UNIVERSITY RESEARCH. Bed bugs are a growing problem throughout the U.S. Photo: Image copyright Dennis Kunkel Microscopy, Inc.

Similar documents
[University Research] Hot House

MAPPING BED BUG MOBILITY

~ Bed Bugs ~ Cimex lectularius (Cimicidae) Biology and Management

Bed Bugs. Information, Photos, and Examples

Insecticide-Resistant Bed Bugs:

Our Approach. Build a barrier of protection. Outside-in to prevent entry. Rodents. Cockroaches. Small Flies. Ants. Large Flies.

Preventing and Getting Rid of Bed Bugs Safely. Provided by a collaborative effort of the following Gila River Indian Community Departments:

Fact Sheet. Best Management Practices for Controlling Bed Bugs

TERMITE DETECTION SYSTEMS NEWSLETTER

Hello. My name is. I m from. I have some very important information to share with you today about a growing problem in our community and around the

Bed Bugs. in the NWT. February 2011

BED BUGS. Copyright 2018 KenCrest Services

Complete Cockroach Control Protecting Reputations, Health Ratings, and Profitability

Practical Heat Treatment and the control of Bed Bugs

Stafford Township Board of Education Regulation R HEALTH SERVICES

BED BUGS. What you need to know. Rosana Pellizzari, MD, CCFP, MSC, FRCPC No conflicts to declare.

Preventing and Getting Rid

flies BASF Pest Control Solutions The Evolution of Better Pest Control

Battling Bed Bugs. Common bed bugs, Cimex lectularius L. Know the Enemy. Identification. Biology. Development and Life History.

Current Living Conditions

BED BUGS By Michael F. Potter, Urban Entomologist

Beyond Bed Bugs: Travel Guide

EFFECTS OF LASER WINDOW DEGREDATION ON LASER POWER AND DISTRIBUTION IN LASER SINTERING. Ben Fulcher, David K. Leigh

Bed Bugs in Adult Foster Care Settings

RESIDENTIAL PEST CONTROL

This presentation provides an overview of modern methods for minimizing the arc-flash hazard.

AKA Cimex Lectularius and C. Hemipterus

BED BUGS. Description and Habits. Adult bed bug feeding on a human.

INSIDE: Exotic Travel for Business Why Harrisburg Matters Dialectics of Change Take Your Vacation Days

Forceps, tweezers, or a thin probe to help collect specimens

A NEW ERADICATION STRATEGY FOR SMALL, REMOTE GYPSY MOTH INFESTATIONS

Special Edition. Back To Basics. Search Operations. A Review of the Basics of Fireground Search

Effect of Feeding Status on Mortality Response of Adult Bed Bugs (Hemiptera: Cimicidae) to Some Insecticide Products

THE MGK GUIDE TO COCKROACHES PREVENT. CONTROL. ELIMINATE.

= h) after exposed to deltamethrin insecticides. Propoxur was highly effective against IP strain due to the low lethal value, LT 50

Country Residential Lots from 1 Acre PLUS! TEXAS Country Living at it s VERY BEST! Builder: Phone

CARMACKS. Summary of Facilities: Community Hall Curling Rink Gymnasium Swimming Pool Outdoor Rink Playground/Gazebo Boardwalk Golf Course

Walk Through Trap to Control Horn Flies on Cattle

Andrew Sutherland Bay Area Urban IPM Advisor UCCE and UC IPM. Statewide Integrated Pest Management Program

Current Living Conditions

Comparison of Two Yellow Sticky Traps for Capture of Western Cherry Fruit Fly (Rhagoletis indifferens) in Tart Cherry in Northern Utah 2015

Protocols for the Prevention and Control of Bed Bugs in Multiunit Housing

Cockroach Control Protocol

ì<(sk$m)=bddijf< +^-Ä-U-Ä-U

Effects of Starvation on Deltamethrin Tolerance in Bed Bugs, Cimex lectularius L. (Hemiptera: Cimicidae)

How to Select and Specify Mixers for Potable Water Storage Tanks

CORESTA GUIDE N 12. May 2013 CONTROLLED ATMOSPHERE PARAMETERS FOR THE CONTROL OF CIGARETTE BEETLE AND TOBACCO MOTH

Rose Parsonage. April Good Associate Broker April s Cell:

Revision - DESCRIPTION OF CHANGE

JOB. ANALYSIS Safety Information for the University of California, Berkeley EMERGENCY RESPONSE RESPONDING MATERIAL OF FLAMMABLE EALTH & SAFETY E

Wall Bracing Examples: Building #1 One-Story

HOW DO I PREVENT BED BUGS? Prevention tips and resources

Mike Lamb met Mary, Milo and myself at Pelican Point to go over fumigations and tenting at 10 am.

