LS Gonçalves. has not reached alarming levels, with. no reports of colony losses exclusively. attributable to varroosis.

Similar documents
Effect of cell size on Varroa 37 Africanized cells (13.9 and 10.3%, respectively). The Carniolan-sized cells also had a significantly larger number of

Development of Varroa jacobsoni in colonies

Comparison of the reproductive ability of varroa mites in worker and drone brood of Africanized Honey Bees

Susceptibility of European and Africanized

IMPACT OF VARROA DESTRUCTOR ON THE HONEY BEES OF SOUTH AFRICA

Bees Biting Mites. Breeding and small cell size. by ERIK OSTERLUND Sweden

RAPD identification of Varroa destructor genotypes in Brazil and other regions of the Americas

Redacted for Privacy

Infertility of Varroa jacobsoni females after invasion into Apis mellifera worker brood as a tolerance factor against varroatosis

Susceptibility of European and Africanized honey bees (Apis mellifera L.) to Varroa jacobsoni Oud.

REPRODUCTION OF VARROA JACOBSONI DURING SUCCESSIVE BROOD CYCLES OF THE HONEYBEE

Biology of the Varroa mite: what you need to know to understand its population dynamics

The impact of a Varroa infestation depends. on the degree of infestation in the. bee colony. A low infestation apparently

Expression of Varroa Sensitive Hygiene (VSH) in Iranian Honey Bees (Apis mellifera meda)

Biology of the Varroa mite: what you need to know to understand its population dynamics

Honey bee hygienic behavior

VARROA-BEE RELATIONSHIPS -WHAT THEY TELL US ABOUT CONTROLLING VARROA MITES ON THE EUROPEAN HONEY BEE

Infestation levels of Varroa destructor in local honey bees of Jordan

OBSERVATIONS ON MITES OF THE ASIAN HONEYBEE SPECIES (Apis cerana, Apis dorsata, Apis florea)

Small-cell comb does not control Varroa mites in colonies of honeybees of European origin

Variable Population Growth of Varroa destructor (Mesostigmata: Varroidae) in Colonies of Honey Bees (Hymenoptera: Apidae) During a 10-Year Period

Resistance to the parasitic mite Varroa destructor in honey bees from far-eastern Russia

Africanized honey bees (Apis mellifera) have low infestation levels of the mite Varroa destructor in different ecological regions in Mexico

Grooming behavior and damaged mites (Varroa jacobsoni) in Apis cerana cerana and Apis mellifera ligustica

Varroa mite reproductive biology. How Trump Won. How Varroa Won 3/10/2018. Zachary Huang Michigan State University East Lansing, Michigan, USA

mellifera and Apis dorsata and its effect on the parasitic mites Varroa jacobsoni and Tropilaelaps clareae Grooming behaviour of Apis cerana, Apis

Selection of honey bees tolerant or resistant to Varroa jacobsoni

Damaged Varroa mites in the debris of honey bee (Apis mellifera L) colonies with and without hatching brood

Newsletter of the Appalachian Beekeepers

Dispersion type of Varroa mite (Acari, Varroidae) Among the Bee hives in Kurdistan Province, Iran

Received 17-vi Corrected 30-vi Accepted 31-vii-2008.

The Varroa Bee Mite 1

LSU Historical Dissertations and Theses

to chemical control of Varroa is desirable. term solution to this global threat. Attempts to find stocks of honey bees

The effectiveness of thermotherapy in the elimination of Varroa destructor

Non-reproduction of Varroa jacobsoni in Apis mellifera colonies in Papua New Guinea and Indonesia

Influence of the environment and the host on parasitization by Varroa jacobsoni Oud

Bangkok 10600, Thailand. Dhonburi, Bangkok 10600, Thailand. *Corresponding author Accepted 12 February, 2016 ABSTRACT

Notes on Varroa destructor (Acari: Varroidae) parasitic on honeybees in New Zealand

Varroa destructor Infestation in Untreated Honey Bee (Hymenoptera: Apidae) Colonies Selected for Hygienic Behavior

Effect of queen age on hygienic and grooming behavior of Apis mellifera Ligustica against Varroa destructor

Varroa Mites. Diagnose the disease first then diagnose the problem with the Honey Bee. Where can You find Varroa Mites?

Does a remote Brazilian island hold the key to varroa tolerance?

