselage model at 40 m/s The maximum lift coefficient, C Lmax for aerofoil shaped fuselage UAV model is found approximately 1.221 during computational design. The zero lift angle has been found at -3º angle of attack. Then the lift coefficient increases almost linearly with the increase of angle of attack up to approximately 15 o. After wards, the lift coefficient decreases with the further increase of angle of attack. As such, the stalling angle of this model is found at about 15 during computational design [1 & 4]. The value of drag coefficient for this model at 15 o angle of attack is found 0.145. The shape of the drag coefficient vs angle of attack curve is found parabolic nature and the drag coefficient increases with the increase of angle of attack during computational design [1 and 4]. The variation of lift and drag coefficient with angle of attack between computational and experimental data of aerofoil shaped fuselage UAV models is shown in Figures 11 and 12 respectively. It is seen that Aerofoil shaped fuselage configuration at 40 m/s provides more lift and drag coefficients than other configurations for both computational and experimental design. It is also seen that the lift and drag force coefficients obtained from computational result is more than the experimental result for all configurations. Among the two configurations (Fig. 9 and 11), Aerofoil shaped fuselage configuration at 40 m/s provides maximum lift than other configurations at about 15 o angle of attack. During drag analysis, it is seen from Fig. 10 and 12 that among the two different types of configurations, Aerofoil shaped fuselage configuration at 20 m/s provides maximum drag than other configurations. Drag Coeff (Th) Drag Coeff (Ex) Lift Coeff (Th) Lift Coeff (Ex) Fig. 9. Comparison of VS Angle of Aerofoil Shaped Fuselage UAV Model at 20 m/s Fig. 10. Comparison of VS Angle of Aerofoil Shaped Fuselage UAV Model at 20 m/s

230 G.M. Jahangir Alam et al. / Procedia Engineering 90 ( 2014 ) 225 231 Drag Coeff (Th) Drag Coeff (Ex) Lift Coeff (Th) Lift Coeff (Ex) Fig. 11. Comparison of VS Angle of Aerofoil Shaped Fuselage UAV Model at 40 m/s 5.3 Lift to drag ratio curve of aerofoil shaped fuselage model Fig. 12. Comparison of VS Angle of Aerofoil Shaped Fuselage UAV Model at 40 m/s The lift drag ratio curve of aerofoil shaped fuselage UAV model at 20 m/s for both experimental & computational design is shown in Fig. 13. The lift to drag coefficient is found less for aerofoil shaped fuselage UAV model of computational design than that of experimental design. From Figure 13, it is found that at low and moderate lift coefficients, there is no appreciable flow separation. As the lift coefficient increases, drag coefficient also increases exponentially up to stall angle of attack. Afterwards, a sharp increase of drag coefficient with reduction of lift coefficient occurs at the stall angle due to flow separation. The lift drag ratio curve of aerofoil shaped fuselage UAV model at 40 m/s for both experimental and computational design is shown in Fig. 14. The lift to drag coefficient is found less for aerofoil shaped fuselage UAV model of computational design than that of experimental design. From Figure 14, it is found that at low and moderate lift coefficients, there is no appreciable flow separation. As the lift coefficient increases, drag coefficient also increases exponentially up to stall angle of attack. Afterwards, a sharp increase of drag coefficient with reduction of lift coefficient occurs at the stall angle due to flow separation. Theoretical Design Theoretical Design Experimental Design Experimental Design Fig. 13. Comparison of Lift Drag Ratio Curve of Aerofoil Shaped Fuselage UAV model at 20 m/s Fig. 14. Comparison of Lift Drag Ratio Curve of Aerofoil Shaped Fuselage UAV model at 40 m/s 6. Conclusions Operation of UAV proved to be easy and adaptable for versatile tasks including military as well as many civil applications in the recent years. But UAV requires higher lifting force with a smaller size. In order to maximize the

G.M. Jahangir Alam et al. / Procedia Engineering 90 ( 2014 ) 225 231 231 efficiency of an UAV - the concept of development of all lifting vehicle technology might bring good result for designing of the future UAV. For this reason, the aerofoil shaped fuselage of an UAV might be a good source of lifting force. This paper explains about the fabrication of an UAV having aerofoil shaped fuselage using NACA 4416 profile and compare between the aerodynamic characteristics with that of the same model obtained from CFD investigation. The experimental data have been obtained by using subsonic wind tunnel and the investigation has been carried out at 20 m/sec and 40 m/s respectively. The angle of attack has been varied from -3 to 18. The stalling angle has been found at about 14 for experimental design. The L/D Ratio of Aerofoil shaped fuselage configuration at the stalling angle (14 AOA) at 20 & 40 m/s are 6.84 & 8.02 respectively for experimental design and for theoretical design the L/D Ratio of same model at the stalling angle (15 AOA) at 20 and 40 m/s are 5.13 & 7.40 respectively. The aerofoil shaped fuselage has produced a significant amount of extra lift from it s fuselage due to aerofoil shape. But said model has also produced some extra drag due to tip vortices and trailing edge vortices. However, ways for reduction of the tip and trailing edge vortices from aerofoil shaped fuselage might be investigated in future to enhance the efficiency further-more. At the end, it is felt that the aerofoil shaped fuselage might be a very good option for designing the future UAV. References [1] G.M. Jahangir Alam, Md. Mamun, Md. Abu Taher Ali and A. K. M. Sadrul Islam, Development of Design of Aerofoil Shaped Fuselage and CFD Investigation of its Aerodynamic Characteristics, ISSN: 2224-2007, MIST Journal of Science and Technology, 2(2013), No. 1, 43-50. [2] Randal Beard, Derek Kingston, Morgan Quigley, Deryl Snyder, Reed Christiansen, Walt Johnson, Timothy McLain and Michael A. Goodrich, Autonomous Vehicle Technologies for Small Fixed-Wing UAVs, Journal of Aerospace Computing, Information and Communication,, January 2005, 92-94. [3] M. Secanell, A. Suleman and P. Gamboa Design of a Morphing Airfoil for a Light Unmanned Aerial Vehicle using High-Fidelity Aerodynamic Shape Optimization Journal of American Institute of Aeronautics and Astronautics (AIAA 2005-1891), April 2005, 1-20. [4] G.M. Jahangir Alam, Md Mamun and A. K. M. Sadrul Islam, Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped Fuselage, International Journal of Scientific & Engineering Research, 4 (2013), Issue 1.