Buoy data assimilation to improve wave height assessment in Bay of Bengal during monsoon seasons

Similar documents
Wave Energy Atlas in Vietnam

Ocean Wave Forecasting

GLOBAL VALIDATION AND ASSIMILATION OF ENVISAT ASAR WAVE MODE SPECTRA

WAVE FORECASTING FOR OFFSHORE WIND FARMS

Available online at ScienceDirect. Procedia Engineering 116 (2015 )

Wave forecasting at ECMWF

CHAPTER 6 DISCUSSION ON WAVE PREDICTION METHODS

University of the Rykyus International Graduate Program For Asia Pasific Region Report of International Research

ENVISAT WIND AND WAVE PRODUCTS: MONITORING, VALIDATION AND ASSIMILATION

(Refer Slide Time: 0:36)

Inter-comparison of wave measurement by accelerometer and GPS wave buoy in shallow water off Cuddalore, east coast of India

Application of Simulating WAves Nearshore (SWAN) model for wave simulation in Gulf of Thailand

Geostrophic and Tidal Currents in the South China Sea, Area III: West Philippines

Short-Term Variability of Wind and Waves, Based on Buoy Measurements and Numerical Simulations in the Hindustan Area

COMPARISON OF CONTEMPORANEOUS WAVE MEASUREMENTS WITH A SAAB WAVERADAR REX AND A DATAWELL DIRECTIONAL WAVERIDER BUOY

A GENERALIZED WAVE-RAY APPROACH FOR PROPAGATION ON A SPHERE AND ITS APPLICATION TO SWELL PREDICTION

Extreme waves in the ECMWF operational wave forecasting system. Jean-Raymond Bidlot Peter Janssen Saleh Abdalla

Variability in the tropical oceans - Monitoring and prediction of El Niño and La Niña -

High-Resolution Measurement-Based Phase-Resolved Prediction of Ocean Wavefields

Critical Gust Pressures on Tall Building Frames-Review of Codal Provisions

OPERATIONAL AMV PRODUCTS DERIVED WITH METEOSAT-6 RAPID SCAN DATA. Arthur de Smet. EUMETSAT, Am Kavalleriesand 31, D Darmstadt, Germany ABSTRACT

Mesoscale air-sea interaction and feedback in the western Arabian Sea

Refined Source Terms in WAVEWATCH III with Wave Breaking and Sea Spray Forecasts

Nearshore Wind-Wave Forecasting at the Oregon Coast. Gabriel García, H. Tuba Özkan-Haller, Peter Ruggiero November 16, 2011

Kathleen Dohan. Wind-Driven Surface Currents. Earth and Space Research, Seattle, WA

Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines

The relevance of ocean surface current in the ECMWF analysis and forecast system. Hans Hersbach Jean-Raymond Bidlot

EVALUATION OF ENVISAT ASAR WAVE MODE RETRIEVAL ALGORITHMS FOR SEA-STATE FORECASTING AND WAVE CLIMATE ASSESSMENT

Available online at ScienceDirect. Procedia Engineering 116 (2015 )

Ocean Wave Forecasting at ECMWF

Biennial Oscillation of Tropical Ocean-Atmosphere System Associated with Indian Summer Monsoon

NUMERICAL STUDY OF WIND-GENERATED WAVES IN THE RED SEA

On the assimilation of SAR wave spectra of S-1A in the wave model MFWAM

Effect of sea surface temperature on monsoon rainfall in a coastal region of India

SUPERGEN Wind Wind Energy Technology Rogue Waves and their effects on Offshore Wind Foundations

Structural Design of Wave Energy Devices

Systematic Validation of Conductivity and Temperature from Ocean moored buoy data in the northern Indian Ocean with in situ ship based measurements

Directional Wave Spectra from Video Images Data and SWAN Model. Keywords: Directional wave spectra; SWAN; video images; pixels

Wave Modeling and Applications

Appendix D: SWAN Wave Modelling

Analysis of Extreme Wave Climates in Rhode Island Waters South of Block Island

Training program on Modelling: A Case study Hydro-dynamic Model of Zanzibar channel