Final Report: UF Development of Varroa destructor in vitro rearing methods. Cameron Jack 1, Jamie Ellis 2

Experimental infestation of a worker brood cell of Apis mellifera with an adult female of Varroa destructor Lucía Rojas Quesada / DRIADE S.A.

Nomenclature. David E. MacFawn Master Craftsman Beekeeper SCBA Aiken Journeyman Class Saturday, April 23, 2016

Steven & Angelia Coy Wiggins, MS

Natural Varroa mite-surviving Apis mellifera honeybee populations

A K.I.S.S. Model for Breeding Locally-adapted Varroa-resistant Bees

SELECTION FOR UNCAPPING OF VARROA INFESTED BROOD CELLS IN THE HONEYBEE (APIS MELLIFERA)

Relative effect of four characteristics that restrain the population growth of the mite Varroa destructor in honey bee (Apis mellifera) colonies

Resources for Integrated Pest Management (IPM) and Varroa Mite Control

SOME ASPECTS OF THE PROCESS OF VARROA JACOBSONI MITE ENTRANCE INTO HONEY BEE (APIS MELLIFERA) BROOD CELLS

Development of Varroa jacobsoni in colonies of Apis mellifera capensis and Apis mellifera carnica

Honey bee colonies that have survived Varroa destructor

Kevin O Donnell, Individual Experimental Project, UM Master Beekeeping Course, August, 2018

PRACTICAL 16 FAMILIARIZATION WITH ENEMIES OF HONEY BEES AND THEIR CONTROL

Varroa Management. How do I know if my colonies have Varroa?

Varroa Mite, Varroa destructor Anderson and Trueman (Arachnida: Acari:Varroidae) 1

Varroa Mites: Samples and Controls (Varroa destructor or jacobsoni) -discovered S.E. Asia 1904; U.S. 1987

IMPACT OF VARROA MITE INFESTATION ON THE MANDIBULAR AND HYPOPHARYNGEAL GLANDS OF HONEY BEE WORKERS

Integrated pest management against Varroa destructor reduces colony mite levels and delays treatment threshold

Figure 1. Thresholds for sticky board types. Threshold of 60 varroa mites. Threshold of 120 varroa mites. Research by the beekeeper for the beekeeper

Clarification of aspects of Varroa reproduction first stage of a possible new control method

Integrated Pest Management

Economic threshold for Varroa jacobsoni Oud. in the southeastern USA

Impact of Varroa destructor on honeybee (Apis mellifera scutellata) colony development in South Africa

Making Splits. Jeff Harris

VARROA IS PUBLIC ENEMY # 1

Preparing Honeybee Colonies for Winter

A NEW LOOK AT SPLITS

VARROA MITE INFESTATION IN APIARIES OF DUHOK PROVINCE, KURDISTAN REGION, IRAQ. Z. N. Ayoub, D. S. Ahmed and H. R. Ismael

Model evaluation of methods for Varroa jacobsoni mite control based on trapping in honey bee brood

Best Management Practices for Varroa Mite Control in Wisconsin Liz Walsh, Texas A&M University and Kent Pegorsch, WHPA President January 2018

FOR TREATMENT OF VARROOSIS CAUSED BY VARROA DESTRUCTOR IN HONEY BEES (APIS MELLIFERA)

V. Goswami, M.S. Khan/Journal of Natural Products, Vol. 6(2013):

EVALUATION OF SOME NATURAL SUBSTANCES AGAINST VARROA DESTRUCTOR INFESTING HONEYBEE, APIS MELLIFERA IN EGYPT

Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario, Canada*

Journal of Entomology and Zoology Studies 2017; 5(2): Vaziritabar Shakib and Esmaeilzade Sayed Mehdi

Island population of European honey bees in Northeastern Brazil that have survived Varroa infestations for over 30 years

Learning to identify a common cause of winter death in Northern Climates

INVASION OF BEE SAMPLES WITH VARROA DESTRUCTOR

DOI: /jas

BREEDING QUEENS IN THE AGE OF VARROA

Managing Varroa Mites in Honey Bee Colonies

Launching MAQS in the US: Response from Beekeepers and the Latest Research Rome, 30-March 2012

Natural Beekeeping. Small Hive Beekeeping to Manage Varroa Mites

Recording the proportion of damaged Varroa jacobsoni

NZQA Expiring unit standard version 3 Page 1 of 5. Demonstrate knowledge of the varroa mite and its control in the beekeeping industry

