Use of Correction Factors When Commissioning Air Systems

Similar documents
485 Annubar Primary Flow Element Installation Effects

CLB 3 ATTRACTIVE JOINABLE LINEAR PROFILE EASILY ACCESIBLE VOLUME ADJUSTMENT INCLUDED FLEX CLAMP HEATING AND COOLING TERMINAL REHEAT AVAILABLE

Outside Air Nonresidential HVAC Stakeholder Meeting #2 California Statewide Utility Codes and Standards Program

REQUIREMENTS AND HAND-OVER DOCUMENTATION FOR ENERGY-OPTIMAL DEMAND-CONTROLLED VENTILATION

CORESTA RECOMMENDED METHOD N 6

COMPARISON OF DIFFERENTIAL PRESSURE SENSING TECHNOLOGIES IN HOSPITAL ISOLATION ROOMS AND OTHER CRITICAL ENVIRONMENT APPLICATIONS

Validation of a Neutral Pressure Isolation Room

Operating instructions Pitot Static Tube

Proficiency Module Syllabus. P601 - Thorough Examination and Testing of Local Exhaust Ventilation Systems

C O L M A N. Air Distribution SWIRL DIFFUSERS DRS SERIES DRS SERIES

Opening and closing force guidelines

vento specification sheet

P-5215 Differential Pressure Transmitter

AUTOMATIC FLOW CARTRIDGES. Competition Analysis Not All Automatics Are Created Equal

DESIGN OF AN EFFECTIVE LOW PRESSURE VAV AIR DISTRIBUTION SYSTEM

CEILING DIFFUSERS technical CONTROL THE AIR YOU BREATHE. types -CD, CAB. Europair Africa a division of Performancair Products Africa (Pty) Ltd

VENTILATION DURING TUNNEL CONSTRUCTION INDUSTRY CONSIDERATIONS

Characterizers for control loops

CVEN 311 Fluid Dynamics Fall Semester 2011 Dr. Kelly Brumbelow, Texas A&M University. Final Exam

Testing the Vented, 7-Liter Induction Chamber. Report 6 April 2008

Golf s Modern Ball Impact and Flight Model

Sizing of extraction ventilation system and air leakage calculations for SR99 tunnel fire scenarios

Figure 4 Figure 5 Figure 6

International Journal of Technical Research and Applications e-issn: , Volume 4, Issue 3 (May-June, 2016), PP.

BAPI Pressure Line of Products - FAQs

Agilent Wedge for Probing High-Pitch ICs A Hands-Free Solution for Probing Fine-Pitch ICs

THE WAY THE VENTURI AND ORIFICES WORK

AIAA Brush Seal Performance Evaluation. P. F. Crudgington Cross Manufacturing Co. Ltd. Devizes, ENGLAND

FIRE PROTECTION. In fact, hydraulic modeling allows for infinite what if scenarios including:

MITIGATING PIPE AND RISER HYDRAULIC PIPELINE ISSUES WITH THE I-RISER PLUS

Evaluation of Commercially Available Techniques and Development of Simplified Methods for Measuring Grille Airflows in HVAC Systems

THE IMPACT ON ENERGY CONSUMPTION CAUSED BY PRESSURE DROP IN A COMPRESSED AIR SYSTEM

Applied Fluid Mechanics

FLOW CONSIDERATIONS IN INDUSTRIAL SILENCER DESIGN

Domestic ventilation systems

01 18/11/2013 correction of the reference of the product 1 4 5

Instruction Manual Contact Pressure Vacuum Gauge

Draft. Equipment/Instrument

TExT Thorough Examination & Test of LEV Local Exhaust Ventilation Systems

Measuring range Δp (span = 100%) Pa

EFFECTIVE DESIGN OF CONVERTER HOODS. 111 Ferguson Ct. Suite 103 Irving, Texas U.S.A. 400 Carlingview Dr. Toronto, ON M9W 5X9 Canada.

