Ring-Closing Metathesis Approaches for the Solid- Phase Synthesis of Cyclic Peptoids

Similar documents
International Journal of Generic Drugs ANALYTICAL METHOD PROCEDURES THIS SOP IS 'SWITCHED : OFF : ON'

CHEM254 #4 The Synthesis of a Tertiary Alcohol Using a Pre-Made Grignard Reagent 1

CHE 4115 Chemical Processes Laboratory 2 Experiment 1. Batch Distillation

Working correctly with gas

Trace-Level Analysis of Metanephrines in Plasma by HILIC LC-MS/MS

Carrier Gases in Capillary GC

Automated Determination of Dissolved Gases in Water Anne Jurek. Abstract: Discussion:

François Auguste Victor Grignard, was a French chemist who discovered one of the world s first synthetic organometallic reactions.

19. The Grignard Reaction

Carrier Gases in Capillary GC

Simultaneous Determination of a Panel of 22 Steroids in Urine and Serum by SPE and LC-MS/MS

SOLVENT PURIFICATION SYSTEMS

Analysis of Melamine and Cyanuric Acid in Food Matrices by LC-MS/MS

Technical Bulletin AL-134

Solvent Purification

Acclaim RSLC. (Rapid Separation Liquid Chromatography)

Demystifying the Process of Calibrating your Thermal Desorption Gas Chromatography System using Compressed Gas Standards.

LEVANT WORMSEED FOR HOMOEOPATHIC PREPARATIONS CINA FOR HOMOEOPATHIC PREPARATIONS

Extended Application Note

The Application of QuEChERS in the Extraction of Anabolic Steroids in Whole Blood

Dehydrogenative Transformations of Imines Using a Heterogeneous Photocatalyst. Supporting Information

PREPARATION AND PROPERTIES OF ATMOSPHERIC GASES I: Carbon Dioxide and Oxygen

CH361/361H Week 5 Lecture Synthesis of. 2,3-Dimethylbutene Isomers. Identify unknown. carboxylic acid

Setting a New Standard in Flash Chromatography Performance

GCMSD-Headspace Analysis SOP

AKTA pure 25 New Owner s Intro

Development of DMS and Acetonitrile, and Formaldehyde gas standards. Gwi Suk Heo, Yong Doo Kim, Mi-Eon Kim, and Hyunjin Jin

Fortunoids A C, Three Sesquiterpenoid Dimers with. Different Carbon Skeletons from Chloranthus fortunei

Figure. Experimental set up of catalyst, reactants and product syringes.


May 1, By John Heim,Doug Staples

User guide for operating the Agilent 6420A QqQ mass spectrometer by direct infusion/injection

Accidents with alkali metals

Automated Determination of Dissolved Gases in Water By Headspace Calibration of Mixed Gases Anne Jurek

SOP: Buck Scientific BLC-20P HPLC Operation

Using the Akta Prime plus October 22, 2012

MB-SP Series Solvent Purification System

Office VOC Mixture Test Report

Honeywell Research Chemicals ACS Grade Solvents

Procise Protein Sequencing System. Advanced Operation User s Manual

CORESTA RECOMMENDED METHOD Nº 67

R-410A 50% R-32 50% R-125.

Dr. Rogers Chapter 5 Homework Chem 111 Fall 2003

Sensitive Analysis of Genotoxins by HPLC-ECD Using Boron-Doped Diamond Electrochemical Cell

Svensk läkemedelsstandard

Analysis of Benzenesulfonic Acid and P-Toluenesufonic Acid Esters in Genotox Monitoring using UPLC/UV-MS

THERMODYNAMICS OF A GAS PHASE REACTION: DISSOCIATION OF N 2 O 4

High speed UHPLC-MS/MS determination of multiple steroids in human serum using the Nexera MX system for multiplex analysis

Chemical Class Standard Operating Procedures. Pyrophoric Chemicals (PYR) & Water Reactive Chemicats (WRC) Diethylzinc

Svensk läkemedelsstandard

Evaluation of linear and step gradient performance and retention time precision of the Agilent 1200 Series Rapid Resolution LC

SOP: Derivatized testosterone_01 Revision: 01 Date Effective: 05/17/15

Zebron Gas Management

Supporting information for J. Med. Chem., 1994, 37(5), , DOI: /jm00031a018

School of Chemistry SOP For Operation Of Glove Boxes

Research Teaching Production

Introduction. Experimental

Fungi-Plex Kit HOW TO USE IT F E C C. Wash Buffer [F] Standard Diluent Buffer [E] Assay Diluent Buffer [D] Mycotoxin Standard Mix

Figure 1: Plug in ion inlet of mass spec

Fast method for Ginseng Analyses using Agilent Poroshell 120 Columns Scaled from a Traditional Method

Conducting Electrochemical Experiments in an Inert Atmosphere

Gaseous oxygen technical grade Specification

OMCL Network of the Council of Europe QUALITY ASSURANCE DOCUMENT

The Decomposition of Potassium Chlorate

Automated Determination of Dissolved Gases in Water Anne Jurek

More Speed and Resolution for Current Methods

Analysis of Casein and Whey Protein in Whole, 2%, and Skim Milk by Capillary Gel Electrophoresis

ASTM WK Standard Test Method for Dissolved Gases. Anne Jurek Applications Chemist

A VALIDATED STABILITY-INDICATING RP-HPLC ASSAY METHOD FOR BOLDENONE UNDECYLENATE AND ITS RELATED SUBSTANCES

extraction of EG and DEG from the matrix. However, the addition of all diluent at once resulted in poor recoveries.