IH Report: SUFMO 08/09-CC21 1/27/2009 Stanford University Gas Cabinet Installation and Performance Criteria

2000 AP ENVIRONMENTAL SCIENCE FREE-RESPONSE QUESTIONS

Keywords: termite, survey, Coptotermes, Incisitermes, Neotermes

Puget Sound s whales face intertwined obstacles By The Seattle Times, adapted by Newsela staff Jul. 15, :00 AM

Laboratory and Satellite Rodent Housing

Reflow Oven HHL3000 INSTRUCTION MANUAL POHUA - jedyny autoryzowany przedstawiciel w Polsce

RANCH & FARM SALES PRESENTS. Three Ponds Ranch 250 +/- ACRES $995,000

FACTORS AFFECTING LABORATORY PROCEDURES for EVALUATING EFFICACY of INSECT LIGHT TRAPS for HOUSE FLIES

BED BUG NATION: IS THE UNITED STATES MAKING ANY PROGRESS?

Calculating Total Uncertainty of Temperature Calibration with a Dry Block. Calibration White Paper. Beamex.

CITY OF VISTA TRAFFIC CALMING PROGRAM

Resources for Integrated Pest Management (IPM) and Varroa Mite Control

Your story begins here. SINGLE-FAMILY HOMES (FS)

Instructions On How To Use Diatomaceous Earth Food Grade For Bed Bugs

Puget Sound's whales face intertwined obstacles

A computer program that improves its performance at some task through experience.

NEW RESISTANCE- BREAKING FLY CONTROL

Non-fiction: Back from the Brink

Introduction. Objectives. Hazards. Procedure

DELAWARE YOUTH SOCCER ASSOCIATION THE DELAWARE CUP TOURNAMENT RULES GOVERNING PLAY FOR BOYS AND GIRLS (Last updated )

Kansas State University Fume Hood Operation

KEY CONCEPT Earth s atmosphere supports life. Living things need food, water, and air Matter can be solid, liquid, or gas

Ground Fault Circuit Interrupter(GFCI) Policy

SPECIAL NEEDS STUDENTS SCHOOL BUS TRANSPORTATION GUIDELINES FOR PARENTS/GUARDIANS

Field Operations Guide

FLAVESONE: A NOVEL INSECTICIDE FOR THE CONTROL OF URBAN PESTS

Policies & Limits of Liability

ENTOMOLOGY RESEARCH 1993 David R. Smitley Department of Entomology Michigan State University East Lansing, Michigan

SPECIMEN. The (COSHH) Control of Substances Hazardous to Health Regulations 2000 may apply to the use of this product at work UK only.

EXPERT GUIDANCE. IMPERATIVE CONTROL. The Gentrol family of products offers an indispensable, proven arsenal that reduces call-backs.

Annex 1 to ISPM No. 26 (ESTABLISHMENT OF PEST FREE AREAS FOR FRUIT FLIES (TEPHRITIDAE)) Fruit fly trapping (200-) Steward: Walther Enkerlin

Florida Waterfront Home

All About Bed Bugs AN INFORMATION GUIDE JUNE 2009

RESIDENTIAL BUILDING PLAN REVIEW CHECKLIST

Ballistics and Trajectory

New Azimut Magellano 66. Preliminary presentation

Brioni 44+ Brioni is presenting new model in 2015

CHILD CARE CENTER Regulations GENERAL LICENSING REQUIREMENTS (Cont.) Article 7. PHYSICAL ENVIRONMENT

Article 7. PHYSICAL ENVIRONMENT ALTERATIONS TO EXISTING BUILDINGS OR NEW FACILITIES

Cockroaches: Recognition and Control. Cockroach Biology and Behavior. Roger E. Gold 1, Kimberly Engler 2, Wizzie Brown 2 and Michael Merchant 3

City of Crystal Lake Community Development Department

CERT Team. Field Operating. Guide

EFFECTS OF PREDATION ON THE BEHAVIOR OF GAMMARUS MINUS

Alabama Fire College Rapid Intervention Crews Instructional JPR Verification Sheet

POOL PLASTER PROBLEMS AND REMEDIES

USDA APHIS WILDLIFE SERVICES ACTIVITIES SUMMARY REPORT 2013 WHITE-TAILED DEER MANAGEMENT PROGRAM TOWNSHIP OF UPPER ST. CLAIR (September 2013)

Bed Bugs: What Residents Should Know?

