High Density FPGA Package BIST Technique

Similar documents
MIL-STD-883G METHOD

Impact of Reprocessing Technique on First Level Interconnects of Pb- Free to SnPb Reballed Area Array Flip Chip Devices

James Hofmeister, M.S.

ProChek, A COMPREHENSIVE FABRICATION PROCESS MISMATCH AND RELIABILITY CHARACTERIZATION TOOL

May08 Rev B

JEDEC STANDARD. Temperature Cycling. JESD22-A104C (Revision of JESD22-A104-B) JEDEC SOLID STATE TECHNOLOGY ASSOCIATION MAY 2005

Cleaning Medical Electronics

Lead Free Reliability Team Status. John Sohn Lucent Technologies - Bell Labs Reliability Team Leader January 17, 2001

Cooling NI Single-Board RIO Systems Appendix: Reference Examples NI sbrio-9605/6

Impact of Process Control in Pb-Free to SnPb Reballing Techniques

Procedure Troubleshooting the Interconnect Cables

A hose layline contains important information for specifying the replacement assembly: manufacturer, hose trade name, working pressure and hose ID.

Impact of Lead Free on Automated X-Ray Inspection

Reliability predictions in product development. Proof Engineering Co

Technical Data Sheet MF010-O-LC

INDIUM CORPORATION TECHNICAL PAPER. Does Thermal Cycling Impact the Electrical Reliability of a No-Clean Solder Paste Flux Residue.

Electrical Equipment Failures Cause & Liability. Prepared by: Robert Abend, PE on 11 August 2014

Reliability Considerations for Power Supplies

ADVANCES IN NDT TECHNIQUES FOR FRICTION STIR WELDING JOINTS OF AA2024

Thermal Profiling the Reflow Process

GENERAL APPLICATION NOTES

AC : ACCURATE CRYOCHAMBER FOR A SMALL LABORATORY WITH SMALL BUDGET

Stand-Alone Bubble Detection System

RULES PUBLICATION NO. 52/P UNDERWATER INSPECTION OF MOBILE OFFSHORE DRILLING UNITS IN LIEU OF DRYDOCKING

The Criticality of Cooling

GATE 2 Part No

HiPerMax LuK tooth chain for transmissions Reliable Power Flow in the Drive Train

MIL-STD-883H METHOD EXTERNAL VISUAL

Sense Element Pump Ripple Fatigue

PolarPAK Solder Joint Reliability Based on Thermal Fatigue IPC-9701

Technical Note. NOR Flash Cycling Endurance and Data Retention. Introduction. TN-12-30: NOR Flash Cycling Endurance and Data Retention.

Product Specification Spring Finger

APPLICATION NOTE. This application note will summarize the power and thermal cycling capability of eupec high power IGBT modules.

Materials, Reliability and Process Optimization. Lead Free Soldering. Department of Mechanical Engineering University of Massachusetts, Lowell

Reballed Ball Grid Array Reliability Under Shock and Vibration Joelle Arnold Dr. Nathan Blattau

ACCURATE PRESSURE MEASUREMENT FOR STEAM TURBINE PERFORMANCE TESTING

SEMATECH Provisional Test Method for Pressure Cycle Testing Filter Cartridges Used in UPW Distribution Systems

Reliability engineering is the study of the causes, distribution and prediction of failure.

Measuring the Benefits of Nitrogen for Reflow U.S. Robotics, Morton Grove, IL

Best Practices for Installation of Gaseous Sample Pumps

Commissioning and safety manual

CONTENTS TABLE OF MAIDA S HISTORY TERMINOLOGY & GENERAL SPECIFICATIONS. iii. LEAD CODES and TAPE & REEL STANDARD SERIES 1 HC SERIES 17

Life Cycle Testing of 3x19 Wire Rope

The Real Cost of Not Testing!

