Paper Liquid PIV measurements around a single gas slug rising through stagnant liquid in vertical pipes

Similar documents
Effect of gas expansion on the front shape of a Taylor bubble: an experimental contribution

A PIV/PTV system for analysing turbulent bubbly flows

Numerical simulation of an intermediate sized bubble rising in a vertical pipe

Air entrainment in Dip coating under vacuum

Irrigation &Hydraulics Department lb / ft to kg/lit.

Measurement of Bubble Velocity using Spatial Filter Velocimetry

Figure 2: Principle of GPVS and ILIDS.

Gas-liquid two-phase flow in a downward facing open channel

EXPERIMENTAL ANALYSIS OF VAPOUR BUBBLE GROWING ON A HEATED SURFACE

LASER INDUCED FLUORESCENCE MEASUREMENTS OF CARBON DIOXIDE DISSOLUTION IN WAVE-BREAKING TURBULENCE

The effect of two inclined circular plunging jets on air entrainment in an aeration tank

MICRO-BUBBLE TRACER PARTICLES FOR PLANAR AND VOLUMETRIC PIV

Flow around individual Taylor bubbles rising in stagnant polyacrylamide (PAA) solutions

AN EXPERIMENTAL INVESTIGATION OF SPILLING BREAKERS

Measurement of Coaxial Swirling Bubble Jet Flow by Interferometric Laser Imaging

STUDY OF AIR BUBBLE INJECTION INTO LAMINAR AND TURBULENT WATER FLOW THROUGH AN ANNULAR TEST SECTION

Flow transients in multiphase pipelines

HYDRODYNAMICS OF GAS-- LIQUID SLUG FLOW ALONG VERTICAL PIPES IN TURBULENT REGIME A Simulation Study

Aerodynamic characteristics around the stalling angle of the discus using a PIV

Experimental studies of bubble interaction and coalescence in a turbulent flow by an imaging PIV/PTV system

The flow of non-newtonian fluids around bubbles and its connection to the jump discontinuity

Tomonori Mukunoki 1,*, Masaru Umezawa 1, Konstantinos Zarogoulidis 1,2, Koichi Hishida Introduction

Effect of 180 bends on gas/liquid flows in vertical upward and downward pipes

ZIN Technologies PHi Engineering Support. PHi-RPT CFD Analysis of Large Bubble Mixing. June 26, 2006

A numerical Euler-Lagrange method for bubble tower CO2 dissolution modeling

1 THE TEST FACILITY DISCO-C

Results and Discussion for Steady Measurements

The Study of Bubbly Gas-Water Flow Using

EXPERIMENTAL STUDY ON SNOW BEHAVIOR AROUND FENCES INSTALLED ALONG ELEVATED HIGHWAY

Experimental investigation on air entrainment below impinging jets by means of video observations and image processing

Numerical Simulations of a Train of Air Bubbles Rising Through Stagnant Water

Hydrogen Bubble Seeding for Particle Image Velocimetry

Application of Simulation Technology to Mitsubishi Air Lubrication System

Laser-Induced Bubbles in Glycerol-Water Mixtures

Bubble Coalescence and Breakup in Gas-Liquid Stirred Tank Reactors

FORMATION AND DEVELOPMENT OF SUBMERGED AIR JETS

Questions. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Edexcel Drag Viscosity. Questions. Date: Time: Total marks available:

Experimental Study on the Effects of Gas Permeation Through Flat Membranes on the Hydrodynamics in Fluidized Beds

Methods The experiments were carried out in the wind tunnel in the Air physics laboratory at the Engineering Centre Bygholm as shown in figure 1.

Investigation of single bubbles rising in narrow rectangular channels with Particle Image Velocimetry

Waves. harmonic wave wave equation one dimensional wave equation principle of wave fronts plane waves law of reflection

Technical Note. Determining the surface tension of liquids by measurements on pendant drops

A model for the bubble lift-off diameter in subcooled boiling flow in a horizontal channel

Level MEASUREMENT 1/2016

Free Surface Flow Simulation with ACUSIM in the Water Industry

Sound scattering by hydrodynamic wakes of sea animals

Influence of rounding corners on unsteady flow and heat transfer around a square cylinder