Transcription:

Bed bugs are a growing problem throughout the U.S. Photo: Image copyright Dennis Kunkel Microscopy, Inc. 96 February 2008 www.pctonline.com

Can heat be used effectively to control bed bugs and their eggs? Researchers at the University it of California, Berkeley, wanted to find out. For more than five decades bed bugs (Cimex lectularius) have been scarce in the United States due, in part, to the historical use of DDT and other currently banned products. However, with increased international travel, more species-specific pest control methods, and a general lack of understanding and awareness by the public, bed bugs have rebounded. Bed bugs are difficult to control given their cryptic nature. With a growing number of chemical substances (carbamates, organophosphates, etc.) no longer available and an increasing threat of pyrethroid resistance, eradicating bed bugs in a structure is a difficult task. Many claims have been made regarding the use of heat to eradicate bed bugs and their eggs in a structure. Historically, heat has been well documented in successfully killing insects such as stored product pests and termites in both laboratory and field settings, but little is available on killing bed bugs in a structure. Buildings heated with ThermaPure are considered successfully controlled for bed bugs when the infested area has been heated and held for either three hours at 130 F or two hours at 140 F. However, many questions still exist. Namely, is it possible to decrease the temperature requirements, extend the time, and still achieve lethal temperatures in the structure to kill bed bugs and their eggs? The objective of this demonstration was to test the efficacy of ThermaPure heat on adult bed bugs and their eggs by heating a single structure at a lower temperature and for a longer period of time than the current label specifications (140 F for two hours or 130 F for three hours). STRUCTURE PREPARATION. The test was conducted on June 11-12, 2007 on a single-story, 2,000 square-foot, ranch-style home (see Fig. 1 on page 99). The home was built in 1970 and is located in Ojai, Calif. The construction details include wood frame studs with drywall interiors and a crawlspace. The entire structure was heat treated, except the attached garage. The home contained furniture including bed frames, mattresses, dressers, and various clothing and linens. Precision Environmental, a licensee of ThermaPure, provided the on-site technical expertise and equipment during testing. Prior to the arrival of UCB entomologists, the structure was prepared by removing any potentially damageable items as recommended by ThermaPure (list available at www.thermapure.com). By Gail M. Getty, Robin L. Taylor and Vernard R. Lewis www.pctonline.com February 2008 97

The structure was divided into two sections (Fig. 1). Section 1, consisted of the master bedroom, bathroom, closet, vanity and sitting room; and Section 2, the remainder of the house including a bedroom, bathroom, kitchen, dining, living room and an office. The two sections were separated from each other by closing the master bedroom door. Two types of s using heat were tested; infrared heaters in Section 1 and heat exchangers in Section 2. In Section 1, a total of 15 infrared heaters were installed; 10 in the master bedroom, two in the vanity area, two in the sitting room and one in the bathroom. In Section 2, five heat exchangers were used; one each in the office, dining room, and kitchen, and two in the living room. Temperature sensors were placed in both sections of the house to measure and record the temperature of the treated area over time. Section 1 received seven temperature sensors while Section 2 received 20 sensors. Care was taken to place sensors in cold spots, including some inside wall voids, at window frames, and doorframes. Once the temperature sensors were installed, fans were TABLE 1. SURVIVORSHIP AND TEMPERATURE RESULTS FOR BED BUGS AND EGGS TREATED WITH HEAT TECHNOLOGY Dish Dish contents Location in Structure 4 hrs into Temperature 4 hours into ( o F) 16 hours into Temperature 16 hours into ( o F) 2 weeks post SECTION 1: INFRARED TREATED AREA A 100 bed bug eggs Master bedroom closet * 115 * 130 0 B 100 bed bug eggs Master bathroom * 116 * 133 0 C 100 bed bug eggs Sitting room * 132 * 123 0 1 10 bed bugs 2 10 bed bugs Master bedroom wall void Master bedroom: between mattress and box spring 100 120 0 129 0 0 122 0 130 0 3 10 bed bugs Sitting room 0 122 0 140 0 SECTION 2: HEAT EXCHANGE TREATED AREA D 100 bed bug eggs Living room * 98 * 145 0 E 100 bed bug eggs Bedroom * 93 * 140 0 F 100 bed bug eggs Hall closet * 90 * 135 0 4 10 bed bugs 5 10 bed bugs Dining room: in a cabinet Living room: under couch cushion 100 135 0 150 0 50 98 0 145 0 6 10 bed bugs Bedroom: under mattress 90 69 0 125 0 7 10 bed bugs Hall closet 100 98 0 130 0 UNTREATED BED BUGS AND THEIR EGGS G 100 bed bug eggs H 100 bed bug eggs I 100 bed bug eggs 8 10 bed bugs 9 10 bed bugs 10 10 bed bugs *All treated and untreated Petri Dishes were held in the laboratory for two weeks post to observe adult survivorship and egg hatch. 98 February 2008 www.pctonline.com