May 4th Monthly meeting Friends Meeeting House 7:30pm. June Association Apiary visit Richmond Street (date to be announced)

Detecting points of unintentional ventilation

Reliability of the main field diagnostic methods of Varroa in honey bee colonies

Pests & Diseases of Honeybees

VLT. VLT Series Bookstyle... page 3. Compact IP page 9. Compact IP page 23 *MI50L151* Instruction

Beekeeping in Coastal California. January

Kathleen Prough Chief Apiary Inspector IDNR, Div. of Entomology & Plant Pathology Work # Cell # ,

Effectiveness of Acaricidal Treatments against Varroa destructor (Acari: Varroidae) Affecting Honey Bee, Apis mellifera L.

Breeding honey bees for varroa tolerance

Beekeepers of Volusia County Florida

Autumn Invasion Rates of Varroa destructor

Transcription:

Original article Effect of the size of worker brood cells of Africanized honey bees on infestation and reproduction of the ectoparasitic mite Varroa jacobsoni Oud D Message LS Gonçalves 1 Depto Biologia Animal, Universidade Federal de Viçosa, 36571-000 Viçosa, MG; 2 Depto Biologia, FFCLRP, USP, 14049-901 Ribeirão Preto, SP, Brazil (Received 28 October 1993; accepted 28 March 1995) Summary An investigation was made of the influence of honey bee worker brood cell size on infestation by the mite Varroa jacobsoni. Pieces of combs constructed by Africanized (small cells) and pure Italian (large cells) honey bees were placed within the same frame and eggs were laid by a single queen in each trial. Two queens, one Africanized and the other Italian, were mated with Africanized drones, and their respective colonies were used in 16 trials. The frequency of infested brood cells was higher in the large worker brood cells built by European races than in the small worker brood cells built by Africanized bees (15.7 vs 7.3%, respectively), though other factors, including egg origin and colony, were equal. The same was true for frequency of cells with female deutonymphs (which represent effective reproduction) (11.9 vs 4.7%, respectively). Apis mellifera/varroa jacobsoni/africanized bees / mite reproduction / brood infestation INTRODUCTION Although the ectoparasite Varroa jacobsoni Oud has maintained itself in equilibrium for a long time with its original host Apis cerana Fabr, in A mellifera L this adaptation has not been established and the mite normally causes serious losses for the beekeeping industry (De Jong et al, 1982a). However, in Brazil, where most beekeeping is based on Africanized bees, infestation has not reached alarming levels, with no reports of colony losses exclusively attributable to varroosis. In contrast, in Argentina, where European bees predominate, the infestation has reached high levels (De Jong et al, 1984). This difference observed between European bees and African or Africanized bees has stimulated a great deal of research to determine what factors influence Varroa populations. The race of honey bees