Dynamics of expanding slug ow bubbles in non-newtonian drilling uids

Development of High-speed Gas Dissolution Device

Flow behavior of wakes in a three-phase slurry bubble column with viscous liquid medium

Hydrogen Bubble Dispersion and Surface Bursting Behaviour

PIV Analysis of a Delta Wing Flow with or without LEX(Leading Edge Extension)

Vortical motions under short wind waves

A07 Surfactant Induced Solubilization and Transfer Resistance in Gas-Water and Gas-Oil Systems

The Effect of Gurney Flap Height on Vortex Shedding Modes Behind Symmetric Airfoils

Keywords: dynamic stall, free stream turbulence, pitching airfoil

An experimental study of internal wave generation through evanescent regions

Measurement of both gas and liquid velocity profiles for bubble-induced turbulent flow

Experimental study on path instability of rising bubbles

An innovative technology for Coriolis metering under entrained gas conditions

Flow in a shock tube

Wave Motion. interference destructive interferecne constructive interference in phase. out of phase standing wave antinodes resonant frequencies

Experimental Verification of Integrated Pressure Suppression Systems in Fusion Reactors at In-Vessel Loss-of -Coolant Events

WindProspector TM Lockheed Martin Corporation

STIFFNESS INVESTIGATION OF PNEUMATIC CYLINDERS. A. Czmerk, A. Bojtos ABSTRACT

BLOCKAGE LOCATION THE PULSE METHOD

Flow and Mixing in the Liquid between Bubbles

Simulation of Gas Holdup in a Bubble Column with a Draft Tube for Gas Dispersion into an Annulus

Interfacial Mixing in Viscous Pipe Flows. Interim report to Imperial Oil. Department of Mathematical Sciences, University of Alberta. 1.

Lab # 03: Visualization of Shock Waves by using Schlieren Technique

Wall Pressure Measurements in a Y-Junction at Pulsating Flow using Polymer/Ceramic Pressure Sensitive Paint

MEMORANDUM. Investigation of Variability of Bourdon Gauge Sets in the Chemical Engineering Transport Laboratory

VORTEX SHEDDING AND VORTEX FORMATION FROM A PAIR OF IN-LINE FORCED OSCILLATING TANDEM ARRANGED CIRCULAR CYINDERS IN A UNIFORM FLOW

THE BRIDGE COLLAPSED IN NOVEMBER 1940 AFTER 4 MONTHS OF ITS OPENING TO TRAFFIC!

Effects of separation distance on the vortical behaviour of jetimpingement

TP Validating a dynamic grid model with tracer gas injection and analysis

Instruction Manual. Pipe Friction Training Panel

Lab 4: Pressure Gradients over a Wing

A Study on the Effects of Wind on the Drift Loss of a Cooling Tower

World Academy of Science, Engineering and Technology International Journal of Chemical and Molecular Engineering Vol:7, No:12, 2013

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

Experimental Study of an Air Lift Pump

1.2 Example 1: A simple hydraulic system

Environmental Science: An Indian Journal

Transverse waves cause particles to vibrate perpendicularly to the direction of the wave's motion (e.g. waves on a string, ripples on a pond).

Experimental Determination of Temperature and Pressure Profile of Oil Film of Elliptical Journal Bearing

Effect of Nozzle Twisted Lance on Jet Behavior and Spitting Rate in Top Blown Process

Measurements of Gas-Liquid Mixing in a Stirred Vessel Using Electrical Resistance Tomography (ERT)

Understanding How the Appearance of Optical Fiber Splices Relates to Splice Quality

Measured broadband reverberation characteristics in Deep Ocean. [E.Mail: ]

THREE DIMENSIONAL STRUCTURES OF FLOW BEHIND A

Chapter 7. SCIIB Pressure Sensor Performance Evaluations: Experiments, Results and Discussions

Pressure Drop of Two-Phase Flow Through Horizontal Channel with Smooth Expansion

GEOTHERMAL WELL COMPLETION TESTS

Energy and mass transfer in gas-liquid reactors.