strategically placed in both Section 1 and 2 to facilitate the movement of heated air throughout each test area. INSECT PLACEMENT. Live bed bugs and their eggs were obtained from ICR Laboratories in Baltimore, Md. A total of 10 covered Petri Dishes (seven treated and three untreated) were prepared with 10 live adult bed bugs each, and nine Petri Dishes (six treated and three untreated) were prepared with approximately 100 bed bug eggs in each (see Table 1 on page 98). The treated and untreated Petri Dishes were kept at room temperature for two weeks post to observe adult survivorship and egg hatch. Petri Dishes containing the live adult bed bugs or eggs were distributed throughout the structure. In some cases, the location of a sample was undisclosed to Precision Environmental in order to simulate unknown locations of an infestation. In addition, locations were chosen to simulate not only a single family residence, but similar locations in a hotel room, i.e. areas with limited air flow, closets, cold spots because of crawlspaces or adjacent rooms. For Section 1 (Table 1), bed bugs (Dish 1) and a temperature sensor were placed inside a master bedroom wall void that shared a common wall with the untreated garage. Bed bugs were also placed in the middle of the master bedroom between a box spring and mattress (Dish 2) and in the adjoining sitting room under a mattress placed directly on the floor (Dish 3). Bed bug eggs were placed in the master bedroom closet (Dish A), bathroom (Dish B) and sitting room (Dish C). For Section 2 (Table 1), bed bugs were placed in a dining room cabinet (Dish 4), between the cushions of the living room couch (Dish 5), between the floor and a mattress on the floor in a bedroom (Dish 6) and in the hall closet (Dish 7). Bed bug eggs were placed on the floor in a corner of the living room (Dish D), in a particularly cold spot on the floor in a bedroom (Dish E), and in the hall closet (Dish F). After placement of the Petri Dishes the heating process was initiated. The infrared heaters were powered on and the temperature was set to 140 F and monitored for stability. The heat exchangers were then connected by hoses and powered from a central (water) heater. The temperature on the heat exchangers was set to 170 F and monitored for stability. bed bugs. Items of particular interest, due to their suspected vulnerability to heat, were plastic cups still in their thin plastic sleeves and telephone wires from the wall to the phone. All inspected items did not appear to be affected by the raised temperature of the building. In Section 1, four hours into, all bed bugs were dead in Dishes 2 and 3 (Table 1). In Dish 1 (Table 1) all bed bugs were still alive, but clearly agitated. Observing the temperature sensors in Section 1 indicated a temperature range from 115 to 132 F (Table 1). In Section 2, all bed bugs were alive except in Dishes 5 (50% alive) and 6 (90% alive). Some of the live bed bugs in this section appeared to be agitated, while others showed no observable change in behavior. The temperature sensors in Section 2 indicated a range of 69 to 135 F (Table 1) at four hours into. Sixteen hours into the, all bed bugs for all Dishes and sections treated were dead. In Section 1, temperature sensors ranged from 123 to 140 F, and the temperature sensors in Section 2 ranged from 125 to 150 F (Table 1). All adult bed bug and egg samples were removed from the structure and transported back to the laboratory where they were observed for two weeks. None of the bed bugs in Dishes 1-7 survived the heat in either section. However, all untreated bed bugs (Dishes 8-10) remained alive at the two week visual period. Bed bug eggs (Dishes A-F) exposed to the heat did not emerge at the two week period. The untreated bed bug eggs (Dishes G-I) hatched and emerged at two weeks post-. CONCLUSIONS. Given the results that all bed bugs and their eggs were killed after 16 hours of at temperatures, in many cases, below the recommended 130-140 F suggests the question: What are the benefits of slowly raising the temperature when treating a structure? One obvious benefit is limiting any potential damage to building components. Paper cups in thin plastic sleeves, telephone cords, picture frames, etc. all withstood temperatures without damage during this trial. With an extended time of 16 hours, an advantage to the structure is the ability for interior walls and wooden beams to have a longer baking time and potentially more time to eliminate the offending pest. The infrared heaters were of particular interest during this trial since this was the first time they have been used in a structure to test their effectiveness on bed bugs. The heaters, although hot to the touch, did not burn. Additionally, if the heaters should fall over during heating they would automatically shut-off. One drawback noted was the large number of infrared heaters used during this test; however, with further research it is feasible that fewer heaters might accomplish RESULTS. After four hours of heating, we entered the structure to take initial s. Although hot inside, we were able to spend about 15 minutes inspecting the condition of household items left in the home and observe Petri Dishes containing Figure 1. Plot map of the treated structure and locations of heaters. temperature probes, and bed bugs for a heat demonstration in Ojai, Calif. use reader service #28 www.pctonline.com February 2008 99