Wave Transformation Modeling with Bottom Friction Applied to the Southeast Oahu Reefs. Mary A. Cialone and Jane McKee Smith

Long period waves in the coastal regions of north Indian Ocean

WAVE PERIOD FORECASTING AND HINDCASTING INVESTIGATIONS FOR THE IMPROVEMENT OF

Super-parameterization of boundary layer roll vortices in tropical cyclone models

Wave Generation. Chapter Wave Generation

Understanding El Nino-Monsoon teleconnections

Verification of DMI wave forecasts 2nd quarter of 2002

Analysis of Extreme Wave Climates in Rhode Island Waters South of Block Island

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 4 September 2012

THE WAVE CLIMATE IN THE BELGIAN COASTAL ZONE

Methodology and Results for Nearshore Wave Simulation in a Coupled Hydrodynamic and Wave Model System to Evaluate Storm Surge in Coastal Louisiana

IMPACTS OF COASTAL PROTECTION STRATEGIES ON THE COASTS OF CRETE: NUMERICAL EXPERIMENTS

RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE

STUDIES ON THE TRANQUILITY INSIDE THE GOPALPUR PORT

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 8 March 2010

DUXBURY WAVE MODELING STUDY

Optimal Weather Routing Using Ensemble Weather Forecasts

El Niño climate disturbance in northern Madagascar and in the Comoros

Lecture 14. Heat lows and the TCZ

Preliminary assessment of the variability of UK offshore wind speed as a function of distance to the coast

Recent developments in wave modelling with the Two-Scale WAVEWATCH-III

Coastal Wave Energy Dissipation: Observations and Modeling

Research Article Island Modeling Using Unstructured Grid during a Tropical Storm

Influence of rounding corners on unsteady flow and heat transfer around a square cylinder

Currents measurements in the coast of Montevideo, Uruguay

Atmospheric Forcing and the Structure and Evolution of the Upper Ocean in the Bay of Bengal

Wind effects on tall building frames-influence of dynamic parameters

FORECASTING OF ROLLING MOTION OF SMALL FISHING VESSELS UNDER FISHING OPERATION APPLYING A NON-DETERMINISTIC METHOD

Development of SAR-Derived Ocean Surface Winds at NOAA/NESDIS

HIGH RESOLUTION WIND AND WAVE MEASUREMENTS FROM TerraSAR-X IN COMPARISON TO MARINE FORECAST

WIND CONDITIONS MODELING FOR SMALL WIND TURBINES

Demarcation of inland vessels limit off Mormugao port region, India: a pilot study for the safety of inland vessels using wave modelling

Numerical modeling of refraction and diffraction

Wave Energy Resources Assessment for the China Sea Based on AVISO Altimeter and ERA Reanalysis Data (ID:10412)

SEASONAL SEA LEVEL VARIABILITY AND ANOMALIES IN THE SINGAPORE STRAIT

EE 364B: Wind Farm Layout Optimization via Sequential Convex Programming

PUV Wave Directional Spectra How PUV Wave Analysis Works

Interannual variation of northeast monsoon rainfall over southern peninsular India

Validation of 12.5 km Resolution Coastal Winds. Barry Vanhoff, COAS/OSU Funding by NASA/NOAA

Seasonal Currents in the Bay of Bengal and Andaman Sea Revealed by Reprocessed Observations

Verification of DMI wave forecasts 3rd quarter of 2002

LIFE TIME OF FREAK WAVES: EXPERIMENTAL INVESTIGATIONS

Prediction of Nearshore Waves and Currents: Model Sensitivity, Confidence and Assimilation

Beach Wizard: Development of an Operational Nowcast, Short-Term Forecast System for Nearshore Hydrodynamics and Bathymetric Evolution

LONG TERM OCEAN WAVE FORECASTING ALONG INDIAN COAST

COMPARISON OF CONTEMPORANEOUS WAVE MEASUREMENTS WITH A SAAB WAVERADAR REX AND A DATAWELL DIRECTIONAL WAVERIDER BUOY

CPUE standardization of black marlin (Makaira indica) caught by Taiwanese large scale longline fishery in the Indian Ocean