A Computational Assessment of Gas Jets in a Bubbly Co-Flow 1

Pendant Drop Measurements

Dynamics of bubble rising at small Reynolds numbers

CIRCUMFERENTIAL NONUNIFORMITY OF WAVES ON LIQUID FILM IN ANNULAR FLOW WITHOUT LIQUID ENTRAINMENT

Visual Observation of Nucleate Boiling and Sliding Phenomena of Boiling Bubbles on a Horizontal Tube Heater

Transcription:

Paper 38.3 Liquid PIV measurements around a single gas slug rising through stagnant liquid in vertical pipes S. Nogueira o *, I. Dias +, A. M. F. R. Pinto*, M. L. Riethmuller o o von Karman Institute for Fluid Dynamics Chaussée de Waterloo, 72 B-1640 Rhode Saint Genèse Belgium E-mail: riethmuller@vki.ac.be *Centro de Estudos de Fenómenos de Transporte Departamento de Engenharia Química Faculdade de Engenharia da Universidade do Porto 4099 Porto Codex Portugal E-mail: apinto@fe.up.pt + Presently at: Center for Innovation, Technology and Policy Research, IN+ Instituto Superior Técnico Av. Rovisco Pais 1049-001 Lisboa - Portugal ABSTRACT In this work, the Particle Image Velocimetry (PIV) technique is used to characterise the flow around a single Taylor bubble rising through a vertical column of stagnant liquid. The experimental facility and its operating principle are described. The gas slug velocity is determined from the signals of two photocells that receive light from two laser diodes placed opposite them in the column. The use of fluorescent PIV particles together with an optical filter allows suppressing intense reflections at the liquid/gas interface. Details concerning the PCO CCD camera and Nd: YAG laser synchronisation are presented. The gas slug surface co-ordinates are not accurately determined from PIV images, due to spurious optical effects that occur at the bubble interface when cross illuminated by a laser sheet. These important optical effects are investigated in detail by means of a silicon model of the liquid around the bubble with the same fluorescent PIV particles embedded. An explanation for the spurious optical effects is formulated. It is argued that one of the methods that is suitable to reliably determine the bubble shape is the shadow detection technique. PIV results of the liquid flow in the rear and around the nose of the gas slug are presented. PIV measurements at the liquid film surrounding the gas slug, for laminar liquid film, are presented. The velocity profiles in the liquid film around the bubble are compared with theoretical values given by the falling film theory. The encountered differences are less than 5%. The shear stress profile in the liquid film around a gas slug is presented. Comparison between the theoretical and experimental results shows good agreement. The experimental and theoretical values match within 5 % in the liquid film at a distance from the wall of less than 2 mm; for higher distances the error grows until 15 %. Although optical problems are present near the gas/liquid interface, the results are encouraging.