Chemical Analysis for Methyltestosterone

SIMPLE, EFFICIENT AND SIMULTANEOUS DETERMINATION OF ANABOLIC STEROIDS IN HUMAN URINE

CH2250: Techniques in Laboratory Chemistry. Outline Measuring Mass Measuring Volume Significant figures. Mass Measurement

Advancements in Gas Chromatography Analyzers - Keeping up with New Technology. Chuck Runkle Gas Phase Product Specialist ASTS June 2013

Toxicology Gas Chromatography-Mass Spectrometry (GC-MS)

Optimization of a hazardous reaction with strong gas release - ReactIR in solution and gas phase -

Gas Clean. Filters. Delivering Clean Gases for GC and GC/MS Operation

CTB3365x Introduction to Water Treatment

Rapid and Reliable Detection of Dissolved Gases in Water

Safe Use of Solvent Stills

Generating Calibration Gas Standards

MV5: Automated concentration system

Precisely HPLC. Hints, Tips, Guidelines and Important Considerations. Presenters: Wilhad Reuter / Tom Breslin

Fused-Core TM Particle Columns provide UHPLC performance on any HPLC

Standard Test Method for Residual Acrylonitrile Monomer Styrene-Acrylonitrile Copolymers and Nitrile Rubber by Headspace Gas Chromatography 1

CHM 317H1S Winter Section P Procedures and Tables

7.9. Flash Column Chromatography Guide

Gas Chromatographic Applications of the Dielectric Barrier Discharge Detector

TECHNICAL INFORMATION Ninhydrin Crystals Catalog Nos. NRP01A, NRP02B, NRP03C

Integration of amino acid, acylcarnitine and steroids analysis in single FIA/LC-MS/MS platform

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq)

FAST EVAPORATION AT NORMAL PRESSURE

HPLC systems. Overview

GUIDE TO ULTRA-FAST HPLC. Quick Tips for Converting Conventional Reversed-Phase HPLC Separations to Ultra-Fast Separations

Paper No and Title. Paper 9: Organic Chemistry-III (Reaction Mechanism-2) Module no.13: Addition of Grignard reagent

Methylprednisolone detection in urine following local and oral administrations

Simplified Backflush Using Agilent 6890 GC Post Run Command Application Note

Chemistry 1B Chapter 10 Worksheet - Daley. Name

Jaap de Zeeuw Restek Corporation, Middelburg, The Netherlands. Copyrights: Restek Corporation

Setting up and running a column

Transcription:

Supporting Information (SI) Ring-Closing Metathesis Approaches for the Solid- Phase Synthesis of Cyclic Peptoids Sharaf awaz Khan, Arim Kim, Robert. Grubbs, and Yong-Uk Kwon*, Department of Chemistry and ano Science, Ewha Womans University, Seoul 12-75, South Korea; E-mail: yukwon@ewha.ac.kr The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA. Table of contents General methods ------------------------------------------------------------------------ S2 Peptoid synthesis ---------------------------------------------------------------------- S2 General procedure for RCM of peptoids under microwave conditions ---------- S2 General procedure for RCM of peptoids at 4 o C ----------------------------------- S3 General TFA cleavage procedure and reverse-phase PLC ------------------------ S3 zonolysis of cyclic peptoid --------------------------------------------------------- S3 Abbreviations ---------------------------------------------------------------------------- S3 References ------------------------------------------------------------------------------- S3 Table S1. MALDI-MS data of synthesized peptoids ------------------------------- S4 Figure S1. Amines and RCM catalysts employed in this study --------------------- S5 Table S2. RCM of peptoids (1-4) containing allylamines ------------------------ S5 Figure S2-S22. Schemes, PLC chromatograms and MALDI-TF spectra ----- S6-S26 S1

