Improvements in the Reliability, Costs and Processing of WLP/RDL Circuits

Similar documents
Thermal Profiling the Reflow Process

Laboratory Hardware. Custom Gas Chromatography Solutions WASSON - ECE INSTRUMENTATION. Engineered Solutions, Guaranteed Results.

BEST KNOWN METHODS. Transpector XPR3 Gas Analysis System. 1 of 6 DESCRIPTION XPR3 APPLICATIONS PHYSICAL INSTALLATION

Standard Operating Manual

Laboratory Hardware. Custom Gas Chromatography Solutions WASSON - ECE INSTRUMENTATION. Custom solutions for your analytical needs.

Time Pressure Dispensing

FT28_mks.qxp 21/11/ :06 Page 1

Plasma Cleaner. Yamato Scientific America. Contents. Innovating Science for Over 125 Years. Gas Plasma Dry Cleaner PDC200/210/510 PDC610G.

Plasma Sources and Feedback Control in Pretreatment Web Coating Applications

Usage Policies Notebook for Xenon Difluoride (XeF 2 ) Isotropic Si Etch

DRAFT. Operating Procedures for the NPDGamma Liquid Hydrogen Target in TA-53, Building MPF-35

Standard Operating Manual

University of MN, Minnesota Nano Center Standard Operating Procedure

The HumiPyc ( Model 2) - Gas Pycnometer; Density, Moisture, Permeation Analyzer; Filter Integrity Tester; RH sensor Calibrator

March CS-1701F Reactive Ion Etcher

MV5: Automated concentration system

Standard Operating Manual

Inert Atmosphere Guide

University of MN, Minnesota Nano Center Standard Operating Procedure

Thermcraft Tube Furnace General Use

BASICS of MAINTENANCE and TROUBLESHOOTING of VACUUM DIFFUSION PUMPS

UV Curing in an Inerted Atmosphere Equipment Update

Application Note AN-107

Introduction of Vacuum Science & Technology. Diffusion pumps used on the Calutron mass spectrometers during the Manhattan Project.

Simplified Backflush Using Agilent 6890 GC Post Run Command Application Note

How To Use Getters and Getter Pumps

CHEMICAL ENGINEERING SENIOR LABORATORY CHEG Initiated Chemical Vapor Deposition

STS PECVD Instructions

Avery Dennison Instructional Bulletin 1.4 Application Methods for Pressure Sensitive Adhesive Films

SERIES 30. Spring Operated Tank Blanketing Valve PROTECTOSEAL.

DCA Modified Alkyd Conformal Coating (SCC3)

Leaks, contamination and closed loop control how RGAs make coating processes more profitable

Detector Carrier Gas Comments Detector anode purge or reference gas. Electron Capture Nitrogen Maximum sensitivity Nitrogen Argon/Methane

REPRODUCIBILITY IN OPTICAL THIN FILM PROCESSING PART 1, THE VACUUM AND PUMPING

University of Minnesota Nano Center Standard Operating Procedure

Generating Calibration Gas Standards

Refinements in the Plasma Processing of Polyimide and B.C.B.

APPLICATION NOTE. GC Integrated Permeation Device

D R A F T. Operating Procedures for the NPDGamma Liquid Hydrogen Target at the BL 13. Version 1.00

SAES Packaging service. making innovation happen, together

The HumiPyc - Model 1 - Gas Pycnometer; Density, Moisture, Permeation Analyzer; RH sensor Calibrator

Gun Vacuum Performance Measurements February 2003

How To Choose a Roughing/Backing Pump for the Turbo and Drag Family

A Journal of Practical and Useful Vacuum Technology. By Phil Danielson

Optimizing Gas Supply for Industrial Lasers

Focus on VOC Emissions Reduction Using an Oxygen Based Inerting Control System For Inert Gas Blanketing of Chemical Process Vessels

STS ICP-RIE. Scott Munro (2-4826,

Application Note. ASTRON Remote Plasma Source Ignition Best Practices PROBLEM

UNITY 2 TM. Air Server Series 2 Operators Manual. Version 1.0. February 2008

Nanofabrication Facility: Sputter Evaporator SOP Rev. 04, June 2007

Revision 2013 Vacuum Technology 1-3 day Good Vacuum Practice 1 Day Course Outline

PRC CO ² -LASER PRESENTATION

Oxygen Contamination

School of Chemistry SOP For Operation Of Glove Boxes

OMNISTAR / THERMOSTAR. The efficient solution for gas analysis. Intelligent software. Wide range of applications.