1. INTRODUCTION Slug flows are a type of two-phase flow characterised by long bullet-shaped Taylor bubbles, which nearly occupy the entire cross-section of a pipe. Between the Taylor bubble and the pipe walls flows a thin film of liquid. In fully developed vertical slug flow, the Taylor bubble moves upward at constant speed while the liquid flows downwards as a falling film. The nose of the gas slug is a very stable region. The rear of the Taylor bubble is a separated region (wake), characterised by strong mixing, where all transfer processes are enhanced. In daily life, slugs are encountered e.g. in a drinking straw when one s glass is nearly empty, or in the neck of a bottle that is being emptied too rapidly. In industry, slugs are often used in chemical and biological reactors to promote mixing. They are also observed in oil drilling operations and in the cooling pipes of nuclear reactors. Three different types of Taylor bubble wakes have been observed (laminar, transitional and turbulent) by Campos and Guedes de Carvalho (1988). These authors have suggested that, for long gas slugs, the velocity field in the wake is simply determined by the velocity profile in the annular film. In this study it is investigated if under these conditions, for laminar liquid film, the flow in the annular liquid film can be well described by the falling film theory. This would bring obvious advantages as the flow in the annular film could be described by a very simply theory while the characterisation of the flow field in a separation region such as the wake is extremely complex. The liquid velocity field around a single Taylor bubble in a vertical column of stagnant liquid is determined using the Particle Image Velocimetry (PIV) technique with fluorescent seeding [Philip et al (1994), Dias and Riethmuller (1998)]. The use of fluorescent particles allows to suppress the intense reflections near the wall and interface regions. Important optical effects at gas/liquid interfaces, in bubbly flow, were already described by Dias and Riethmuller (1998). Similar phenomena are observed in the present work: these effects are analysed in detail. The velocity profiles in the wake of gas slugs are measured for different solutions covering the three types of wakes identified. For these solutions, the liquid falling film surrounding the gas slug is always laminar. From these results in the wake, it is possible to determine the minimum distance between gas slugs beyond which there is no interaction, i. e., the distance behind a single gas slug for which the liquid becomes motionless, and compare them with empirical correlations reported by Pinto and Campos (1996). From the velocity field around the nose it is possible to determine the distance from the gas slug nose where the liquid film becomes fully developed. The velocity profiles in the fully developed region of the film are, then, compared with the falling film theory for laminar flow. This fluorescent PIV technique allows to acquire velocity profiles very close to the wall and to derive the wall shear stresses. As far as the authors are aware no other calculation of these stresses have been reported earlier. 2.1. Facility 2. EXPERIMENTAL SET-UP AND MEASUREMENT TECHNIQUES The experiments are performed in a transparent acrylic column of about 6 m height and 0.032 m internal diameter (Fig. 1). The box surrounding the test section (0.5 m 0.12 m 0.11 m) is filled with the studied liquid in order to minimise the optical distortion. The test liquids are aqueous glycerol solutions covering a wide range of viscosity (2 10-3 to 178 10-3 Nsm -2 ). The gas bubbles are injected at the bottom of the test column. A section of tube is filled with air at atmospheric conditions by closing the pneumatic valve 1 and opening the pneumatic valve 2. Then, the gas is released into the liquid column after closing pneumatic valve 2, by opening the pneumatic valve 1, generating a Taylor bubble. The volume of gas is controlled by a system that partially fills the volume between the two valves with the working fluid so to reduce the volume of gas that is released. The volume of air used in the present experiments is 308 10-6 m 3. Before each experiment the liquid circulates along the column, from the bottom to the top reservoir, by a volumetric pump. This, together with the fact that the system is thermally isolated resulted in a difference of temperature, measured between thermocouples 1 and 2 (Fig. 1), of less than 0.1 C. The liquid viscosity at the temperature of each experiment is measured using a rotating Brookfield viscometer.

Tank Thermocouple2 Test Section Thermocouple1 Photocells Rectangular box Laser diodes PCO Image acquisition LASER Test column 4.5 m Gas slug injection Pneumatic valve 2 Pneumatic valve 1 Ball valves Image acquisition White light diffusor diffusor paper Liquid Reservoir Volumetric Pump 2.2. Measurement techniques Fig.1 Schematic representation of the experimental facility The passage of the gas slug rising in the pipe is detected by a light barrier made of a laser diode. The light received at the photocell decreases distinctly with the passage of the bubble. From the two signals obtained from the two photocells, placed at a known distance of 0.109 m, it is possible to determine the velocity of the Taylor bubble. From the signal of each photocell it is also possible to determine the bubble length. The signals from the photocells are recorded at a frequency of 1000 Hz using a DAS20 acquisition card from Keithley. The PIV image is obtained seeding the liquid with fluorescent particles and illuminating it with a double cavity pulsed Nd: Yag laser with a wavelength of 532 nm and a pulse duration of 2.4 ns. A red filter (model OG-570, from Image Optics components LTD), opaque below 550 nm, is used to block the intense green reflections and allows the passage of the light emitted by the fluorescent particles (around 590 nm). The laser beam is formed into a laser sheet of about 1 mm thickness in the test section. A PCO (SensiCam) CCD camera, with a resolution of 1280(H) 1024 (V) pixels and 4096 grey levels, acquires images at an angle of 90 with the laser sheet. The camera operates at the Double Shutter version, which means that it acquires two consecutive separate images. The repetition rate of the PCO is a function of the resolution chosen. Increasing the resolution results in decrease of the repetition frequency; therefore, it is necessary to optimise the camera settings according to the demands of the work. In this study the full resolution is used, which means that the acquisition frequency of the PCO camera, working at Double Shutter mode, is 4.12 Hz. The synchronisation between the laser and the camera is made using the laser as the master. A Stanford delay generator box triggers the firing of the laser at a frequency of 8.2 Hz and sends the triggering signal to the PCO camera. In the PCO PC, the camera is set to acquire at the rising edge of the triggering signal. This means that the camera will grab only once every two laser pulses, i.e, one PIV image is acquired in two laser firings. This procedure is adopted because the laser has limitations in its frequency, in order to keep thermal balance the frequency of the laser needs to be close to 10 Hz. The pulse separation is adjusted according to the measured