General methods Chemical reagents were purchased from commercial sources and were used without further purification unless noted otherwise. Methylamine was used as 2 M solution in TF and glycine tert-butyl ester acetic acid was neutralized with aq. a 2 C 3 and extracted with DCM prior to use. Moisture sensitive reactions were performed under nitrogen or argon atmosphere. C 2 Cl 2 was dried over calcium hydride. Grubbs Catalyst 1st generation (G1), Grubbs catalyst 2nd generation (G2) and oveyda-grubbs Catalyst 2 nd Generation (G2) were purchased from Aldrich. Rink Amide AM resin LL (.4 mmol/g) and TentaGel MB RAM (.4 mmol/g) were purchased from ovabiochem. Reverse-phase PLC experiments were conducted through an ACE 5 C18-L (25 x 4.6mm) reverse phase column on a Shimadzu binary PLC system equipped with a UV-visible detector at 22 nm. The typical flow rate for analytical PLC was 1 ml/min. In all cases, a gradient elution of water/acetonitrile with.5% TFA was used. MALDI-TF MS was performed on a Voyager-DE STR biospectrometry workstation (Applied Biosystems) with α- hydroxy cinnamic acid as a matrix. The peptoids were synthesized in an incubator shaker (JEI TEC, model SI-6R) or in a microwave oven (Daewoo, model KR-B2R). The microwave reactions were performed at a power of 1 W for peptoid synthesis and at a power of 3 W for RCM reactions. Peptoid synthesis Peptoids were synthesized on Rink amide (1-5, 7-1, 15-16 and 19-23) and TentaGel (24-29) resins by the conventional submonomer strategy. 1 Peptoid syntheses were performed in 25 ml standard glass peptide synthesis vessels. The resins were swelled in DMF at 25 o C for 1-2 h. Then DMF was drained, and the beads were incubated 2% piperidine in DMF for 1 h and washed thoroughly with DMF (8 x 3 ml). The beads were treated with 2 M bromoacetic acid (1.-1.5 ml) and 3.2 M DIC (1-1.5 ml) and irradiated in a microwave oven (1 W) for 3 x 12 sec with shaking for 3 sec after each pulse. The beads were thoroughly washed with DMF (8 x 3 ml) and then treated with primary amines (1-2 M, 2 ml) in DMF in a microwave oven (1 W) for 3 x 12 sec with shaking for 3 sec after each pulse. Both acylation and displacement were successively repeated to form the desired peptoid sequences. To prevent inactivation of RCM catalyst from free amines, the peptoids were capped with -anhydride (1 eq.) and triethylamine (1 ml) in DCM (5 ml) and the beads were shaken for 2 h before being washed with Me (8 x 3 ml) and DCM (8 x 3 ml), and left to dry under vacuum for 2 h before RCM. General procedure for RCM of peptoids under microwave conditions The beads (15 mg) containing linear peptoids were swelled in DCB (1 ml) in reaction vessel for 3 min. Then 2 mol% RCM catalysts were added and irradiated under microwave (3 W) for 4 x 3 sec (total 2 min) with shaking for 3 sec after each pulse. The resin was thoroughly washed with DCM (8 x 3 ml). S2

General procedure for RCM of peptoids at 4 o C The beads (15 mg) containing linear peptoids were charged in reaction flask and allowed to swell in anhydrous DCM (1 ml) for 3 min. Then 2 mol% RCM catalysts were added and refluxed at 4 o C under nitrogen atmosphere for 2 h. The resin was thoroughly washed with DCM (8 x 3 ml). General TFA cleavage procedure and reverse-phase PLC Peptoid-tethered resin was suspended in a cleavage cocktail (/5% 2 /3% TIS) for 1-2 h. After cleavage solution was removed by blowing 2 gas, 5% aq. acetonitrile containing.1% TFA was added and mixed uniformly. The mixture was filtered through.2 µm PTFE filter tip and the obtained solution was directly used for PLC and MALDI-TF analyses. Reverse-phase PLC experiments were conducted through a C18 reverse phase column on a Shimadzu binary PLC system by using a gradient elution of water/acetonitrile with.1% TFA. RCM products were produced as a mixture of E/Z isomers. zonolysis of cyclic peptoid The requisite cyclic peptoid was cleaved from resin by a cleavage cocktail, concentrated and dried. Then cyclic peptoid was dissolved in DCM and cooled to -78 o C. zone gas was purged through the cooled solution, which turned blue after a few minutes. Then ozone was bubbled further for 1 min. Dimethylsulfide was added to the reaction mixture which turned it into clear solution. The reaction mixture was warmed slowly to room temperature and the solvent was removed in vacuo. Abbreviations DMF:,-dimethylformamide, DCB: 1,2-dichlorobenzene, DCE: 1,2-dichloroethane, DCM: methylene chloride, TFA: trifluoroacetic acid, TIS: triisopropylsilane, DIC:, -diisopropylcarbodiimide, G1: Grubbs Catalyst 1 st generation [bis(tricyclohexylphosphine) benzylidine ruthenium(iv) chloride], G2: Grubbs catalyst 2 nd generation [1,3-bis-(2,4,6-trimethylphenyl)-2- (imidazolidinylidene)(dichlorophenylmethylene)(tricyclohexylphosphine) ruthenium], G2: oveyda- Grubbs Catalyst 2 nd Generation [(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(oisopropoxyphenylmethylene)ruthenium], RCM: ring-closing metathesis, PLC: high-performance liquid chromatography, MALDI-TF: matrix-assisted laser desorption/ionization-time of flight. References 1. Zuckermann, R..; Kerr, J. M.; Kent, S. B..; Moos, W.. J. Am. Chem. Soc. 1992, 114, 1646-1647. livos,. J.; Alluri, P. G.; Reddy, M. M.; Salony, D.; Kodadek, T. rg. Lett. 22, 4, 457-459. S3