(Camazine, 1986; Moretto et al, 1991 a) and climatic conditions (Moretto et al, 1991 b) appear to play a crucial role in the resistance of bees in Brazil, though Rosenkranz et al (1984) did not attribute the low rate of reproduction to the high tropical ambient temperatures. Hygienic and grooming behavior, the shorter post-capping phase of the brood and the higher rate of infertile females are some racial factors that could contribute to this higher resistance of African and Africanized bees (Moritz and Hänel, 1984; Ritter and De Jong, 1984; De Jong, 1990; Moritz and Mautz, 1990; Moretto et al, 1991a). Increase in worker infestation has also been observed in reared cells independently of the race of bees (De Jong and Morse, 1988; De Ruitjer and Calis, 1988). In the present study, the influence of the smaller worker cells built by Africanized bees in relation to larger cells built by European races on the infestation and reproduction of the mite V jacobsoni was investigated. MATERIALS AND METHODS We used specially built (mosaic) combs containing 2 pieces of comb each about 7 x 10 cm, inserted into the center, one made up of cells built by Africanized bees (small cells) and the other with cells built by A m ligustica (large cells). The smallest width and the volume (measured by filling the cells with water from a calibrated pipette) of these cells varied from 4.5 to 4.6 mm and from 175 to 195 μl, respectively, in small cells, and from 4.9 to 5.1 mm and from 240 to 260 μl in large cells. Two queens and their respective colonies were utilized for egg laying and brood development. One was a wild-type Africanized honey bee queen and the other an Italian queen, which was open mated in an Africanized bee region, therefore producing F, hybrid Africanized/Italian workers. Combs with the 2 types of cells with eggs of one queen were placed in the same colony or in the colony of the other queen, and vice versa. Egg laying by the queens in the 2 types of cells occurred with only a small variation in time, so that brood of practically the same age and from the same queen was available in each of the composite combs. The brood cells were analyzed individually at 17-18 d, for the presence of adult mite females, deutonymphs and other offspring (eggs, female protonymphs and males at the various developmental phases) of Varroa. Sixteen trials were made for a total of 1 572 pupae developed in small cells and 1 642 pupae in large cells. The data were analyzed statistically by the Student s t-test for paired samples. RESULTS AND DISCUSSION No significant effect of the queen or colony was found (P > 0.4), and so the data were pooled. The Varroa infestation rate was 2- fold higher in brood developed in large cells in relation to brood developed in small cells (table I). The significantly (P < 0.01) higher brood weight observed in large cells (average of 108.2 mg) in relation to the small cells (average 99.2 mg) should promote differential feeding. Worker brood developed in large cells should receive more visits from nurse workers, increasing the probability of the mites transferring to the cells to infest the brood. Fuchs (1990) found a decrease in the intensity of the attraction of the drone larvae when they are nursed less intensively towards the end of drone production. Besides physical stimuli, larvae from these cells could also contribute with other stimuli, such as kairomones. Le Conte et al (1989) have isolated and identified some esters (eg, methyl palmitate) promoting a strong attractive response in the Varroa female. This substance was isolated from drone brood but is also present in worker brood in smaller amounts. The prolonged and intensive capping activity (Fuchs, 1990; Wieting and Ferenz, 1991) should be related to the phoresis hypothesis, due to the large amount of time that nurse workers spend near the brood during this activity, increasing the chance for mites to move from cell capping workers to the host brood.

During the experiments we did not observe any drone brood in the colonies, and so the mites had only the worker cells available. There were slightly more original adult females in large infested cells than in infested small cells (table II). We found 29 cells with 2 adult females and 7 cells with 3 adult females among large cells, whereas among small cells only 6 cells had 2 adult females and none had 3 or more. The number of female deutonymphs produced did not differ significantly between infested large and small cells (table I). However, a greater percentage of all large cells had deutonymphs (table II). If we consider that the female deutonymphs encountered in this experiment on 17-18 d pupae are effective reproductions, the large cells contributed 2.6-fold more to the population increase of Varroa. In this experiment we also observed a high proportion of original adult females that entered into the cells with brood and left no offspring (tables I and II). This proportion was the same for both type of cells. This suggests that the infertility rate is not due to the size of cells built by European or Africanized bees, but to other factors. A high rate of mite infertility has been shown in Africanized bees (De Jong et al, 1982b; Ritter and De Jong, 1984; Camazine, 1986) and in European bees in South America (Ruttner et al, 1984; Marcangeli et al, 1992). We conclude that small comb cell size affects the infestation and reproduction of V jacobsoni in worker brood of Africanized bees in Brazil. Other factors observed in Africanized bees, including shorter development time (19-20 d) of worker brood (Message, 1986), grooming and hygienic behavior; climatic conditions (Moretto et al, 1991 a, b) and higher frequency of temperature peaks during the thermal regulation of the brood chamber of Africanized bees (Le Conte et al, 1990) also contribute to the greater resistance of Africanized bees to V jacobsoni in Brazil and other tropical and subtropical countries compared with European races of bees.