Model Predictions and Sensitivity Analysis of Nearshore Processes over Complex Bathymetry

Climate change impacts on water availability in three Mediterranean watersheds of Catalonia (NE Spain) Diana Pascual, Eduard Pla (CREAF)

Marine Renewables Industry Association. Marine Renewables Industry: Requirements for Oceanographic Measurements, Data Processing and Modelling

Sea State Analysis. Topics. Module 7 Sea State Analysis 2/22/2016. CE A676 Coastal Engineering Orson P. Smith, PE, Ph.D.

PACIFIC HINDCAST PERFORMANCE EVALUATION OF THREE NUMERICAL WAVE MODELS

Recent Changes in Wind Chill Temperatures at High Latitudes in North America

SEASONDE DETECTION OF TSUNAMI WAVES

Subsurface Ocean Indices for Central-Pacific and Eastern-Pacific Types of ENSO

Dynamics and variability of surface wind speed and divergence over mid-latitude ocean fronts

Data Analysis of the Seasonal Variation of the Java Upwelling System and Its Representation in CMIP5 Models

Important note To cite this publication, please use the final published version (if applicable). Please check the document version above.

Transcription:

Indian Journal of Geo Marine Sciences Vol. 46 (06), June 2017, pp. 1083-1090 Buoy data assimilation to improve wave height assessment in Bay of Bengal during monsoon seasons Kalyani M 1, *, Latha G 1, Sannasiraj S A 2 & Venkatesan R 1 1 National Institute of Ocean Technology, Pallikaranai, Chennai-600 100, India 2 Department of Ocean Engineering, IIT Madras, Adyar, Chennai-600 036, India *[E-mail: kalyani.niot00@gmail.com] Received 23 June 2015; revised 04 August 2015 Significant wave height assessment in Bay of Bengal derived from third generation Wave Model (WAM cycle 4) has been improved by assimilating with continuous three hourly data from five moored buoys of National Institute of Ocean Technology using optimum interpolation technique. Covariance based weight function (gain) used in the study captures the model physics behind wind-wave process while distributing the errors at any buoy location. Gain composition at different buoy locations, due to assimilation of each buoy has been reported for both southwest (July) and northeast (November) monsoons, for year 2004. Qualitative and quantitative improvement in significant wave height due to buoy data assimilation during these two seasons are presented with reference to changing wind and wave characteristics. The order of improvement is found to be proportional to the magnitude of deviations found with respect to the measurements. Considerable model area has been influenced by assimilation. [Key words: Significant wave height, WAM, Bay of Bengal, Moored buoy, Optimum interpolation, Assimilation] Introduction The wave climate in Indian Ocean is influenced by both summer (Southwest) and winter (Northeast) monsoons 1. A methodology for the spatial calibration of wave hind cast data sources was developed based on empirical orthogonal function and a non-linear transformation of the spatial-time modes 2. This method was applied to monthly long-term distribution of significant wave heights in the Western Mediterranean. This approach would not be applicable for the correction of hourly hind cast databases. In addition, since a prior distribution function of the data was assumed in the study area, this method could not be generalized. An assimilation model based on optimal interpolation scheme was presented by using a gain function that had been formulated according to the process by which waves were generated by winds 3. The efficiency of this method was evaluated by using buoy observations in the Arabian Sea. This assimilation approach led to a 30 50 percent reduction of root mean square error of wave height at the validation stations. But, in this method the gain function was formulated without considering the difference between wave climate in each season e.g. southwest monsoon, northeast monsoon and non-monsoon. In the present study, the significant wave height characteristics in Bay of Bengal (BOB), derived from Wave Model (WAM) have been improved by using an assimilation model based on optimal interpolation scheme and by using a spatial error distribution function (gain function) which considers the underlying physical process by which wind generates the waves. This gain function has been formulated by considering the difference in wave climate during southwest (SW) and northeast (NE) monsoons for a hind cast study and the salient features have been discussed. Materials and Methods The third generation wave model WAM cycle 4 (The WAMDI Group) 4 had been utilized to