Best Practice for Identifying Leaks in GC and GC/MS Systems

Gases&Technology. Measurement of Impurities in Helium Using the Dielectric Barrier Discharge Helium Ionization Detector. FEATURE.

Advantages of Carrier Gas Leak Detection using Novel Helium or Hydrogen Leak Detectors with Specific Sensor Types

- Introduction: a) Metallized Paper & Film :The market Outlook The following diagram shows the estimated usage of the main metallized materials

E SC 412 Nanotechnology: Materials, Infrastructure, and Safety Wook Jun Nam The Pennsylvania State University

Proudly serving laboratories worldwide since 1979 CALL for Refurbished & Certified Lab Equipment Varian 310

Conductive Materials in Electronics Packaging. Radesh Jewram The Bergquist Company Chanhassen, MN

Series Environmental Chambers

COATINGS SPRAY GUIDE Fast Set Urethane 530


Applications of a Magnetic Sector Process Mass Spectrometer to the Analysis of Variable Vacuum Samples

INSTRUCTIONS. VP-100 Ion Pump. Model / R001

EXERCISE 2: THE VACUUM SYSTEM

COATINGS SPRAY GUIDE Acrylics (210, 211, 211HT, and 212)

Advances in Capillary Column Backflushing

Steritech: A World Leader in Sterilisation and Decontamination

(fig. 3) must be at the same temperature as the water in this chamber CALORIMETRIC STUDIES OF THE EXTREMITIES

COMELEC C-30-S Parylene Coating System

Load Responsive Multilayer Insulation Performance Testing

Outside Air Nonresidential HVAC Stakeholder Meeting #2 California Statewide Utility Codes and Standards Program

Calibration and Switching Module

Vacuum Science Techniques and Applications Dan Dessau Adv. Lab 2007

Usage Policies Notebook for AMST Molecular Vapor Deposition System MVD 100

Standard Operating Manual

VS Series Leak Detectors for Vacuum Furnaces LEAK DETECTION FOR VACUUM FURNACES

The Principles of Vacuum Technology

PROCESS GAS SAMPLING SYSTEMS

Environmental and Safety Concerns with SF 6 Gas

3M DICHROIC Glass Finishes

Degassing ERC KK Saitama, Japan

ATEX VACUUM PUMPS AND GAUGES CHEMICALLY RESISTANT, OIL-FREE AND SAFE

Unaxis PECVD. SiH4 (5% in He)

Fig. 1: Mechanical vacuum gauge (left) and capacitive vacuum gauge (right)

Usage Policies Notebook for STS DRIE System

Characterization and Modeling of Wafer and Die Level Uniformity in Deep Reactive Ion Etching (DRIE)

OPERATOR S MANUAL Ar-Gone Weld Gas Analyzer

Both physical and chemical effects come into play either separately or in combination.

[USING THE VITROBOT April 9, Using the Vitrobot

3 Flow and Pressure Control

Title: Standard Operating Procedure for Measurement of Ethylene (C 2 H 4 ) in Ambient Air by Reduced Gas Detection (RGD)

Retention Time Locking: Concepts and Applications. Application

STANDARD OPERATING PROCEDURES

Usage Policies Notebook for Parylene Coating System

INDIUM CORPORATION TECHNICAL PAPER. Does Thermal Cycling Impact the Electrical Reliability of a No-Clean Solder Paste Flux Residue.

The Sea Fish Industry Authority Seafish Technology

Transcription:

Improvements in the Reliability, Costs and Processing of WLP/RDL Circuits Bill Moffat, Chief Executive Officer John Das, Ph.D., Process Engineer Wesley Lau, Senior Sales Engineer Kenneth Sautter, Senior Process Engineer Yield Engineering Systems (YES) builds cure ovens that are specifically designed to address the concerns of manufacturers of the cured characteristics of the multiple polyimide layers incorporated in Wafer-level Packaging (WLP)/ Redistribution Layers (RDL) circuits. Polyimides are high temperature engineering polymers with excellent YES-PB12-2P-CP mechanical, thermal and electrical properties. The most important step of the process is the curing of the polyimide precursors, which can be done under atmospheric or vacuum process conditions. This paper will compare the characteristics of the polyimide film cured under these two conditions. The objectives of a proper cure process are to: 1. Complete the imidization process, 2. Optimize film adhesion performance, 3. Remove all residual solvents and extraneous gases, and 4. Remove photosensitive components. To convert the polyimide precursors to a stable polyimide film, an elevated temperature (~250 C to 450 C) extended bake is required for complete imidization; it also drives off the N-methylpyrrolidone (NMP) casting solvents and orients the polymer chains for optimal electrical and mechanical properties. YES-VertaCure Figure 1: The manual load YES-PB12-2P-CP oven (top left) is equipped with pre-heated and filtered N 2 purge in vertical laminar flow. It is also equipped with forced air cooling for increasing process throughput; and easily accessible disposable filter mounting and housing assembly at chamber exhaust for filtering and scrubbing process exhaust: Figure 2: (middle right) Automated vertical version.

Process conditions for a properly cured polyimide film: A. Controlled temperature ramp rates that are characterized for the polyimide film- The imidization rate of the polyimide precursors need to be controlled to take into account the differences in thermal expansion coefficient between the polyimide film and the underlying substrate. If the imidization rate is not controlled properly, there can be localized mechanical stress variations across the wafer. In addition, if the casting solvents evolve non-uniformly across the wafer, film thickness nonuniformity can occur due to uneven imidization. The mechanical stress variations can be observed as wrinkled polyimide film or as distorted metal lines in the structures under the polyimide layer. The polyimide film can also delaminate because film adhesion performance has not been optimized. Because mechanical stress variations can affect the yield and reliability of the process, it is critical that controlled temperature ramp rates are used to provide a larger process window for the proper curing of a polyimide film. Non-uniform heating can cause a skin to form on the surface of the polyimide film during the curing process. The skin can prevent the efficient evolution of the casting solvents and other volatile gases. If a cured polyimide film still has residual solvents or other volatile gases, then localized areas of the polyimide film can rupture in a phenomenon known as popcorning. These ruptures occur in subsequent process steps in tools, which have either a high vacuum or a high temperature environment. This rupturing is due to the sudden release of gas bubbles/solvents trapped in the polyimide film that is not properly cured. In addition, a solvent-free polyimide film will minimize the queue time needed to allow for outgassing when the next process step is a high vacuum process, such as metallization. B. Complete removal of photosensitive components Photosensitive polyimides offer the advantage of simpler processing by eliminating the need for photoresist compared to standard non-photosensitive polyimides. This reduces the number of process steps. The curing process parameters, such as temperature, vary with the type of photosensitive precursors in the polyimide film. For some types of precursors, the photosensitive components can be difficult to evolve from the polyimide film. 2

Residual photosensitive polyimide precursors can cause greater internal film-induced stress than those in a standard polyimide film. Some photosensitive polyimide precursors and their byproducts also have a tendency to form depositions on the process chamber walls. Heavy deposits can be difficult to remove if the byproducts are not efficiently removed from the chamber during the curing process. Furthermore, when these byproducts are exhausted from the chamber, they also need to be substantially removed from the exhaust stream as the byproducts can redeposit along the exhaust lines. In summary, the photosensitive components must be eliminated from the polyimide film and efficiently removed from the process chamber. C. Oxygen level is < 20 ppm The presence of oxygen in the process chamber inhibits the proper crosslinking of the polyimide precursors to polyimide thin film. The result is incomplete imidization which leads to a brittle film and variable stress in the polyimide film on the substrate. Also, ambient oxygen darkens the polyimide film. This film transparency is critical when multiple polyimide layers are used during subsequent processing. For multi-layer processes, the alignment marks for the process sequence can be obscured by the layers of low transparency polyimide films. In summary, pure nitrogen ambient is required to reduce the level of oxygen in the process chamber. 3

Review of Atmospheric Cure Process and Vacuum Cure Process Figure 3: Atmospheric Cure Process graph. Tests were run in an atmospheric oven. Numbers 1-8 are temperature nodes. Node 1 to Node 6 - Solvent evaporation rates are limited by vapor diffusion across the flow boundary layer. As a result, low temperature dwell steps are required to allow for solvent evaporation. As the solvents evolve, imidization of the polyimide precursors occur. The imidization rate is also affected by temperature ramp rate of the process. Because atmosphere air is ~23% oxygen, a high flow of N 2 is required to reduce the oxygen level. Node 6 to Node 7 - The process is held at the temperature required for complete imidization of the polyimide film. High flow of N 2 may still be required at this point to maintain low oxygen levels. Node 7 to Node 8 - Process temperature is ramped down. Curing process is done. 4