velocities (which depend on the viscosity of liquids used) and the measured area, and it varies from 400 µs to 10 ms. The gas slug contour images are obtained by illuminating the gas slug from the rear using a diffused focus of light (100 W), while a SONY colour model type CCD camera (resolution 512(H) 512 (V) pixels) collects light in the forward scattering mode. Coloured interlaced images are acquired with a MIRO DC30 acquisition card, afterwards, these images are converted to black and white format and separated in the odd and even fields. The contour of the slug in each field is determined using a program, written by Dias and Riethmuller (1998) to detect bubble contours. 3.1. Problems observed 3. SPURIOUS OPTICAL EFFECTS Important optical effects, previously observed by Dias and Riethmuller (1998) in bubbly flow, can also be seen, in the present work, at the gas slug/liquid interface. These authors formulated a first explanation for the existence of spurious images of particles inside the real interface. Figure 2 shows a typical PIV image of the film surrounding the gas slug. The theoretical position of the interface is determined [White (1974)] and plotted in the figure. One can observe particle images beyond the actual limit of the bubble. Liquid Interface 4.61 mm Gas slug Fig. 2 Typical PIV image of the film around the gas slug (the image is rotated 90º to the right), for Re Us = 22 3.2. Analysis and explanation of the spurious effects To analyse the optical phenomenon in the interface, silicon models of the liquid around the bubble with the same fluorescent PIV particles embedded are built. They consist of a cubic box with a cylindrical hole in the middle. The void region is occupied by air that simulates the gas slug, while the silicon and the PIV particles model the liquid film. In Fig. 3, a shadow image of one of the models is shown. In these models the diameter of the cylindrical holes is known and therefore, there is no ambiguity about the simulated film thickness. Fig. 3 Shadow image of one silicon model The performed tests consisted of illuminating the simulated flow with a laser sheet of variable width. As seen on Fig. 4 a, b, c and d, as the extent of the laser sheet increases from the top, images of particles are also appearing in the inner region of the simulated gas slug. Actually, two separate areas can be seen in this region. The first band of particles appears on Fig. 4a and can be seen on Fig. 4b, when the second band starts appearing. The two separated bands increase as the laser width increases in Figs. 4c and 4d. This phenomenon has been analysed and leads to the following interpretation:

Reflected particle Real particle image a b c d Refracted particle Fig. 4 Typical PIV image of the silicon model when the laser sheet illuminates different regions far from the interface. Light scattered by particles illuminated by the laser sheet can follow three different paths before reaching the camera (Fig.5). - Path one is the direct path that forms the regular images - Path two is a total reflection of light at the surface of the Taylor bubble. This also reaches the camera and produces spurious particle images seen in the inner region of the gas slug. - Path three is the refraction of light rays through the Taylor bubble. This path produces a third area where the images of the particles are inverted compared to path two (mirror effect). This is also seen in the inner region of the gas slug. Real particle Camera Laser sheet Path one Real particle image Path two Reflected particle Path three Refracted particle Bubble surface Solution with fluorescent particles Box filled with same solution

Fig. 5 Schematic representation of the ray tracing analysis Figure 6 represents a typical PIV image of the liquid film around a gas slug. The existence of a double band of reflections and refraction, separated by a black band, is evident. The area produced by path two usually merges with the direct images of path one and it is therefore difficult to distinguish between the two areas. Area three is usually clearly separated from the two others. The result of this optical effect is that it appears essential to use a second method for determining the edge of the gas slug since the PIV image itself cannot be trusted when identifying the contour of the bubble. A shadow technique suites this purpose well. Note that the effects observed earlier [Dias and Riethmuller (1998)] on spherical bubbles can be explained by the same analysis. Real particle image Liquid Reflected particle Refracted particle Gas slug Fig. 6 Typical PIV image of a gas slug: the spurious optical effects are clearly visible. 4. EXAMPLES OF MEASUREMENTS PIV measurements are made around the gas slug, with different magnifications, in order to observe the different characteristics of the flow. Figures 7 and 9 present examples of typical PIV images around the rear and the nose of a gas slug, respectively. The corresponding velocity profiles are presented in Figs. 8 and 10. The examples of measurements in the wake presented (Figs. 7 and 9) correspond to the laminar case, according to Campos and Guedes de Carvalho (1988). The optical filter cuts 95% of the laser reflections eliminating most of the disturbance it causes. Around the gas slug nose, because of the bubble curvature, the intensity of reflections is much higher and some spurious light is still observed. Taylor buble