1084 INDIAN J. MAR. SCI., VOL. 46, NO. 06, JUNE 2017 simulate the wave characteristics in Indian Ocean.The model domain was extended from 30 0 E to 120 0 E in longitudinal and 50 0 S to 30 0 N in the latitudinal directions and covers both Arabian Sea and BOB in North Indian Ocean as well as the South Indian Ocean. The wind forcing was obtained from National Oceanic and Atmospheric Administration (NOAA) National Centres for Environmental Prediction (NCEP) winds of 1.00 0 x 1.25 0 degree resolution. The bathymetry was obtained from Earth Topography 2 Minute (ETOPO2) data sets. Grid spacing with 0.5 degree resolution was chosen for the model domain in both latitudinal and longitudinal directions. The significant wave height measurements were obtained from five buoys viz., MB12, MB11, DS3, DS4 and DS5, in Bay of Bengal during the year 2004 (Fig.1), as detailed in Table.1. Buoy ID DS4 MB12 MB11 DS5 DS3 Fig. 1- Buoy locations in Bay of Bengal (2004) Table 1- Buoy locations in Bay of Bengal Location Paradip Visakha patnam Ramaya patnam Machili patnam Chennai Latitude ( o N) Longitude ( o E) Depth (m) 18 o 22 56 87 o 36 58 2350 18 o 08 31 90 o 08 08 2260 14 o 59 59 87 o 32 35 2807 13 o 59 28 83 o 16 16 3267 12 o 11 20 90 o 43 34 3156 Wave model Wave model WAM estimates the evolution of the energy spectrum for ocean waves by solving the wave transport equation explicitly without any presumption on the shape of the wave spectrum 4. F( f, ; x, t) x F ( f, ; x, t) S (1) t where, F(f, θ; x, t) is the wave energy spectrum in terms of frequency f and propagation direction θ at the position vector x and at time t; ʋ is the group velocity. The second term on the left-hand side is the divergence of the convective energy flux (ʋ x F). The net source function, S, takes into account all physical processes which contribute to the evolution of the wave spectrum. The source function is represented as superposition of source terms due to wind input, nonlinear wave wave interaction, dissipation due to wave breaking, and bottom friction and is represented in the following form. S S in S S S nl ds bot (2) The wind input source function, S in, was adopted from Koman et. al. 5. The nonlinear wave wave interaction term, S nl, represents the nonlinear conservative energy exchanges between all possible quadruplet wave components. The discretization of the governing equation in geographical and spectral space was performed using rectangular grid of 0.5 deg x 0.5 deg in both longitudinal and latitudinal directions. The details of the model equations and methods of solution were explained in WAM 4,5. Optimum interpolation scheme: Optimum Interpolation (OI) is one of the efficient methods of assimilating measured data into a numerical model and is based on a statistical interpolation technique. The most widely adopted data assimilation schemes were sequential procedures like OI and successive correction 5,6. Because of its relative adaptability, this method had been widely used for wave data assimilation. OI scheme was inbuilt into European Centre for Medium Range Weather Forecast (ECMRWF) system 7 in which ERS-2 altimeter wave data was assimilated into a wave model, WAM. The weighting (gain) coefficients can be formulated with or without the dynamical model constraints. Improving the initial conditions for the wave model by updating input parameters