CALMO

Pacific Gas & Electric Model Energy Communities Program Air Flow & Duct Leakage Comparative Study

Applications Note: Use of "pentane equivalent" calibration gas mixtures

PIG MOTION AND DYNAMICS IN COMPLEX GAS NETWORKS. Dr Aidan O Donoghue, Pipeline Research Limited, Glasgow

Impact of imperfect sealing on the flow measurement of natural gas by orifice plates

ROUNDABOUT CAPACITY: THE UK EMPIRICAL METHODOLOGY

AMS 6916 Board mount pressure sensor with ratiometric analog output

Journal of Applied Fluid Transients, Vol 1-1, April 2014 (3-1)

Hydronic Systems Balance

Float Valve Function and Design Considerations

NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOUR IN A MODERN TRAFFIC TUNNEL IN CASE OF FIRE INCIDENT

Universities of Leeds, Sheffield and York

The M-Series Eletta Flow Meter High accuracy DP Flow Meter with multiple functions

L 100. Bubble-Tube Level System. Installation, Operation and Maintenance Instructions

Energy capture performance

Aberdeen Significant Error Review ITE Independent Report. Eur Ing Keith Vugler CEng FInstMC

Gerald D. Anderson. Education Technical Specialist

Testing the Vented, 2-Liter Induction Chamber. Report 14 October 2004

APPENDIX A SAMPLE FHT SPECIFICATION (This recommended FHT specification is available from

Validation of Measurements from a ZephIR Lidar

AIR DIFFUSION INDUCTIVE MICRO-PERFORATED DUCTS

CADENZA

COMPUTATIONAL FLOW MODEL OF WESTFALL'S LEADING TAB FLOW CONDITIONER AGM-09-R-08 Rev. B. By Kimbal A. Hall, PE

CSC-2000 SERIES. Reset Volume Controllers MADE IN U.S.A. DESCRIPTION MODELS SPECIFICATIONS ORDERING

2 FUSION FITTINGS FOR USE WITH POLYETHYLENE PRESSURE PIPES DESIGN FOR DYNAMIC STRESSES

REQUIREMENTS FOR VALIDATION OF MATHEMATICAL MODELS IN SAFETY CASES

LEV Inspection & Test Report

3 1 PRESSURE. This is illustrated in Fig. 3 3.

QUANTIFYING THE TOLERABILITY OF POTENTIAL IGNITION SOURCES FROM UNCERTIFIED MECHANICAL EQUIPMENT INSTALLED IN HAZARDOUS AREAS

AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE

Tidal streams and tidal stream energy device design

-4.~1~ S L 0 T D I F F U S E R S

acculink platinum zv zoning system

Application Block Library Fan Control Optimization

TEST SPECIFICATION NYT-909-C

An Impeller Blade Analysis of Centrifugal Gas Compressor Using CFD

The Ins and Outs of I/P Transducers

Third measurement MEASUREMENT OF PRESSURE

Sizes JNŽ-6, ANŽ-3, ANŽ-4

Installation Instructions

DETERMINATION OF SAFETY REQUIREMENTS FOR SAFETY- RELATED PROTECTION AND CONTROL SYSTEMS - IEC 61508

Introductory Lab: Vacuum Methods

TWO PHASE FLOW METER UTILIZING A SLOTTED PLATE. Acadiana Flow Measurement Society

Wade Reynolds 1 Frank Young 1,2 Peter Gibbings 1,2. University of Southern Queensland Toowoomba 4350 AUSTRALIA

2600T Series Pressure Transmitters Plugged Impulse Line Detection Diagnostic. Pressure Measurement Engineered solutions for all applications

FUNDAMENTALS OF PRESSURE REGULATORS ROBERT BENNETT MANAGER OF TRAINING ELSTER AMERICAN METER

How Does A Wind Turbine's Energy Production Differ from Its Power Production? 1

Supply air diffuser ROFB, RPFB

Smoke and heat Ventilator Testing

One of the most important gauges on the panel is

B L A C K H A L L. larner-johnsonvalve presentation

Understanding Centrifugal Compressor Capacity Controls:

CONTENTS 1. INTRODUCTION DESCRIPTION OF TEST SAMPLE TEST RIG GENERAL ARRANGEMENT TEST SEQUENCE...7

6-way characterised control valves DN15 / DN 20 / DN 25

Analysis of pressure losses in the diffuser of a control valve

HVAC Air Duct Leakage. Tech University 2013 Presented By: Mark Terzigni Project Manager Technical Services SMACNA