Figure 4: Yield Engineering Systems Vacuum Cure Process graph. Tests were run on a YES-PB12-2P-CP. Points A,B,C are the high nodes for the vacuum/ N 2 purge cycles on the pressure graph. D,E,F,G, are on all the nodes on the temperature graph after that. The process is completed at node H when the chamber is vented to atmosphere. Point A to Point D - Three short vacuum/hot N 2 purge cycles reduce the oxygen level quickly, because oxygen is removed faster in a vacuum. The boiling point for the NMP casting solvents at 50 Torr is 135 C, Therefore, the first vacuum pull of the cycle purge sets the polymer, which can improve polymer thickness uniformity. Point D to Point E - A laminar flow of hot N 2 purge balanced against a vacuum gives a 200 Torr pressure level which continuously removes oxygen. At this reduced pressure the NMP solvent is efficiently pulled off without any skin being formed on the polymer, thereby enabling a controlled temperature ramp to the imidization temperature. Point E to Point F - The process is held at the temperature required for complete imidization of the polyimide film. Point F to Point H - Process temperature is ramped down. Process chamber is vented to atmosphere. Curing process is done. To evaluate the polyimide film parameters, third party vacuum/atmospheric comparison tests were completed by Evans Analytical Group. The tests compare the YES-PB12-2P-CP vacuum 5

oven with an atmospheric oven. The test ran a process matrix of 5 microns of HD-4000 in each oven. The samples were soft-baked on a vacuum hot plate to remove solvents before further processing. The samples were then split into a YES process at 350 C and an atmospheric bake at 350 C. After the cure cycle was completed, the splits were treated to a three hour gas chromatograph treatment and the evolved gases were measured and analyzed. The resultant graphs are below. Analysis shows a 5x higher amount of trapped solvents and gases in the atmospheric bake process compared to the vacuum bake process. A B Figure 5: Comparison plots of the chromatograms from two cured samples. The X-axis is retention time in minutes and the Y-axis is the ion number counts-(abundance). The top of each peak is marked with peak s retention time for clarity. A) Vacuum process (YES-PB12-2P-CP oven) B) Atmospheric process Oven. 6

Observations for the polyimide film cured under vacuum: 1. Process time for ramping the temperature to cure temperature is reduced - The reduced pressure enables the efficient evolving of NMP solvents, thereby eliminating the need for temperature dwell steps. 2. No wrinkles in the polyimide film Imidization rates can be better controlled when the casting solvents are efficiently evolving from the film. As a result, the controlled temperature ramp rates can be adjusted to provide a larger process window for the proper curing of a polyimide film. 3. No popcorning - At this reduced pressure the NMP solvent is efficiently pulled off without any skin being formed on the polymer. There are no bubbles of solvents/ extraneous gases trapped in the polyimide film. A very low solvent load in the film should help with productivity due to reduced queue time needed for outgassing 4. A reduction in the amount of nitrogen needed to reduce oxygen levels - Three short vacuum/hot N 2 purge cycles reduce the oxygen level quickly, because oxygen is removed faster in a vacuum. 5. Polyimide film is transparent - A steady flow of hot N 2 purge balanced against a vacuum gives a 200 Torr pressure level which continuously removes oxygen and keeps oxygen levels < 10 ppm. 6. For improved wafer cleanliness, the laminar flow of the pre-heated N 2 is preferred over the recirculating N 2 flow from a standard atmospheric bake oven. Conclusion Process control of the imidization rate of the polyimide precursors is an important factor in the proper curing of a polyimide film. This control is enhanced when casting solvents can be efficiently evolved from the film. A reduced pressure ambient enables the efficient evolving of solvents, without the use of temperature dwell steps. As a result, temperature ramp rates can be now optimized to provide a larger process window for the proper curing of a polyimide film. Contact Us If you have further questions, please contact us. Call +1 925-373-8353 (worldwide), 1-888- YES-3637 (US toll-free), or visit us online at www.yieldengineering.com 2013 Yield Engineering Systems, Inc. All specifications subject to change without notice. Individual process results may vary. 7 203A Lawrence Drive, Livermore, CA 94551 Tel: 925.373.8353 Fax: 925.373.8354 www.yieldengineering.com