Table S1 MALDI-MS data of synthesized peptoids Entry Peptoid MS (calcd.) MS (obs.) [M+] + [M+a] + 1 3a 647.36-67.41 2 3b 619.33-642.37 3 3c 1266.7-129.1 4 4a 875.51-898.84 5 4b 847.48-87.79 6 4c 1722.99-1746.65 7 5a 682.4-75.34 8 6 654.37 655.32 677.33 9 6a 138.74 139.78 1331.8 1 7a 381.24 382.9 44.6 11 8a 452.27 453.13 475.12 12 9a 523.31 524.27 546.26 13 1a 594.35 595.22 617.2 14 11 353.21 354.18 376.24 15 12 424.24 425.41 447.41 16 13 495.28 496.18 518.16 17 14 566.32 567.43 589.44 18 15a 438.26 439.9 461.7 19 16a 59.3 51.2 532.18 2 17 41.22 411.26 433.23 21 18 481.26 482.4 54.4 22 19a 491.27 492.2 514.22 23 2a 64.36 65.48 627.5 24 21a 719.42 72.9 742.8 25 22a 734.4 735.2 757.21 26 23a 832.51 833.36 855.36 27 24a 54.31 55.34 527.31 28 25a 682.33 683.34 75.36 29 26a 682.3 683.38 75.37 3 31 32 33 34 35 36 37 38 39 4 41 42 43 27a 28a 29a 3 31 32 33 34 35 36 37 38 39 4 795.42 734.4 847.4 463.24 576.33 691.39 76.36 84.47 476.27 654.3 654.26 767.38 76.36 819.45-735.21 848.75 464.4 577.53 692.39 77.41 85.69 477.39 655.15 655.35-77.51 82.68 818.6 757.21 87.74 486.41 599.55 714.38 729.39 827.64 499.4 677.12 677.32 79.62 729.51 842.69 44 41 723.38 724.17 746.17 S4

Figure S1. Amines and RCM catalysts employed in this study 2 2 2 2 2 Methylamine Isobutylamine 2-Methoxyethylamine Furfurylamine Allylamine (ala) (leu) (mea) (ffa) (all) 2 3-Buten-1-amine (bte) 2 2 2 --1,4-diaminobutane (lys)* Glycine tert-butyl ester (asp)* Piperonylamine (pip) * lys and asp: protecting groups ( and tert-butyl) were removed with the treatment of at the cleavage step. Ring-closing metathesis catalysts PCy 3 Mes Mes Mes Mes Cl Cl Ru Ph PCy 3 Cl Cl Ru Ph PCy 3 Cl Cl Ru G1 G2 G2 Table S2. RCM of peptoids (1-4) containing allylamines R n 1: n = 2, all-leu-ffa-all 2: n = 3, all-leu-mea-ala-all 3: n = 4, all-leu-ffa-leu-mea-all 4: n = 6, all-mea-leu-ffa-ala-mea-leu-all Entry Peptoid Catalyst Solvent Temp. Time (h) Remarks 1 4-mer (1) G1 DCM 25 12 o RCM 2 4-mer (1) G2 DCM 25 12 o RCM 3 5-mer (2) G1 DCM 25 12 o RCM 4 5-mer (2) G2 DCM 25 12 o RCM 5 5-mer (2) G2 DCB 8 12-24 o RCM 6 5-mer (2) G2 DCE 8 12-24 o RCM 7 5-mer (2) G2 DCM MW 3 min o RCM 8 6-mer (3) G2 DCM 25 24 o RCM 9 6-mer (3) G2 DCM 4 48 o RCM 1 6-mer (3) G2 DCB 8 24 o RCM 11 6-mer (3) G2 DCE 8 24 o RCM 12 6-mer (3) G2 DCB MW 2 min 1-2% 12 8-mer (4) G1 DCM 25 12 o RCM 13 8-mer (4) G2 DCM 25 12 o RCM 14 8-mer (4) G2 DCM MW 3 min o RCM 15 8-mer (4) G2 DCB MW 2 min 1-2% S5

1. G2, DCB 3W µwave, 2min 2 3 3a (after cleavage) 2 + 3b 2 Detector A:22nm 3 3c 25 2 15 1 3a + 3b 3c 5. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Voyager Spec #1[BP = 67.4, 13743] 1 67.41 1.4E+4 9 8 3a 7 6 5 3b 642.3662 4 3 2 62.391 1 172.596 419.2865 672.4173 644.3889 49. 439.4 829.8 122.2 161.6 21. Voyager Spec #1[BP = 234.1, 12544] 1 9 129.13 3c 8737.2 8 7 6 1249.9731 1291.129 5 1267.983 4 1268.964 3 2 1 199.8646 1227.945 132.372 1228.9159 1321.469 1192.9449 1299.24 1269.9889 1279.9839 1535.2141 1645.2673 148. 1181.4 1314.8 1448.2 1581.6 1715. Figure S2. RCM of peptoid 3 using G2 under microwave: PLC chromatogram and MALDI- TF spectra. S6

4 4a (after cleavage) 1. G2, DCB 3W µwave, 2min 2 4b + 2 2 Detector A:22nm 3 4c 25 2 15 1 4a + 4b 4c 5. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Voyager Spec #1[BP = 87.8, 2374] 1 87.7882 898.8437 2374 9 8 7 4b 4a 6 871.7966 899.8431 5 4 3 2 1 9.8637 872.837 848.811 876.8268 849.845 873.8117 91.8471 732 784 836 888 94 992 Voyager Spec #1[BP = 193., 9274] 1 1746.6546 1747.6631 7629.9 9 8 7 6 4c 1748.6643 5 4 176.695 3 2 1 1749.6697 178.635 1732.6426 1776.741 133. 1442.6 1582.2 1721.8 1861.4 21. Figure S3. RCM of peptoid 4 using G2 under microwave: PLC chromatogram and MALDI- TF spectra. S7