(TRCM) Wire Wound RF SMD Inductor

Thermal properties of Fiber ropes

Agilent Wedge for Probing High-Pitch ICs A Hands-Free Solution for Probing Fine-Pitch ICs

«DO160/ED14» - Jessica France

A New Test Setup for Testing Polyethylene Tubes under Constant and Cyclic Internal Pressures

Sensor for Air Bubble Detection at Liquid Filled Tubes. SONOCHECK Type ABD06.xx. Operating Manual

Specifications for Synchronized Sensor Pipe Condition Assessment (AS PROVIDED BY REDZONE ROBOTICS)

PRODUCT SPECIFICATION. SFP+ Cage and Cage Assembly 1 of 8 A

Presented to the IAPMO Standards Review Committee on March 7, 2016

Algorithm for Line Follower Robots to Follow Critical Paths with Minimum Number of Sensors

JEDEC SOLID STATE TECHNOLOGY ASSOCIATION

Reliability Assessment of VCSEL Devices for 5 Gbit/s Data Transmission in Automotive Environments

3. Real-time operation and review of complex circuits, allowing the weighing of alternative design actions.

E. Agu, M. Kasperski Ruhr-University Bochum Department of Civil and Environmental Engineering Sciences

D-PAK Voiding: A Study to Determine the Origins of D-PAK Voiding

LAMP 336SURSYGWS530-A3

TECH TIPS: ROPE DEFECTS

LEADER SEARCH RADAR LIFE LOCATOR

Application Note AN-107

EALP05RDBRA0 LAMP. Features. Description. Applications. Choice of various viewing angles. Available on tape and reel. Reliable and robust

A Journal of Practical and Useful Vacuum Technology. By Phil Danielson

ROPE NDT AS MEANS TO RAISE SAFETY OF CRANE AND ELEVATOR USE

1224SUBC/C470/S400-A4

Failure Data Analysis for Aircraft Maintenance Planning

Bellows Cycle Life & How Manufacturing Processes Can Impact it

Helicopter Safety Recommendation Summary for Small Operators

The below identified patent application is available for licensing. Requests for information should be addressed to:

PC-21 A Damage Tolerant Aircraft. Paper presented at the ICAF 2009 Symposium by Lukas Schmid

LAMP SUGC/S400-A5

Supplementary Operator s Manual 42/24-14 EN Rev. 3

5mm Infrared LED EAILP05RDDB1

Model PSI Compressor with 3-Gallon Air Tank 12VDC

Reflow Oven HHL3000 INSTRUCTION MANUAL POHUA - jedyny autoryzowany przedstawiciel w Polsce

333-2SURC/H3/S530-A4 LAMP. Features. Description. Applications. 1 Ver.:2 Release Date:12/13/2016 狀態 :Approved( 正式發行 )

204-10SDRD/S530-A3 LAMP. Features. Description. Applications. Revision 1. LifecyclePhase: Expired Period: Forever. Choice of various viewing angles

Electric and Natural Gas Safety Trainer s Guide

Gas Network Craftsperson

Service Instructions. Syntron Control Model: CSCR-1-B (115V)

NON-DESTRUCTIVE TECHNIQUES FOR IDENTIFYING DEFECT IN BGA JOINTS: TDR, 2DX, AND CROSS-SECTION/SEM COMPARISON

Analysis of Instrumentation Failure Data

HOW TO PROCEED WITH TROUBLESHOOTING

Stall & Parallel Operation. Witt&Sohn AG Oct-14

Application Notes. Aluminium Electrolytic Capacitors

Along-string pressure, temperature measurements hold revolutionary promise for downhole management

6 lockout operations every electrician MUST perform and respect

CHANGE RECORDS TABLE OF CONTENTS

Impact Fatigue on Suction Valve Reed: New Experimental Approach

OBJECTIVE 6: FIELD RADIOLOGICAL MONITORING - AMBIENT RADIATION MONITORING

Tuesday 3/11/14 11:00am

Life Extension of Mobile Offshore Units

Creation, Validation, and Implementation of a Highly Accelerated Life Testing (HALT) Procedure to Improve the ReliAbility of Printed Circuit Boards