LESSON 9 THE SWING PLANE AND THE BODY (Part 1)

AN INVESTIGATION OF LONGITUDINAL VENTILATION FOR SHORT ROAD TUNNELS WITH HIGH FIRE HRR

Measurement of court speed and bounce. Rod Cross, Physics Department, Sydney University 2nd July 2006

Transcription:

Shaun Matthews G5 Thesis 24 th January 2016 Rev. 2 Use of Correction Factors When Commissioning Air Systems S. Matthews Grade 5 Thesis - Use Of Correction Factors Rev. 2 1 of 12

Contents Introduction What is a factor, and why use one? What Does a Correction Factor Correct How to establish and use a factor What Doesn t a Correction Factor Correct. Conclusion S. Matthews Grade 5 Thesis - Use Of Correction Factors Rev. 2 2 of 12

Introduction This document is intended to be used as a reference document regarding the employment of correction factors when balancing air systems. The reason this document may be of use to the commissioning community is that, while all commissioning operatives have a basic understanding of factors and use them on a daily basis, many common misconceptions and misunderstandings exist. The intention is to supplement the largely theoretical information available from the compendium with some further, and perhaps more pragmatic detail. S. Matthews Grade 5 Thesis - Use Of Correction Factors Rev. 2 3 of 12

What is a factor, and why use one? A Correction Factor is a notional, established, and demonstrable value that is employed to align (by means of calculation) a measured, or indicated, air or water volume/flow to its true value. In essence a correction factor serves only one purpose; it is there to compensate for circumstantial effects that compromise a given measurement, in some manner. A factorised measurement shall always therefore be a true reflection of the measured quantum of Air / Water volumetric flow-rate. Typically factors are associated with Air Volume measurements, so the majority of this document will be dedicated to discussion of Air Distribution Systems. Why is using (more commonly described as applying ) a factor so important? In many, if not most, cases; put simply - it isn t. Where all terminals on a branch/system are to share a common factor (most do, in practice), and assuming there are no leaks on the system, the factor will be of no material consequence and will simply be applied to the documented measurements retrospectively. It will have no effect on how the system is proportionally balanced or on its overall performance. However, there will clearly be instances where there are leaks or deficiencies of installation; and in these cases the correct application of a factor is the main means by which they ll be identified during the commissioning process. This is the first good reason that a correction factor should always be applied (in the case of air systems). The second key reason for employment of correction factors when balancing air systems; is that it is not uncommon to have different terminal types, or measurement methodology used on the same branch/system. In these cases, the various correction factors must be established in advance of proportional balancing. They must be applied in real-time during the process, and re-verified on completion. Ensuring accuracy through this process is key to ensuring successful outcome, and is often advisable to repeat the factorisation process more than once prior to carrying out balance to be confident that the established factors are suitably robust. It would be ideal if it were possible to measure all Terminal Air Volumes by in-duct Pitot Traverse and not need any form of Correction Factor. However, it is highly improbable in any installation that all terminals would have suitable duct-traverse positions available. Even if it were so, using this method would be so time-consuming as to be prohibitive. Well-used Correction Factors will prove every bit as reliable and demonstrable as if every terminal had been traversed (at least in every pragmatic sense). S. Matthews Grade 5 Thesis - Use Of Correction Factors Rev. 2 4 of 12