KALYANI et al.: BUOY DATA ASSIMILATION TO IMPROVE WAVE HEIGHT ASSESSMENT 1085 using OI method 3 revealed that the updated initial conditions could not spread over forecast period of more than twelve hours during severe wave climate with changing wind fields, as initial conditions would have no bearing on the wave field once it was developed. In the Kalman filter, the gain was computed and updated internally 8. OI-UOV method can be operated independent of time in the hind cast mode for any output parameter of the wave model. OI-UOV assimilation scheme could be executed independent of the wave model 3,9,10 as all the corrections were carried out to the output variables of the model. In the present study, the OI-UOV method had been applied to improve (update) the output variable (significant wave height, Hs) derived from the first guess WAM model output. This scheme distributes the error from discrete grid points to the entire model domain based on a weight matrix called gain matrix (G). The model improvement due to buoy data assimilation and its characteristics were discussed. The state variable of the wave model (output) considered in the study was significant wave height which was the ensemble parameter of the spectrum, F a (f,θ). Assimilation scheme could be written as F a (f, θ) = AF f (Bf, θ) (3) where, F a (f, θ)was the analysed (corrected) wave spectrum computed from the first guess or the predicted wave spectrum, F f (f, θ) by rescaling the spectrum with two scale parameters A and B. f and θ were the frequency and directional components. Gain matrix: The wave height error evaluated at any location was the result of the cumulative effect of the interaction with neighbouring grids, and was connected in space and time, based on the windwave characteristics that vary with season. The H s at a location was also governed by site-specific characteristics. Therefore, error correction to H s evaluated at any single observation station should be meaningfully distributed to other model grids based on G that includes all these effects in it. In a conventional OI technique, the coefficients of the gain matrix were mainly evaluated as a function of the distance between the observation station and the station of interest and its relative direction. The gain matrix would become more meaningful if the gains were estimated either from the model physics or from the knowledge of propagation of the state variables in some sense. In this study, the gain contours were formulated based on the physics of the modeling system and the observational error by adapting a covariance based weight function (G). This approach was well established and had been widely used by meteorologists in the climate studies 11,12. At each time level, all observations available in a time window centred at the time level were used to construct the most likely estimate of the field at that time level. The basic idea was to compute an analysed or corrected value H a of the true state (by assuming negligible measurement errors), H o.for i = 1,..., n; H i a = H i f + m j =1 G ij α f o j α j (4) where, H f denotes the first guess field predicted from wave model, α o denotes the observations from m stations, and α f denotes their first guess counterparts. It was assumed that there exists a relation between the measured variable α and the analysed field variable H S, and the transformation between these variables was accommodated in the gain matrix, G. In the wave assimilation, the wave height was one of the measured variable, and also, the ensemble spectral parameter in the predictive model. The number of grid points which need to be updated were denoted with index n and the number of observations (number of buoys in the present case) were denoted by the index m. Let H o (= α o ) and H f (= α f ) be written as a mean value ( H o and H f where indicates temporal mean value) and a deviation (δ), H o = H o + δ o ; H f = H f + δ f (5) For obtaining best estimate of the variable, H a, the mean square error (E) of analysed significant wave height H a had to be minimized. The minimization of mean square error solves the interpolation weights G 3 ij. The covariance between the observations and background errors could be neglected by the assumption of weak interaction. The optimal distribution of observed errors to the other grid locations was carried out by using Eq. 4 which was suitable for wave data such as buoy and radar altimeter derived wave heights.

1086 INDIAN J. MAR. SCI., VOL. 46, NO. 06, JUNE 2017 Results and Discussion The capability of the OI-UOV scheme had been demonstrated by assimilating significant wave height (H s ) data from five buoys in BOB during SW (July) and NE (November) monsoon period for the year 2004 with WAM output. H s was calculated at 3-hour interval throughout the simulation period. The hind cast study was performed in offline mode but OI scheme can also be used in real time mode. Gain matrix for each season varies as per wind direction. Hence separate G was formulated for SW and NE monsoons. Monthly gain matrix had been generated with 3-hourly significant wave height date sets while care was taken to see that the length of time record clearly depicts a meaningful phenomenon and would not disrupt the physics in the averaging process (e.g. without splitting a peak during a monsoon). Minimum one month data were required to deduce seasonal variation in wave characteristics and to draw meaningful conclusions though more data if available would be good within each season. The calibration of G was performed by formulating G for one period and calibrating for another period. Calibration of MB12 buoy for SW and NE monsoons was shown in Fig. 2(a-b) respectively. For both SW and NE monsoons, the gain was 1.0 (100%) at self- buoy location (MB12 on MB12) while at neighbour buoys (DS5 or DS4 shown as an example) the gain was less than 1.0 and depends on the wind direction, season and the placement of buoys. Fig. 2(b) Calibration during NE monsoon (MB12 gain formulated for October and calibrated for November at DS4 (top) and MB12 (bottom) locations) Gain contours for each buoy: Single buoy assimilation had been carried out for each of the five buoys. Gain contours for SW and NE monsoon months in BOB were compared in Fig. 3(a-j) for all the five buoy stations. Fig.2(a) Calibration during SW monsoon (MB12 gain formulated for June and calibrated for July at DS5 (top) and MB12 (bottom) locations)