the same or better results. The infrared heaters show greatest promise when used for structures where they can be set up overnight and dismantled and removed the morning after. Hotels, schools, day care centers, office buildings, vacation homes, and homeowners that are not opposed to moving out for the night, would all be potential beneficiaries of this technology. In conclusion, we were impressed with the use of heat and ThermaPure technology for the control of bed bugs and their eggs in a structure and look forward to additional field research at a larger scale. Infrared heaters should be considered as another tool available for pest management professionals. Acknowledgements The authors would like to thank Thomas Anderson, Anthony Corral, Fernando Gonzales, Sara Moore, Jon Nelson, Lee Whitmore, and Lynette Yang for assistance during this trial. Gail M. Getty, Robin L. Taylor and Vernard R. Lewis, Ph.D., are all with the Division of Organisms and the Environment, Environmental Science, Policy and Management, University of California, Berkeley, Calif. Areas of the ranch style home were treated with heat to control bed bugs. Literature Cited Chen, C.-P., R.E.Lee, Jr. and D.L. Denlinger. 1991. Cold shock and heat shock: a comparison of the protection generated by brief pre at less severe temperatures. Physiol. Entomol. 16: 19-26. Forbes, C.A. and W. Ebeling. 1987. Update: use of heat for the elimination of structural pests. The IPM Practitioner 9: 1-6. Ebeling, W. 1994. The thermal pest eradication system for structural pest control. The IPM Practitioner 16:1-7. Lewis, V.R., and M.I. Haverty. 1996. Evalulation of six techniques for control of the western drywood termite (Isoptera: Kalotermitidae) in structures. J. Econ. Entomol. 89: 922-934. Potter, M.F., A. Romero, and K.F. Haynes. 2007. Insecticide-Resistant Bed Bugs: Implications for the Industry. Pest Control Magazine, July 2007, Pp. 83-85, 87, 89. Romero, A., M.F. Potter, D.A. Potter, and K.F. Haynes. 2007. Insecticide resistance in the bed bug: a factor in the pest s sudden resurgence? J. Med. Entomol. 44 (2):175-178. Rust, M.K. and D.A. Reierson. 1998. Use of extreme temperatures in urban insect pest management, Pp. 179-200. In G. J. Hallman and D. L. Denlinger [eds.], Lethal temperatures in integrated pest management. Westview Press, Boulder, Colo. Scheffrahn, R.H., G.S. Wheeler, and N.-Y. Su. 1997. Heat tolerance of structure-infesting drywood termites (Isoptera: Kalotermitidae) of Florida. Sociobiology 29:237-245. Woodrow, R.J., and J.K. Grace. 1997. Cooking termites in the Aloha State. Pest Control 65: 67, 61-62, Woodrow, R.J. and J.K. Grace. 1998a. Thermal tolerance of four termite species (Isoptera: Rhinotermidae, Kalotermitidae). Sociobiology 32:17-25. Woodrow, R.J. and J.K. Grace. 1998b. Field studies on the use of high temperatures to control Crytotermes brevis (Isoptera: Kalotermitidae). Sociobiology 32:27-49. Woodrow, R.J. and J.K. Grace. 1998c. Laboratory evaluation of the use of high temperatures to control Cryptotermes brevis (Isopera: Kalotermidae). J. Econ. Entomol. 91:905-909. For further information regarding the ThermaPureHeat Technology and inquires regarding licensing in your area call 800 873-2912. You may also access additional information at www.thermapure.com. 100 February 2008 www.pctonline.com