What Does a Correction Factor Correct Where a measurement discrepancy can be Factored-out is under circumstances where it is common, consistent and has a predictable effect. A good, and commonly encountered, example of this is where an Air Collection Hood is used to record Terminal Grille Air Volumes. Fig. 1 Linear Grille without & with Air Collection Hood in place 122 l/s 100 l/s 122 l/s 100 l/s Indicated in Fig. 1, a Typical Linear Grille viewed in profile has an unrestricted Discharge Air Path to the space being supplied. This is important, largely, because the available Static Pressure within the grille Plenum is generally relatively small (typically circa. 20 Pa); as the air has only the resistance of the grille face left to overcome. The Air Velocity exiting the grille face will typically be circa. 1.0 m/s. As indicated on the right, with an Air-Collection Hood in place, the air-flow going directly downwards is largely unaffected, however, the airflow travelling perpendicular cannot follow it s normal trajectory. This air is forced against the Hood at discharge velocity (1.0 m/s) and then redirected downwards exerting a pressure against the hood and back against the air-flow-itself. This is further compounded by the restricted opening of the hood, through which all the air must pass in order to be measured. All of the above creates a resistance to air-flow in addition to that which naturally occurs (i.e. Increasing required static pressure in plenum (from 20 Pa) in order to achieve any given volume. Un-factorised, this would result in the corresponding VCD being set such that static pressure within the plenum would be artificially high (e.g. 30 Pa). Once the hood is removed (the measurement having been recorded) this additional resistance is also removed, leaving the plenum pressure 50% higher than actually required and therefore (following square-law) delivering 22% over-volume. S. Matthews Grade 5 Thesis - Use Of Correction Factors Rev. 2 5 of 12

Precisely because of the Square-law, however, this effect is common to all of the grilles to be measured. It is consistent between them, and is therefore entirely predictable. In this example, assuming 20 Pa = 100 l/s and use of Hood adds 10 Pa (at 100 l/s volume). Then 45 Pa will deliver 150 l/s, and use of the Hood will add 22.5 Pa (at 150 l/s volume). Therefore (20 Pa + 10 Pa) = 30 Pa = 122 l/s (+22% of the measured volume) And (45 Pa + 22.5 Pa) = 67.5 Pa = 184 l/s (+22% of the measured volume) As demonstrated above, the measured volume is consistently 22% less than the true volume delivered after the Hood has been removed from the Grille. Therefore a Correction Factor can be applied to these readings (1.22 in this instance) that can be relied upon to always return the measured volume back to its true value, regardless of the achieved volume. The use of an Air Collection Hood is by no means the only instance where a Correction Factor is required, but the above described principle is always applicable: Provided the causal effects of the Correction Factor remain consistent it will be reliable, and therefore demonstrable. Some other common examples are noted below: Use of Balometers Generally modern commissioning methodology will use a Balometer, rather than the more traditional means of air-capture hood and anemometer. A Balometer, is in itself an air collection hood, with a couple of notable differences. The Balometer combines the canvas hood with an in-built flow-grid; coupled to an integral micro-manometer. The neck of the hood utilised by the Balometer is notably larger than would be usable with a traditional hood, with the flow-grid providing effectively complete coverage. At least coverage in accordance with the Log Tchebycheff Rule, and therefore representative of the true volume. The instrument is pre-configured to convert the recorded velocity into an indicated volume, which is read-out on LED display. What should always be remembered is that though the Balometer does, indeed, record true volume through the hoods neck, this volume is still representative of the air volume while the hood is in place. Therefore, all the fundamental principles at play, and described; above still apply and the Balometer will still always require factorisation. Though it is true to say that correction factors are generally closer to 1.00 (no factor) when using a Balometer over Air- Capture Hood and anemometer combination. Balometers are generally preferred in the industry presently, as they appear more professional/reliable to the observer. Differing Grille Types Probably the most common grille types to be encountered are the linear-slot type diffuser (described in detail above); the 4-way blow diffuser (can be plated to convert into 1, 2 or 3- way blow); the Air-Valve (aka Punka Louvre) or the swirl-diffuser. Generally speaking, the 1, 2, 3 or 4-way blow diffuser and the air-valve will be least susceptible to the effects that create a factor and therefore will return a factor closer to 1.0. S. Matthews Grade 5 Thesis - Use Of Correction Factors Rev. 2 6 of 12

The linear grille will in all likelihood return a factor in the region of 1.1 to 1.2. Swirl-type grilles are notorious in respect of the effects of using hoods or balometers, and the factors that are established can be quite high. The reason for this is fairly straight-forward; in that the air pattern discharged from a swirl grille is not only angled close to perpendicular to the ceiling (exactly as with a linear grille), but also angle to the side from each opening. Therefore, in order for the hood (or balometer) to channel the air down to the orifice, it s path must be redirected through 2-planes of direction simultaneously. This significantly increases the additional resistance offered by the hodd, and subsequently the correction factor. It should always be noted that the above is, by no-means, set-in-stone and every case is different. This is precisely why correction factor should be established on every system, every time, casting aside and prejudice as to what the factor should be. S. Matthews Grade 5 Thesis - Use Of Correction Factors Rev. 2 7 of 12