KALYANI et al.: BUOY DATA ASSIMILATION TO IMPROVE WAVE HEIGHT ASSESSMENT 1087 was from NE when compared to SW month (30%) with wind acting in opposite direction. MB11 was situated approximately at a centre location out of Fig. 3 Gain contours due to assimilation of each buoy during SW and NE monsoons; (a, b) DS4, (c, d) MB12, (e,f) MB11, (g, h) DS5 and (i, j) DS3. The gain coefficient at buoy location was 1.0 and gradually decreased away from its location based on the wind direction. These plots indicate the weights given to each grid in correcting the model error in H S at a buoy location and were given in terms of the model error of the buoy under consideration. The entire model domain in BOB had been influenced by the error corrections due to these five buoys. Assimilation of DS4 (Fig. 3(a)) seem to benefit only MB12 (which was in close proximity to the buoy assimilated, (DS4) during SW month (July) when wind direction was from SW and away from neighbouring buoys. During NE monsoon month (November) when the wind direction was from NE (towards neighbouring buoys) all the buoys in the upwind direction were benefited with 90% to 40%, depending on their proximity to DS4 buoy (Fig. 3(b)). The farthest being DS3 with more than 40% gain. Assimilation of MB12 (Fig. 3(d)) and MB11 (Fig. 3(f)) also benefited all the neighbour buoys during NE monsoon with varying degree. MB12 assimilation brought significant gain (70%) at DS5 (on the upwind side) as the wind direction the 5 buoys in BOB and was in close proximity to all the neighbour buoys. Around 60% and more gain was observed for all the buoys during both the seasons (Fig. 3(e-f)) while at DS4 which was slightly off the wind direction indicated minimum gain of <20 % during SW monsoon. Assimilation of DS5 (Fig. 3(g-h)) also showed more gain during NE monsoon at neighbour buoy locations except at DS3, which showed 25% increase in gain during SW monsoon. Assimilation of DS3 (Fig. 3(i-j)), which was on the southern-most side of all buoys, showed either equal or more gain during SW monsoon when the gain contours were bent in WSW-ENE direction when compared to that of NE monsoon. The exception being at DS4 which showed around 50% gain in NE month and 20% during SW month owing to its placement with respect to the wind direction during the two seasons. The seasonal variation in gain coefficients at neighbouring buoy stations was clearly evident from these figures. Error redistribution: After assimilation, at each model grid, the gain coefficients due to all the five buoys were available. Cumulative gain at each grid has been evaluated by redistributing these gains based on their respective covariances with the H S at grid under consideration, to avoid over correction 5. Using these redistributed gains the cumulative improvement in H S was found as per Eq. 4. Improvement in H S due to neighbor buoys: Maximum wave heights during SW monsoon for the year 2004 were approximately twice that of during NE monsoon. The correlation coefficients (CC) at each buoy station between the measured H S and the WAM derived H S (before and after the assimilation with neighbour buoys) had been plotted in Fig. 4(a-b) for SW and NE monsoons respectively.