2 5 5a 1. G2, DCB 3W mwave, 2min 2 2 6 2 6a 25 Detector A:22nm 2 15 1 5a Common impurity 5. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min 3 Detector A:22nm 25 2 Common impurity 15 1 5 6 6a. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min 1 Voyager Spec #1[BP = 75.4, 399] 75.3876 1 399 677.3287 Voyager Spec #1[BP = 677.3, 3413] 3.E+4 9 8 5a 9 8 6 7 7 655.3178 6 6 5 4 3 2 1 233.9947 212.6 172.173 656.564 445.191 679.3817 622.3172 379.93 77.4293 384.2448 683.4246 861.163 5 4 3 2 1 234.8 172.247 19.358 445.74 294.552 679.3351 657.3364 21. 49. 339.4 629.8 92.2 121.649. 151.439.4 829.8 122.2 161.6 Voyager Spec #1[BP = 234., 2388] 1 234.89 212.291 2.E+4 9 8 7 6 5 172.42 19.442 656.744 6a 4 1331.7976 3 2 1 445.375 379.941 413.2733 659.2934 294.851 861.1131 192.473 467.775 77.4269 139.7842 65.793 116.6345 1333.863 1388.8258 49. 439.4 829.8 122.2 161.6 21. Figure S4. RCM of peptoid 5 using G2 under microwave: PLC chromatograms before RCM and after RCM, and MALDI-TF spectra. S8

2 7 1. G2, DCM 4 o C, 2h 7a 2 Detector A:22nm 3 25 2 11 7a Common impurity 15 1 5. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. min Detector A:22nm 3 25 Common impurity 2 15 11 1 5. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Voyager Spec #1[BP = 44.1, 659] 1 44.638 659 9 8 7 7a 6 5 382.87 4 3 2 1 15.452 714.1162 189.9759 46.89 532.865 152.44 384.993 233.9231 716.132 42.41 49. 339.4 629.8 92.2 121.6 151. Voyager Spec #1[BP = 376.2, 359] 1 212.435 376.2361 3.E +4 234.339 9 172.497 8 7 19.68 11 6 5 4 3 2 1 173.543 191.659 377.228 362.287 235.411 355.239 146.72 22.167 294.168 34.221 217.1185 326.2599 38.1212 174.69 256.423 413.326 445.782 446.859 11. 198.6 287.2 375.8 464.4 553. Figure S5. RCM of peptoid 7 using G2 at 4 o C: PLC chromatograms before RCM and after RCM, and MALDI-TF spectra. S9

8 1. G2, DCM 4 o C, 2h 2 8a 2 Detector A:22nm 3 12 25 2 8a 15 1 5 175 15 125 1 75 5 25. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Detector A:22nm 12. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Voyager Spec #1[BP = 475.1, 21631] 1 475.1151 2.2E +4 9 8 7 8a 6 5 4 453.1273 476.1133 3 2 1 171.9816 674.145 189.985 15.54 532.1169 324.2379 454.1292 675.1416 233.9341 152.512 342.123 413.2699 533.1227 856.1992 254.713 127. 289.8 452.6 615.4 778.2 941. Voyager Spec #1[BP = 447.4, 361] 1 9 212.962 447.497 425.451 3.6E +4 8 7 172.97 234.966 12 6 448.418 5 4 3 173.114 379.2329 656.361 191.1179 445.23 235.121 2 825.4122 657.3217 449.439 146.183 294.1829 1 192.1284 446.216 861.417 414.4293 658.3137 335.2271 747.8961 193.5525 79. 259.2 439.4 619.6 799.8 98. Figure S6. RCM of peptoid 8 using G2 at 4 o C: PLC chromatograms before RCM and after RCM, and MALDI-TF spectra. S1

2 9 1. G2, DCM 4 o C, 2h 9a 2 13 Detector A:22nm 3 25 9a 2 15 1 5. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Detector A:22nm 2 15 1 13 5. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Voyager Spec #1[BP = 546.2, 12481] 1 546.2619 1.2E +4 9 8 9a 7 6 5 4 3 2 1 15.897 524.2683 674.335 172.25 548.264 816.3746 152.87 324.3172 532.2467 457.432 617.32 998.4919 49. 339.4 629.8 92.2 121.6 151. Voyager Spec #1[BP = 518.2, 19176] 1 518.1627 1.9E +4 9 8 496.183 7 6 5 13 4 3 211.9776 2 19.18 1 379.64 52.1622 646.1848 655.9183 49. 319.6 59.2 86.8 1131.4 142. Figure S7. RCM of peptoid 9 using G2 at 4 o C: PLC chromatograms before RCM and after RCM, and MALDI-TF spectra. S11