ACKNOWLEDGMENTS We wish to thank D De Jong for providing useful discussions, reviewing the manuscript and for writing the summary. This work was funded by CNPq (Brazil) and NSF (USA). Résumé Effet de la taille des cellules de couvain d ouvrières d abeilles africanisées sur l infestation et la reproduction de l acarien parasite Varroa jacobsoni. La parasitose par Varroa jacobsoni est un problème grave pour l apiculture. Cependant, au Brésil, où l apiculture est basée sur l utilisation de l abeille africanisée, l épidémie n a pas atteint un niveau alarmant, et il n y a pas eu de pertes de colonies dues exclusivement à l acarien. Puisque l abeille africanisée est plus petite que l abeille européenne, à la fois au stade adulte et aux stades larvaires, nous avons analysé l influence de la taille des cellules de couvain d ouvrières d abeilles africanisées sur l infestation et la reproduction du parasite. Des morceaux de rayon construits par des abeilles africanisées (petites cellules) et de race italienne (grandes cellules) ont été placés dans le même cadre. Une seule reine a pondu au cours de chacun des 16 essais. La fréquence des cellules de couvain infestées (tableau I) a été significativement plus élevée dans les grandes cellules (15,7%) que dans les petites (7,3%). Le nombre de femelles de Varroa a été légèrement supérieur dans les grandes cellules (298/258 1,15 femelle adulte = par cellule) que dans les petites (120/115 = 1,04 femelle adulte par cellule). Le nombre de deutonymphes a été 2,6 fois plus grand dans les grandes cellules. Le poids plus grand des nymphes élevées dans les grandes cellules (108,2 mg) par rapport à celles élevées dans les petites cellules (99,2 mg) suggère que les ouvrières nourrices s occupent davantage des premières, ce qui augmente donc

la probabilité d apporter des acariens au contact des larves. Les données obtenues dans ce travail, sur l effet de la taille des cellules, le nombre de cellules infestées et le temps de développement du couvain d ouvrières d abeilles africanisées, aussi bien que les données de la littérature concernant le comportement de nettoyage, les conditions climatiques et la régulation thermique de la colonie, contribuent à expliquer la plus grande résistance des abeilles africanisées au Brésil et dans d autres à Varroa jacobsoni régions tropicales et sub-tropicales, par rapport aux races européennes. Apis mellifera / Varroa jacobsoni / abeilles africanisées / reproduction de Varroa / infestation du couvain Zusammenfassung Einfluß der Größe von Arbeiterinnenbrutzellen der afrikanisierten Honigbiene auf Befall und Reproduktion der ectoparasitischen Milbe Varroa jacobsoni Oud. Durch Varroa jacobsoni ist für die Bienenhaltung ein gefährliches Problem entstanden. In Brasilien werden afrikanisierte Bienen gehalten und dort hat der Milbenbefall nicht so alarmierende Raten erreicht wie zb in Europa. Es gibt keine Verluste von Bienenvölkern, die nur auf dem Befall durch Varroa jacobsoni beruhen. Afrikanisierte Bienen sind kleiner als Bienen der europäischen Rassen. Größenunterschiede finden sich auch bei den Arbeiterinnenbrutzellen. Deshalb wurde der Einfluß der Zellgröße auf den Befall und die Reproduktion der Milbe Varroa jacobsoni untersucht. Wabenstücke, die entweder von afrikanisierten (kleine Zellen) oder von reinen Italienerbienen (große Zellen) gebaut waren, wurden gemeinsam in einen Rahmen eingeschnitten. Die Eier stammten in allen 16 Versuchen von derselben Königin. Die größeren Zellen der Italienerbienen waren statistisch gesichert häufiger befallen (15,7%) als die kleinen der afrikanisierten Bienen (7,3%, Tabelle I). Es befanden sich geringfügig mehr Muttermilben in großen befallenen Zellen (298/258 = 1,15 Muttermilben/Zelle) als in den kleinen Zellen (120/115 = 1,04 Muttermilben/Zelle). Die Anzahl der Deutonymphen in Zellen mit Nachkommen zeigte keine größenabhängigen statistischen Unterschiede. Insgesamt aber befanden sich in großen Zellen 2,6 mal mehr Deutonymphen. Der signifikante Unterschied im Gewicht der 17 bis 18 Tage alten Brut in großen und kleinen Zellen läßt vermuten, daß unterschiedlich häufig gefüttert wird und damit auch die Wahrscheinlichkeit unterschiedlich ist, daß eine Milbe in die Zelle getragen wird. Die hier gewonnenen Daten über den Einfluß der Zellgröße, die Anzahl der befallenen Zellen ohne Reproduktion (43%) und die kürzere Entwicklungsdauer (19-20 Tage) der afrikanisierten Arbeiterinnenbrut tragen im Zusammenhang mit Literaturdaten über Putzverhalten, über Klimabedingungen und über häufiges Vorkommen von Temperaturpeaks bei der Thermoregulation zur Erklärung der höheren Resistenz der afrikanisierten Bienen in Brasilien und anderen tropischen und subtropischen Ländern im Vergleich zu europäischen Rassen bei. Zellgröße / Arbeiterinnenbrut / Varroa jacobsoni/afrikanisierte Honigbienen REFERENCES Camazine S (1986) Differential reproduction of the mite, Varroa jacobsoni (Mesostigmata: Varroidae), on Africanized and European honey bees (Hymenoptera: Apidae). Ann Entomol Soc Am 76, 801-803 De Jong D (1990) Potencial produtivo das abelhas africanizadas em relação ao das abelhas européias. Anais da 27a Reunião Anual da Sociedade Brasileira de Zootecnia, FEALQ, Piracicaba, SP, 577-587 De Jong D, Morse RA (1988) Utilization of raised brood cells of the honey bee, Apis mellifera (Hymenoptera: Apidae), by the mite, Varroa jacobsoni (Acarina: Varroidae). Entomol Gen 14, 103-106