How to establish and use a factor The basic principle of establishing a correction factor is to nominate a typical example of a terminal, measurement methodology and instrumentation. Where there are multiple variables of these on the same system to be balanced, multiple factors will need to be established. Nomination of a terminal to be used will be influenced primarily by the suitability of the associated duct-work to provide a stable and reliable in-duct pitot traverse. A compromised traverse will return a compromised Factor, so care should be taken. Having nominated a suitable factorisation Terminal, it is measured using the method and instrumentation and methodology to establish its Indicated air volume. With no adjustments of any kind made to the system, it is then immediately re-measured using in-duct pitot traverse, thus establishing Actual air volume. Put simply: - Actual Volume Indicated Volume = Factor NB At the time the correction factor is established, the installation between the point of pitot traverse measurement and the terminal should be thoroughly inspected to ensure there is no leakage. With the factor established, it is applied to all Indicated Air Volumes for all terminals on the branch to be balanced. The total of these factorised values should be consistent (-5% / +10%) with the initial main branch volume measurement by pitot traverse. If this is not the case, further investigation is required and balancing should not commence. Following proportional balancing; the factorisation traverse measurement is repeated, as is the main volume pitot traverse at the same time as the final scan of the Indicated air-volumes. It is only at this point that the final correction factor can be established and documented. S. Matthews Grade 5 Thesis - Use Of Correction Factors Rev. 2 8 of 12

Fig. 2 Employment of Correction Factor Initial Scan Initial TP Scan Proportional Balance Final TP Measurement 60 l/s 60 l/s 81 l/s 81 l/s = 97 l/s 72 l/s 97 l/s 75 l/s 75 l/s 85 l/s 85 l/s = 102 l/s 115 l/s 115 l/s 83 l/s 83 l/s = 100 l/s 135 l/s 135 l/s 86 l/s 86 l/s = 103 l/s Total 385 l/s 485 l/s Total 385 l/s Total 335 l/s 415 l/s Total 335 l/s = 402 l/s Demonstrated in Fig. 2 are the stages involved in factorising a very simple branch of a typical air system. Having completed initial scan of the terminals a total Indicated volume of 385 l/s is recorded. The nominated Factorisation Terminal is traversed establishing True volume of 72 l/s, where indicated is 60 l/s; therefore: 72 l/s 60 l/s = 1.20 Applied to the total: 385 l/s x 1.20 = 462 l/sec. The branch main traverse position is recorded as 485 l/s; which is 5% higher and comfortably within tolerance. The system is then balanced, changing the dynamic and all Indicated & Actual volumes. Both Traverse positions are then re-measured, returning the same factor (as it should) and returning a factorised total volume of 402 l/s, with main TP now 415 l/s (+3%) and still comfortably within tolerance. The purpose of re-recording the factor on completion, is that one cannot document (for record purposes) the 72 l/s & 60 l/s values the factor was originally calculated from; as they are no longer relevant to the system in its finished state. Therefore, they are not demonstrable (without de-regulating the system back to its unbalanced state). S. Matthews Grade 5 Thesis - Use Of Correction Factors Rev. 2 9 of 12