2 2 1 1. G2, DCM 4 o C, 2h 1a 3 Detector A:22nm 14 25 2 15 1a 1 5 25. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Detector A:22nm 2 15 1 5 14. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Voyager Spec #1[BP = 617.2, 2382] 1 617.224 2382 9 8 7 595.2177 1a 6 5 4 15.65 633.1839 3 2 1 55.4289 171.9893 332.244 36.2789 379.82 958.3281 211.9731 816.399 51.21 674.233 974.3255 283.129 467.2117 652.2258 832.2457 1141.3926 227.9445 49. 298.8 548.6 798.4 148.2 1298. Voyager Spec #1[BP = 589.4, 3437] 1 589.4371 3437 9 8 14 7 6 36.4391 332.3939 567.4339 5 4 172.615 65.4122 59.444 3 2 1 12.132 212.62 55.826 551.7762 19.786 361.446 568.4439 646.4711 234.53 228.515 312.4248 523.7584 67.433 794.4898 495.7476 593.4164 417.1429 49. 22.8 392.6 564.4 736.2 98. Figure S8. RCM of peptoid 1 using G2 at 4 o C: PLC chromatograms before RCM and after RCM, and MALDI-TF spectra. S12

15 1. G2, DCM 4 o C, 4h 2 15a Detector A:22nm 3 2 17 25 2 15a 15 1 5. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min 25 Detector A:22nm 2 15 17 1 5. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Voyager Spec #1[BP = 439.1, 21596] 1 439.882 2.2E+4 9 8 7 15a 6 5 4 171.9768 189.9838 461.719 3 44.895 378.9451 2 271.816 169.344 51.866 1 283.917 368.93 188.9741 532.916 1.9 293.985 379.9448 674.1143 214.696 479.481 842.1667 49. 231.6 414.2 596.8 779.4 962. Voyager Spec #1[BP = 433.2, 362] 1 433.2256 362. 9 8 411.253 7 6 17 5 4 3 2 1 234.163 212.288 15.123 445.643 482.2778 656.971 659.3195 861.1547 49. 439.4 829.8 122.2 161.6 21. Figure S9. RCM of peptoid 15 using G2 at 4 o C: PLC chromatograms before RCM and after RCM, and MALDI-TF spectra. S13

2 16 1. G2, DCM 16a 4 o C, 4h 2 Detector A:22nm 3 25 2 18 16a 15 1 5. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Detector A:22nm 2 15 1 18 5. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Voyager Spec #1[BP = 185.1, 15895] 1 185.883 1.6E+4 9 8 51.1964 7 6 5 171.9939 16a 4 19.38 532.1849 3 22.187 511.1913 379.166 2 186.924 191.74 342.1465 383.2655 548.1561 1 143.554 24.939 368.1532 1.182 512.272 23.21 674.24 816.397 414.1885 984.3814 57. 266.6 476.2 685.8 895.4 115. Voyager Spec #1[BP = 482.4, 271] 1 482.47 2.1E +4 9 8 7 234.732 18 6 212.887 5 4 172.828 3 2 1 379.1867 294.1628 143.1222 342.393 656.2527 56.399 534.4197 659.56 861.3511 3. 252.8 52.6 752.4 12.2 1252. Figure S1. RCM of peptoid 16 using G2 at 4 o C: PLC chromatograms before RCM and after RCM, and MALDI-TF spectra. S14

2 19 1. G2, DCM 4 o C, 2h 19a 2 3 Detector A:22nm 3 25 2 19a 15 1 5. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Detector A:22nm 15 125 1 3 75 5 25. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Voyager Spec #1[BP = 514.2, 2592] 1 9 8 514.2171 19a 2591.9 7 6 488.217 5 4 185.911 55.5698 934.3843 3 233.9962 2 1 171.9926 34.271 492.1946 81.227 379.238 61.1386 227.1111 912.333 349.9945 552.679 78.2416 214.1277 886.3416 242.4 484.8 727.2 969.6 1212. Voyager Spec #1[BP = 464.4, 7762] 1 464.3914 486.3798 7762. 9 8 7 3 6 5 19.997 52.3496 4 465.3931 3 212.892 294.1638 242.3443 379.1998 2 437.6567 234.749 81.496 488.3598 23.332 1 321.2999 54.3587 12.1489 691.4464 825.3395 192.1149 49.5342 322.296 49. 236.2 423.4 61.6 797.8 985. Figure S11. RCM of peptoid 19 using G2 at 4 o C: PLC chromatograms before RCM and after RCM, and MALDI-TF spectra. S15

2 2 1. G2, DCM 4 o C, 2h 2a 2 Detector A:22nm 25 2 15 31 2a 1 5 3 25 2 15 1 5. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Detector A:22nm. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Voyager Spec #1[BP = 627.5, 1799] 31 1 627.51 1.1E +4 9 8 7 2a 6 5 4 3 116.9213 2 1 15.131 65.4821 912.769 1162.9214 81.484 251.1958 67.4758 114.974 914.7657 49. 439.4 829.8 122.2 161.6 21. Voyager Spec #1[BP = 577.6, 159] 1 9 172.964 19.132 577.5284 599.5454 31 1.1E +4 8 7 615.5327 6 5 4 379.2192 3 2 1 251.2342 55.7699 81.512 299.336 61.5199 86.1161 617.5396 412.453 242.3748 585.524 84.64 49. 439.4 829.8 122.2 161.6 21. Figure S12. RCM of peptoid 2 using G2 at 4 o C: PLC chromatograms before RCM and after RCM, and MALDI-TF spectra. S16