1088 INDIAN J. MAR. SCI., VOL. 46, NO. 06, JUNE 2017 Fig. 4 Improvement in CC at each buoy station due to neighbor buoy assimilation (top) SW & (bottom) NE monsoons It was to be noted that, the CC due to self-buoy assimilation alone was 1.0, which indicated full correction at its own site (e.g: MB12 on MB12 in Fig. 2) It was seen that neighbour buoy assimilation also considerably improved the CC (Fig. 4). Before assimilation the CC value varied between 0.74 at DS5 to 0.88 at MB11 and MB12 buoy sites during SW monsoon. After neighbour buoy assimilation CC was improved to 0.90 to 0.96 respectively. Before assimilation the CC value varied between 0.73 at DS4 to 0.85 at MB11 and DS3 buoy sites during NE monsoon. After neighbour buoy assimilation CC was improved to 0.89 to 0.95 respectively. The reduction in root mean square error (RMSE) at buoy sites due to neighbour buoy assimilation had been quantitatively shown in Fig. 5(a-b) for SW and NE monsoons respectively. Model deviations were high during SW monsoon when compared to that of during NE monsoon. RMSE after assimilation with any buoy at its own site would be zero, while due to the assimilation of all neighbour buoys the reduction in RMSE was found to be considerable (Fig. 5). Fig. 5 Reduction in RMSE at each buoy station due to neighbor buoy assimilation during (top) SW and (bottom) NE monsoons During SW monsoon, the RMSE before assimilation was in the range between 0.25 m to 0.66 m at DS5 and DS4 respectively. With multiple neighbour buoy assimilation it was brought down to 0.11 m and 0.20 m respectively. The reduction in RMSE due to multiple neighbour buoys was found to be 57 to 74 % ( H S achieved/ H S required) at different buoy sites during SW monsoon. During NE monsoon, the RMSE before assimilation was in the range between 0.09 m to 0.36 m at MB11 and DS3 respectively. With multiple neighbour buoy assimilation it was brought down to 0.06 m and 0.26 m respectively during NE monsoon. The reduction in RMSE due to multiple neighbour buoys was found to be 30 to 50 % ( H S achieved / H S required) at different buoy sites during NE monsoon. Neighbouring buoy assimilation effect could be used to improve model assessment during data gaps at validation stations. Overall H S improvement in BOB: At any time instant, the cumulative improvement in H S due to all five buoys at each model grid was evaluated using redistributed gains as discussed before. The gain matrix used

KALYANI et al.: BUOY DATA ASSIMILATION TO IMPROVE WAVE HEIGHT ASSESSMENT 1089 would be a steady state gain matrix for the entire period (one month). Hence, the improvement would be proportional to the model error at that instant. During peak events (high values) the model deviations would be generally high due to smoothening of wind vectors. Hence the model correction (H S improvement) also would be proportional to it. As an example, the H S improvement (in meters) in BOB on 27 th July 2004 at 0:00 hours had been shown in Fig. 6(a), where the model errors at all the five buoy stations were considerable (0.70 m, 0.68 m, 0.77 m, 0.79 m & 0.70 m at DS4, MB12, MB11, DS5 & DS3 respectively before assimilation). Fig. 6(b) Improvement in H s due to assimilation of all five buoys in Bay of Bengal for SW monsoon (July). (At any grid point all 5 buoy s effect is considered. Effect of any buoy in its own location (i=j) is removed) The effect of each buoy at its own site (where i = j) had been removed and only neighbor buoy effect was shown..the similarity of the distribution could be seen from the two plots (Fig. 6(a) & (b)). Nearly 30 to 60 % improvement [ H S /(H S ) Model ] was observed in the neighborhood of the buoys in the BOB. From these plots, it was clear that buoy data at five locations could efficiently cover the entire BOB in improving the wave height assessment. Fig. 6(a) Improvement in H s due to assimilation of all five buoys in Bay of Bengal on 27 th July 2004 0:00 hrs. (At any grid point all 5 buoy s effect is considered. Effect of any buoy in its own location (i=j) is removed) The effect of self-buoy at its own site (where, i = j) had been removed to depict the neighbor buoy effect. Based on the wind direction during SW monsoon, the buoys on the upwind direction (DS4, MB12 & MB11) showed more correction in the order 0.4 m to 0.5 m when compared to that of DS5 and DS3, where, the improvement was between 0.3 m to 0.4 m. The improvement at any buoy site was found to be proportional to its model deviation. The overall improvement in significant wave height at each model grid as a ratio of WAM derived model H S [ H S /(H S ) Model ] (as measurements are not available at each grid to know the actual model error at each grid) due to multiple buoy (five) assimilation for the month (averaged over a month) of July (SW monsoon) was shown in Fig. 6(b). Conclusions Buoy data assimilation using five buoys in Bay of Bengal, could correct the model error in H s by 100% at the respective buoy locations and also influenced the neighboring model domain considerably. Covariance based spatial correlation could efficiently capture seasonal variation in wave characteristics during SW and NE monsoons while evaluating the buoy influence in the neighboring domain. Excluding the self- buoy's effect on its own site, the overall improvement in H S in the model domain with respect to model H S at each grid [ H S /(H S ) Model ] due to five buoys was found to be up to 20% in southern BOB (south of 7.5 o N), 20% to 40% in the central BOB (between 7.5 o N to approximately 15 o N) and was between 40%-60 % in the northern BOB (north of 15 o N) for SW monsoon season. The gain was found to be more on the upwind direction and its magnitude depended on the wind direction, proximity to the buoy assimilated and was proportional to that of the model error.