NASA AEROSPACE PRESSURE VESSEL SAFETY STANDARD

COMPONENT SPECIFICATION M80-7XX SERIES CONNECTORS - THREE ROW

Selecting Maintenance Tactics Section 4

PROCEDURE. April 20, TOP dated 11/1/88

LAMP 339-9SUGSURSUBC/S1174

Transcription:

High Density FPGA Package BIST Technique Douglas Goodman, James Hofmeister, Justin Judkins, PhD Ridgetop Group Inc. 3580 West Ina Road Tucson, AZ 85741 (520) 742-3300 Doug@ridgetop-group.com Abstract Over 81% of new digital designs utilize Field Programmable Gate Arrays (FPGA s). With FPGA packages exceeding 1000 pins, with Ball Grid Array (BGA) solder bumps providing the interconnect, it is vitally important to make solid contact with the Printed Circuit Board (PCB). Unfortunately, these solder bumps are subject to the effects of aging, which encompasses cracking of the solder ball, oxidation within the crack and eventual failure of the connection. Although the failures are metallurgically-based, the effects can be detected electrically using a verilog softcore and in-situ sensor during the power-on self testing sequences. Ridgetop will describe its work in providing a self-contained built in self test (BIST) solution that is effective in detecting the degradation and eventual failure of the FPGA. Introduction and growth in use of BGA packages for FPGAs In recent years, Field Programmable Gate Arrays (FPGAs) have advanced greatly in their capability. The corresponding needs for I/O on these devices have compelled the manufacturers to utilize high-density ball grid array (BGA) packages, now with configurations exceeding 1,000 pins with very narrow solder bump pitches. According to a recent EE Times Survey, over 81% of new digital designs incorporate FPGAs 1. BGAs fit the FPGAs into a smaller footprint, decreasing pitch spacing, by utilizing an array of solder ball connections. This allows for a higher density of I/O connections than other package types. The result is a considerably smaller finished package size. While BGAs feature shorter electrical path lengths which reduce inductance, the critical solder bump connections are subject to aging and eventual failure from a cracking, oxidation and failure progression. Ridgetop has developed a Built-In-Self-Test (BIST) core that can be used to detect impending problems on FPGAs, so that mitigating actions can be taken. 1 EETimes, June 5, 2006 Copyright 2006 Ridgetop Group, Inc. Page 1 of 7

Figure 1 Typical Ball Grid Array Package (from Chip Scale Review) The top-down view of a high density package is shown in figure 2 where extremely high pitches are involved. Figure 2 Top-down view of the solder bump mapping. The solder bumps can be 0.6mm in diameter and placed on 1 mm center to center. Points of Failure: BGA Solder Joints The following is a list of some points of failure associated with FPGAs in BGA packages: (1) the junction between the FPGA package and the solder ball, (2) the junction between the solder ball and the printed wire board and (3) the wire bond lift off or break within the FPGA package. The most typical failure point is the junction between the FPGA package and the solder ball as depicted in Figure 3. PCB Figure 3: BGA Solder-Joint, Solder Balls and Typical Failure Point. A typical failed joint using results from Auburn University is shown in figure 4. Copyright 2006 Ridgetop Group, Inc. Page 2 of 7

Figure 4 Solder bump cracking (from Auburn University) While the high-resistance spike profile shown in Figure is simulated, the results have been verified by Highly Accelerated Life Test (HALT) experiments conducted at the Center for Automotive and Vehicle Electronics (CAVE) at Auburn University with whom Ridgetop maintains a research partnership. Figure 5: Solder-Joint Resistance Profile Showing Presence of High Resistance Spikes. Definition of Failure One industry standard for defining a BGA package failure during a test involving thermal cycles, with or without accompanying physical stresses, is given below: 1. An event is defined as the occurrence of a high-resistance spike of 300 ohms or higher for a duration period of 200 nanoseconds or longer. Copyright 2006 Ridgetop Group, Inc. Page 3 of 7