1 9 8 7 6 5 4 3 2 1 59. 355.2 651.4 947.6 1243.8 154. 53 21 1. G2, DCM 4 o C, 2h 2 21a 2 Detector A:22nm 3 25 2 32 21a 15 1 5 2 15. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Detector A:22nm 32 1 5. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Voyager Spec #1[BP = 742., 53] 742.845 21a 211.936 233.932 378.921 72.935 189.9499 357.728 494.129 758.743 971.174 Voyager Spec #1[BP = 714.4, 2241] 1 714.3818 2241 9 8 32 7 6 692.3948 5 4 212.156 715.389 3 233.9943 693.3993 2 1 716.3947 379.829 213.199 656.425 294.982 73.3876 884.5115 57. 264.8 472.6 68.4 888.2 196. Figure S13. RCM of peptoid 21 using G2 at 4 o C: PLC chromatograms before RCM and after RCM, and MALDI-TF spectra. S17

22 2 2 1. G2, DCM 4 o C, 2h 22a 2 2 33 Detector A:22nm 2 1 22a -1-2 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Detector A:22nm 5 4 3 33 2 1. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Voyager Spec #1[BP = 212., 585] 1 757.2138 382.1 9 8 7 22a 779.22 6 5 378.9747 4 758.2274 3 444.9251 655.894 735.237 78.265 2 1 379.9831 478.8641 736.2257 293.9866 36.2111 413.1567 656.9279 48.8844 781.228 4.9268 472.9136 773.1519 288. 44.4 52.8 637.2 753.6 87. Voyager Spec #1[BP = 234., 997] 1 234.27 997 9 212.477 33 8 729.3941 7 6 5 4 3 656.934 77.4111 445.75 73.417 19.628 213.465 379.1215 657.1144 752.3738 2 1 413.2671 78.4252 235.286 294.1151 467.393 731.41 167.463 41.886 659.3775 573.4932 747.6564 68.7986 14. 286.6 433.2 579.8 726.4 873. Figure S14 RCM of peptoid 22 using G2 at 4 o C: PLC chromatograms before RCM and after RCM, and MALDI-TF spectra. S18

2 2 23 1. G2, DCM 4 o C, 2h 23a 34 3 Detector A:22nm 25 23a 2 15 1 5. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Detector A:22nm 3 25 2 34 15 1 5. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Voyager Spec #1[BP = 855.3, 1158] 1 855.3629 1158 9 8 7 23a 6 5 4 3 2 1 211.9812 171.989 369.3533 833.3591 631.187 846.4156 1392.5768 1616.6684 49. 539.4 129.8 152.2 21.6 251. Voyager Spec #1[BP = 827.6, 3944] 1 827.638 3944. 9 8 7 34 6 5 4 3 2 1 212.875 234.716 323.2789 85.6854 813.6438 843.6446 49. 539.4 129.8 152.2 21.6 251. Figure S15. RCM of peptoid 22 using G2 at 4 o C: PLC chromatograms before RCM and after RCM, and MALDI-TF spectra. S19

2 2 24 1. G2, DCM 4 o C, 2h 24a 2 25 Detector A:22nm 35 2 2 15 24a 1 5. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min 3 Detector A:22nm 25 2 15 1 35 5. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Voyager Spec #1[BP = 527.3, 2153] 1 527.3146 2153 9 8 7 24a 6 5 4 3 234.296 2 212.496 55.3416 379.1118 656.89 861.189 1 172.564 529.345 825.2214 99. 479.4 859.8 124.2 162.6 21. Voyager Spec #1[BP = 499.4, 189] 1 499.3956 189 9 8 35 477.3921 656.265 7 6 5 234.671 4 657.2514 3 212.825 445.1489 413.375 479.46 2 173.111 238.2268 379.1852 446.1458 35.819 384.1998 51.3657 582.3571 679.9945 1 152.1836 213.468 315.6186 417.132 522.556 596.4554 658.2436 721.8569 114.1412 449.981 112 249 386 523 66 797 Figure S16. RCM of peptoid 24 using G2 at 4 o C: PLC chromatograms before RCM and after RCM, and MALDI-TF spectra. S2

2 25 1. G2, DCM 4 o C, 4h 25a 2 Detector A:22nm 36 2 15 25a 1 5. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Detector A:22nm 35 3 25 2 15 1 5 36. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Voyager Spec #1[BP = 75.4, 1687] 1 9 8 75.3555 25a 1.7E +4 7 6 76.3561 5 4 212.231 234.174 172.42 3 2 1 19.465 683.3437 135.464 656.822 379.829 173.449 684.3468 81.241 294.715 435.2419 657.855 825.1555 49. 264.4 479.8 695.2 91.6 1126. Voyager Spec #1[BP = 677.5, 877] 1 9 8 677.59 36 877 7 6 655.5122 5 4 678.526 3 2 1 212.972 594.4417 656.5414 234.735 38.1961 693.5289 61.444 825.3647 726.663 138. 316.2 494.4 672.6 85.8 129. Figure S17. RCM of peptoid 25 using G2 at 4 o C: PLC chromatograms before RCM and after RCM, and MALDI-TF spectra. S21