1090 INDIAN J. MAR. SCI., VOL. 46, NO. 06, JUNE 2017 Acknowledgements Authors would like to express their sincere thanks to Dr. M.A. Atmanand, The Director, National Institute of Ocean Technology, Chennai, for encouraging and supporting this work. Authors thank the Ministry of Earth Sciences (MoES), New Delhi and Indian National Centre for Ocean Information Services (INCOIS), Hyderabad for providing the moored buoy data. References 1 Friedrich, A. Schott., Julian, P. McCreary Jr., The monsoon circulation of the Indian Ocean, Progress in Oceanography., 51(2001) 1-123. 2 Tomas, A., Mendez, F. J., Losada, I. J., A method for spatial calibration of wave hind cast data bases, Cont. Shelf Res., 28(3) (2008) 391-398. 3 Sannasiraj, S. A., Goldstein, M. G., Optimal interpolation of buoy data into a deterministic windwave model, Nat. Hazard., 49(2) (2009) 261-274. 4 The WAMDI Group (Hasselmann, S., Hasselmann, K., Bauer, E., Janssen, PAEM., Komen, G. J., Bertotti, L., Lionello, P., Guillaume, A., Cardone, V.C., Greenwood, J.A., Reistad, M., Zambresky, L., Ewing J.A)., The WAM model a third generation ocean Wave prediction model, Journal of Physical Oceanography., 18(1988) 1775-1810. 5 Komen G J, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S & Janssen P, Dynamics and Modeling of Ocean Waves, (Cambridge University Press) 1994, pp. 532. 6 Hasselmann, S., Lionello, P., Hasselmann, K., An optimal interpolation scheme for the assimilation of spectral wave data, J Geo phys Res., 102(C7) (1997) 15823-15836. 7 Lionello, P., Gu nter, H., Hansen, B., A sequential assimilation scheme applied to global wave analysis and prediction, J Mar Syst., 6(1995) 87 107. 8 Robinson, A. R., Lermusianx, P. F. J., Overview of data assimilation. Technical Note No. 62, Division of Engineering and Applied Sciences, Harward University, Cambridge, 2000. 9 Babovic, V., Sannasiraj, S. A., Chan, E.S., Error correction of a predictive ocean wave model using local model approximation, J.Mar. Syst., 53(1 4) (2005) 1-17. 10 Refsgaard, J. C., Validation and inter comparison of different updating procedures for real-time forecasting, Nordic Hydrol., 28(2) (1997) 65-84. 11 Lewis J M, Lakshmivarahan S & Dhall S K, Dynamic Data Assimilation: A least squares approach, (Cambridge University Press) 2006, pp. 680. (Volume 104 in the Series on Encyclopedia of Mathematics and its Applications). 12 Sannasiraj, S.A., Vladan Babovic., Eng Soon Chan., Wave data assimilation using ensemble errorcovariance for operational wave forecast, Ocean Modelling., 14(2006) 102-121.