De Jong D, De Jong PH, Gonçalves LS (1982a) Weight loss and other damage to developing worker honeybees from infestation with Varroa jacobsoni. J Apic Res 21, 165-167 De Jong D, Morse RA, Eickwort GC (1982b) Mite pests of honey bees. Annu Rev Entomol 127, 229-252 De Jong D, Gonçalves LS, Morse RA (1984) Dependence on climate of the virulence of Varroa jacobsoni. Bee World 65, 117-121 De Ruitjer A, Calis J (1988) Distribution of Varroa jacobsoni female mites in honey bee worker brood cells of normal and manipulated depth (Acarina: Varroidae). Entomol Gen 14, 107-109 Fuchs S (1990) Preference for drone brood cells by Varroa jacobsoni Oud in colonies of Apis mellifera carnica. Apidologie 21, 193-199 Le Conte Y, Arnold G, Trouiller J, Masson C, Chappe B, Ourisson G (1989) Attraction of the parasitic mite Varroa to the drone larvae of honey bees by simple aliphatic esters. Science 245, 638-639 Le Conte Y, Arnold G, Desenfant PH (1990) Influence of brood temperature and hygrometry variations on the development of the honey bee ectoparasite Varroa jacobsoni (Mesostigmata: Varroidae). Environ Entomol 19, 1780-1785 Marcangeli JA, Eguaras MJ, Fernandez NA (1992) Reproduction of Varroa jacobsoni (Acari: Mesostigmata: Varroidae) in temperate climates of Argentina. Apidologie 23, 57-60 Message D (1986) Aspectos reprodutivos do ácaro Varroa jacobsoni e seus efeitos em colônias de abelhas africanizadas. PhD Thesis, Departamento de Genética, Faculdade de Medicina de Ribeirao Preto, USP, Brazil, 146 p Moretto G, Gonçalves LS, De Jong D (1991a) Africanized bees are more efficient at removing Varroa jacobsoni. Preliminary data. Am Bee J 131, 434 Moretto G, Gonçalves LS, De Jong D, Bichuette MZ (1991 b) The effects of climate and bee race on Varroa jacobsoni Oud infestations in Brazil. Apidologie 22, 197-203 Moritz RFA, Hänel H (1984) Restricted development of the parasitic mite Varroa jacobsoni Oud in the Cape honeybee Apis mellifera capensis Esch. Z Ang Ent 97, 91-95 Moritz RFA, Mautz D (1990) Development of Varroa jacobsoni in colonies of Apis mellifera capensis and Apis mellifera carnica. Apidologie 21, 53-58 Ritter W, De Jong D (1984) Reproduction of Varroa jacobsoni Oud in Europe, the Middle East and tropical South America. Z Ang Ent 98, 55-57 Rosenkranz P, Tewarson NC, Engels W (1984) Optimal host selection by reproductive female Varroa jacobsoni. In: Advances in Invertebrate Reproduction 3 (W Engels, ed), Elsevier Publishers, Amsterdam, New York, Oxford, 628 Ruttner F, Marx H, Marx G (1984) Beobachtungen über eine mögliche Anpassung von Varroa jacobsoni an Apis mellifera L in Uruguay. Apidologie 15, 43-62 Wieting J, Ferenz H (1991) Behavioral study on the invasion of honey bee brood by the mite Varroa jacobsoni on wax combs and ANP combs. Am Bee J 117-118