2 26 1. G2, DCM 4 o C, 2h 26a 2 2 25 Detector A:22nm 37 26a 15 1 5 25 2. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Detector A:22nm 37 15 1 5. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Voyager Spec #1[BP = 75.4, 963] 1 75.3711 963. 9 8 26a 7 6 5 727.3699 4 3 2 683.3815 1 77.442 135.681 721.3735 939.3519 1432.7236 99. 479.4 859.8 124.2 162.6 21. Voyager Spec #1[BP = 234., 1372] 1 234.35 1372 9 212.498 8 7 6 5 37 677.3238 4 3 445.848 656.1547 699.371 2 1 172.61 19.527 193.3511 379.135 413.327 294.1168 38.142 657.1227 655.3586 7.3437 825.2135 495.3181 628.52 826.2196 128 292 456 62 784 948 Figure S18. RCM of peptoid 26 using G2 at 4 o C: PLC chromatograms before RCM and after RCM, and MALDI-TF spectra. S22

2 27 1. G2, DCM 4 o C, 2h 27a 2 Detector A:22nm 38 125 1 27a 75 5 25. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min 3 Detector A:22nm 25 2 38 15 1 5. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Voyager Spec #1[BP = 818.6, 961] 1 818.649 961. 9 8 27a 7 6 5 4 3 2 1 234.724 445.1163 656.2267 821.5742 99. 579.4 159.8 154.2 22.6 251. Voyager Spec #1[BP = 79.6, 18326] 1 9 8 79.6245 38 1.8E +4 7 6 234.753 5 212.95 4 172.94 77.5521 3 2 792.6264 379.196 656.267 776.589 1 135.767 294.1654 445.171 592.45 825.3458 79.576 861.3465 99. 379.4 659.8 94.2 122.6 151. Figure S19. RCM of peptoid 27 using G2 at 4 o C: PLC chromatograms before RCM and after RCM, and MALDI-TF spectra. S23

28 2 2 1. G2, DCM 4 o C, 2h 28a 2 2 39 Detector A:22nm 75 28a 5 25. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Detector A:22nm 25 2 39 15 1 5. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Voyager Spec #1[BP = 212., 585] 1 757.2138 382.1 9 8 7 28a 779.22 6 5 378.9747 4 758.2274 3 444.9251 655.894 735.237 78.265 2 1 379.9831 478.8641 736.2257 293.9866 36.2111 413.1567 656.9279 48.8844 781.228 4.9268 472.9136 773.1519 284. 44.4 524.8 645.2 765.6 886. Voyager Spec #1[BP = 77.5, 5711] 1 77.5121 5711 9 8 7 729.593 39 6 5 4 751.544 3 212.528 2 1 234.539 172.618 445.1179 413.3258 656.236 79.5157 773.5193 99. 479.4 859.8 124.2 162.6 21. Figure S2. RCM of peptoid 28 using G2 at 4 o C: PLC chromatograms before RCM and after RCM, and MALDI-TF spectra. S24

29 1. G2, DCM 4 o C, 4h 2 2 29a 2 Detector A:22nm 2 4 5 4 3 29a 2 1. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min 25 Detector A:22nm 2 15 4 1 5. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Voyager Spec #1[BP = 892.7, 831] 1 892.7612 831. 9 8 7 234.82 87.7437 29a 6 212.889 5 4 445.1753 656.2713 848.7526 3 2 1 1734.5166 172.961 96.828 1669.593 379.287 674.5363 99.8647 1459.8564 175.4922 372.49 142.1555 1119.8789 99. 579.4 159.8 154.2 22.6 251. Voyager Spec #1[BP = 842.7, 1146] 1 842.691 1146 9 8 7 4 82.6867 6 5 4 3 2 1 821.6681 234.714 843.6786 865.6817 212.97 656.2494 445.1715 657.259 822.6769 759.6526 866.6841 379.1855 371.3535 834.6991 495.3786 679.2644 252.2975 176 388 6 812 124 1236 Figure S21. RCM of peptoid 29 using G2 at 4 o C: PLC chromatograms before RCM and after RCM, and MALDI-TF spectra. S25

2 1) 3, C 2 Cl 2, 1min, -78 o C 2) Me 2 S 2 C C (x1,) Detector A:22nm 2. 1.5 32 41 32 1..5. 1..75. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min (x1,) Detector A:22nm 41.5.25.. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min Voyager Spec #1[BP = 714.4, 2241] 1 714.3818 2241 9 8 32 7 692.3948 6 5 4 212.156 715.389 3 233.9943 693.3993 2 1 716.3947 379.829 213.199 656.425 294.982 73.3876 884.5115 57. 264.8 472.6 68.4 888.2 196. Voyager Spec #1[BP = 746.2, 378] 1 746.1662 378. 9 8 7 6 211.984 229.842 413.22 75.2259 41 724.1721 5 4 3 2 1 736.2211 655.9166 762.1436 172.21 659.1556 144.446 379.52 72.1759 19.67 666.1952 46.334 782.125 186.965 1419.474 432.246 792.1578 2.61 1169.284 1445.5151 573.6818 826.1285 253.8353 144.493 1692.1988 238.4825 616.2788 849.345 1182.2471 257.1766 99. 579.4 159.8 154.2 22.6 251. Figure S22. zonolysis of cyclic peptoid 32: PLC chromatograms before ozonolysis and after ozonolysis, and MALDI-TF spectra. S26