Fig. 7 Typical PIV image of the rear of a gas slug, for Re Us =96 (image rotated 90 to the right). Fig. 8 Measured velocity field in the wake of a gas slug for Re Us = 96 (image rotated 90 to the right). Fig.9 Typical PIV image of the nose of a gas slug, for Re Us = 475 (image rotated 90 to the right)

Fig.10 Measured velocity field in the nose of a gas slug, for Re Us = 475 (image rotated 90 to the right) Velocity vectors with no physical meaning are detected inside the Taylor bubble. These vectors are derived from out of focus images of particles surrounding the Taylor bubble. This will obviously lead to a higher number of non-valid vectors and needs to be taken in account when processing. The digital PIV images are processed using the cross-correlation algorithm WIDIM, developed at VKI by Scarano and Riethmuller (1999). In this process, the interrogation windows are displaced and their size is reduced iteratively. The processing of the PIV images uses a Gaussian three point-fit for the sub-pixel interpolation peak determination. The initial image has 1280 (H) 1024 (V) pixels and the initial window size is of 64 32 pixels, according to the privileged flow direction. The number of refining steps and, therefore, the size of the final window and the number of vectors determined, depends on the different measurement areas and velocities. The velocity uncertainty is mainly associated with the uncertainty in determining the particle image displacement, which is less than a tenth of a pixel. The high resolution allowed by the PCO camera leads to an estimated uncertainty of 1.5%. The measurements near the slug nose show a strong radial effect in the velocity and put in evidence that the passage of the slug does not disturb the flow upstream. As the thickness of the film decreases, the flow rate equilibrium leads to an increase of the liquid film velocity (Fig.10). From the velocity field in the rear of the slug, it is possible to better understand the mixing effect of the wake and to determine the length needed to restore motionless liquid in the pipe, l min (Fig. 9). The length values obtained fall in the empirical correlations reported by Pinto and Campos (1996); for the solution of Re Us = 22, which corresponds to laminar wake, the value of l min is found to be 0.06 m, which matches within 4% with the value predicted by the correlations, l min = 0.0575 m. The velocity profiles in the liquid film surrounding the gas slug measured at different distances from the nose of the bubble are analysed here. For the case of a gas slug rising in a solution of glycerine (91.5% wt/wt), Re Us = 22 (Reynolds number based on the pipe diameter, D, and gas slug velocity, Us), the value of the distance from the nose of the gas slug up to where the liquid film is fully developed, Z min, is 0.025 m, instead of the 0.0187 m theoretically predicted [Campos and Guedes de Carvalho (1988)]. This discrepancy has already been observed by Mao and Dukler (1990). Figure11 shows the comparison between the theoretical and measured velocity profile in the annular liquid film, for Re Us = 22. The gas slug has a length of about 0.25 m and the selected profile is taken at a distance of 0.15 m from the nose, where the liquid film is fully developed. The theoretical profile corresponds to the behaviour of a falling film with a free surface, when the shear stresses in the gas-liquid interface are negligible [White (1974) and Dias (1999)]. As can be seen (Fig. 11), the measurements are in good agreement with the theoretical solution and the error stays below 5 %, except near the interface, where spurious optical effects pare present. The velocities measured after a distance of 4.61 mm are, in reality, already inside the gas slug