2. A BGA package failure is defined as the occurrence of 10 or more events that occur within 10 percent of the time (number of thermal cycles) of the first event. By this standard, a BGA assembly that exhibits intermittent, high-resistance spikes as shown in Figure is deemed not to have failed because (1) the first event occurred at about 700 cycles and (2) at no time during the remaining test cycle did the BGA package exhibit 10 events within 70 cycles: in fact, a total of only three events occurred: five of the relatively high-resistance spikes are, by definition, not events. The Ridgetop solder-joint fault detectors are able to detect high-resistance spikes of 10s of ohms. The occurrence of a single high-resistance spike is indicative of solder-joint damage, and the package has reduced reliability. The use of that component might not be prudent in a mission-critical situation. Because solder-joint fatigue damage is accumulative, the occurrence of just a couple of high resistance spikes, and perhaps just one, is indicative that the PCB assembly is likely to exhibit intermittent failures, especially when subjected to stresses associated with vibrations such as with automotive or vehicle applications. Ridgetop s BIST Approach Ridgetop s test approach was to provide a hardware/software BIST solution. The first step is to use otherwise unassigned pins on the FPGA for use in the test structure. This pin becomes the monitor pin and represents a precursor to a more serious impending failure of the FPGA. Verilog softcore was written that can be incorporated into the built-in test backbone of the device (to be used possibly on power-up), and a small capacitor that accompanies each of the unused test points on the package, as shown in figure 6. The softcore provides for the generation of the test sequence shown in figure 6. Figure 6 The test points are usually unassigned pins at the ends of the package, where the maximum bending point occurs. Copyright 2006 Ridgetop Group, Inc. Page 4 of 7

Figure 7 Test code generation example The test code generates a pulse train that is used to detect the 1 s and 0 s. If there is a high resistance path through the solder ball, indicating a high resistance or open, then the reflected pulse amplitude will be low as shown in figure 8. This is a detected fault at the outer sacrificial pin. It is inferred that the inner pins (where there are programmed cells critical to the FPGA operation) will fail later. This approach provides an earlywarning electronic prognostic of the impending failure of the entire package. Figure 8 Write/Read Pulse analysis. A low response indicates a high-resistance path, which is indicative of a faulty solder ball. Copyright 2006 Ridgetop Group, Inc. Page 5 of 7

Actual measurement results taken are shown in figure 9. Figure 9 Measurement results showing applied strain and intermittent continuity through the solder ball. Electronic Prognostics and the Reliability Bathtub Curve Failure probability for a device typically follows a bathtub curve (Figure ), with three distinct regions: Infant Mortality (Burn-In) Region. High probability of failure, related to manufacturing defects. Useful Life Period. Minimum, almost constant failure rate caused mostly by temperature, vibration and voltage stresses. Wearout (End-of-Life) Region. Due to wear out or fatigue mechanisms, probability of failure increases. Failure rate RUL Period Early failures Random failures Wearout failures Infant Mortality Period Useful life Period Wearout Period Time Figure 10: Bathtub Curve Showing Failure Rate with Time, along with Remaining Useful Life (RUL) period Copyright 2006 Ridgetop Group, Inc. Page 6 of 7

The failure of a edge pin on the FPGA represents a precursor event to an impending failure of the FPGA. The fault to failure progression depends on the package type, the type of solder used, and number of pins used. Ridgetop is continuing to gather statistics that will provide better estimates of the RUL period for a series of intermittent spikes occurring on the FPGA packages. Summary Ridgetop has developed an effective means of testing the integrity of Ball Grid Array (BGA) packages as used in FPGAs and embodied this technology into a product called InstaBIST BGA. This IP consists of a Verilog Core and Documentation to enable ongoing testing of the BGA packages that are deployed in critical applications. Acknowledgements Ridgetop would like to acknowledge the assistance of the NAVAIR/JSF Program Office, Raytheon Corporation, and Center for Automotive and Vehicle Electronics at Auburn University for their support of this work. References [1] D. Love and D. Towne, BGA Reliability Characterization Project Temperature Cycling Tests, Sun Microsystems, Palo Alto, California, USA, January, 1999 [2] PEM Qualification Requirements for Radiation Hardened non-hermetic products qualifiable for space flight applications other?? Copyright 2006 Ridgetop Group, Inc. Page 7 of 7