What Doesn t a Correction Factor Correct. There are a number of common causes for a measured reading to not be true reflection of the actual achieved Air Volume. These should never be confused with measurement inaccuracies, tolerances or proportional bands. There will always be inaccuracies in any means of measurement; however these are as likely to give a reading that is artificially higher; as artificially lower. In reality there will be a mixture of higher & lower readings, and these could alternate between terminals and even on the same terminal if a number of measurements are repeated. For these reasons that cannot be factored-out, and this is not the intended purpose of a correction factor. A good commonly encountered example of this is Single Bladed Volume Control Dampers installed on the end of Fresh Air Spigots. Fig. 3 Vane Anemometer readings taken on Spigot with VCD at various positions. As can be seen in Fig. 3 above, with the VCD fully open the Anemometer vane is tending to capture the air moving down the centre of the duct, where velocity will be highest (owing to frictional losses at around the periphery). As the VCD is regulated, the air pattern changes drastically with areas of higher/lower velocity, dependent on the VCD blade position; and on air volume passing over it. The VCD position, and the volume, are infinitely variable as are the effects and therefore this is wholly impossible to predict. A correction factor can (and will) not mitigate this effect. In this instance it is advisable to establish correction factor on an unregulated terminal; where the reading is least compromised. Noting that it is probable, for the above described reason, that a negative (less than 1.0) factor will be returned. This should still give a total terminal (factorised) volume that is consistent with the measured total volume by pitot traverse. NB When encountering an Installation where spigots have Single Bladed VCD installed at the end, the Commissioning Engineer should identify this issue to all relevant parties. Use of IRIS type VCD or SBD adjacent main duct-work will mitigate this issue, but the reality is that this is considerably more time-consuming/expensive and this may be deemed to outweigh the negative effect of reading inaccuracies. There are numerous other effects on a readings accuracy; ranging from the inherent accuracy of the Instrument in use (likely to be +/-3% at best) to simple human effects (e.g. the S. Matthews Grade 5 Thesis - Use Of Correction Factors Rev. 2 10 of 12

instrumentation will not always be held exactly in same position for every reading, etc. etc. The salient point is that none of these effects are mitigated by the use of a Correction Factor. Arguably the most misconceived cause of a Correction Factor is duct-work/plenum/grille leakage. This must never be considered to influencing the returned factor, in fact it would be true to say that this is almost the polar opposite of a correction factors true purpose. That is to say, a properly employed Correction Factor will reveal and not conceal leakage. Fig. 4 Linear Grille leakage from poorly sealed Plenum 122 l/s 100 l/s 12 l/s 10 l/s 90 l/s 110 l/s 90 l/s Illustrated in Fig. 4, an air-collection hood is placed over a poorly sealed terminal. The recorded 90 l/s is calculated against the known air volume of 122 l/s, as measured by pitot traverse serving the grille; which calculates to a factor of 1.36. However, the true factor is 1.22, (the air volume actually discharged from the grille is 110 l/s / 90 l/s = 1.22). This value cannot be known when calculating the factor, meaning this factor can only be returned artificially high, using the information available. The result of this will be that all subsequent terminals, where this factor is used, will be incorrectly set to a lower volume (even if properly sealed). The correction factor should always be calculated from the volume discharged to the space, which must be the same as the pitot traverse volume at time of measurement. This can be accomplished either by ensuring nominated factorisation terminal has no leakage, or sealing any leaks on this terminal for the purposes of factorisation. Doing so ensures that subsequent terminals will be discharging the correct volume to the space, regardless of any leakage they may also suffer from. S. Matthews Grade 5 Thesis - Use Of Correction Factors Rev. 2 11 of 12

Conclusion In conclusion, Correction Factors are an essential tool in commissioning of air systems, when correctly used. Where systems require multiple measurement methodologies, it is impossible to correctly complete commissioning without applying factors. Where Terminal types and testing methodologies are uniform, the factor serves only to align recorded terminal air volumes with the known total. It should always be remembered that the factor applied relates only to the instrument and testing method used at the time and therefore does not truly exist. The factor should always be repeated and re-calculated should system require subsequent re-visiting post commissioning stage. Commonly factors will be 0.8 to 1.2, and investigation should be undertaken if a factor falls outside these parameters. However, this has historically been considered an absolute rule, but is no longer the case. Recent developments within the industry, and grille design, have resulted in lesser discharge air volumes; whilst maintaining the same air velocity to take advantage of the Coanda effect. This means, particularly in the case of linear/swirl diffusers that factors in excess of 1.2 are now common. Consideration to the setting of air-pattern blades should be given in these cases, as they will have a dramatic effect on the correction factor. The preconception that factor must always all between 0.8 and 1.2 is all too common within the industry, and the Commissioning engineer may occasionally mount a robust defence of the factor. In these circumstances it should be remembered that the facts are the facts and provided correct procedures have been followed (and human error eliminated) the correction factor is what it is, regardless of any opinion to the contrary. S. Matthews Grade 5 Thesis - Use Of Correction Factors Rev. 2 12 of 12