Fig. 11 Comparison between the theoretical and experimental velocity profiles in the film surrounding a gas slug, for Re Us = 22. The use of a fluorescent PIV technique allows to acquire velocity profiles very close to the wall (distance of 9.18 10-2 mm) and to derive the shear stresses from them (Fig.13). As far as the authors are aware, no other calculation of these stresses has been reported in the earlier literature. The shear stresses magnitude, measured at different distances from the wall, is studied. The experimental velocity values, for Re Us = 22 (Fig.11), are fitted by a second order polynomial expression (Fig.12). Afterwards, the shear stresses are calculated by deriving this expression with respect to the radial distance and multiplying it by the viscosity. In these calculations, experimental velocities measured inside the gas slug are not taken into account, since they correspond to spurious optical effects. Figure 13 shows the comparison between the experimental and theoretical shear stresses profile. The theoretical profile corresponds to the derivation of the shear stresses from the theoretical velocity profile of a falling film with a free surface, when the shear stresses in the gas-liquid interface are negligible [White (1974) and Dias (1999)]. The results match within 5% in the liquid film at a distance from the wall less of 2 mm, for higher distances the error grows up to 15%. Liquid film velocity [m/s] -0.1-0.2-0.3-0.4 2 u = 0.0161x 0.1713x + 0.0015 0 0 1 2 3 4 experimental velocity Poly. (experimental velocity) -0.5 Distance from the wall [mm] Fig. 12 Second order polynomial interpolation of the velocity profile in the film surrounding a gas slug, for Re Us = 22. Shear stresses [N.m-2] 60 50 40 30 20 10 theoretical experimental 0 0 1 2 3 4 Distance from the wall [mm]

Fig. 13 Comparison between the theoretical and experimental shear stresses in the film surrounding a gas slug, for Re Us = 22. 5. CONCLUSIONS Particle Image Velocimetry has been successfully applied to the study of a single gas slug rising in a vertical column of stagnant liquid. The use of fluorescent PIV particles allows the determination of velocities close to the wall and to the gas/liquid interface; velocity vectors have been measured at a distance of 9.18 10-2 mm from the wall. Optical effects associated with the use of a laser technique near an interface have been studied by means of illuminating silicon models with a laser sheet. In these models, fluorescent particles are embedded in the silicon. An interpretation of the spurious optical effects has been put forward. The conclusion is to keep relying on shadow techniques as a supplement to PIV measurements when determining the exact position of interfaces. Liquid velocity profiles have been measured around the gas slug. The results in the wake of the gas slug are in agreement with experimental data in literature. The velocity profile measured in the annular film surrounding the gas slug, when the liquid is fully developed and in laminar flow, is in agreement with the falling film theory; differences between experiments and theory are less than 5 %. Values of shear stresses close to the wall have been presented as the PIV technique allows the determination of velocity vectors in this region. Although there are the aforementioned problems near the gas/liquid interface, the results are encouraging. Further on this work will continue with the study of slug flow in columns with flowing liquid. The final goal being the investigation of coalescence between two Taylor bubbles. ACKNOWLEDGEMENTS The partial support of FUNDAÇÃO PARA A CIÊNCIA E TECNOLOGIA PORTUGAL, program PRAXIS XXI, who provides a Ph.D. fellowship (BD/20301/99) is gratefully acknowledged. The contribution of R. Saxena, in the study of the optical spurious effects and his involvement in the measurements as part of his postgraduate project are, also, gratefully acknowledged REFERENCES Campos, J. B. L. M. and Guedes de Carvalho, J. R. F. 1988, An experimental Study of the wake of gas slugs rising in liquids, J. Fluid Mechanics, 196, 27-37. Dias, I. 1999, It is possible to relate the flow pattern in the wake of a Taylor bubble to the annular liquid film regime. Thèse Annexe, Université Libre de Bruxelles. Dias, I. and Riethmuller, M. L. 1998, PIV in two-phase flows: Simultaneous bubble sizing and liquid velocity measurements. Bound volume of selected papers of the "9th Symposium on Laser techniques to fluid mechanics. Springer-Verlag" Philip, O. G., Schmidl, W. D., Hassan, Y. A. 1994, Developments of a high speed particle image velocimetry technique using fluorescent tracers to study steam bubbles collapse. Nuclear Engineering and Design, 149, 375-385. Pinto, A. M. F. R. and Campos, J. B. L. M. 1996, Coalescence of two gas slugs rising in a vertical column of liquid. Chem, Eng. Sci, 51, 45-54. Mao, Z. and Dukler, A. E. 1990, The motion of Taylor bubbles in vertical tubes-ii- Experimental data simulations for laminar and turbulent flow. Chem, Eng. Sci, 46, 2055-2064. Scarano, F. and Riethmuller M.L. 1999, Iterative multigrid approach in PIV image processing with discrete window offset. Exp Fluids, 26, 513-523. White, F. M. 1985, Viscous fluid flow. McGraw-Hill, New York, 282-299.