BLOOD PRESSURE SENSOR 0377i

Similar documents
BLOOD PRESSURE SENSOR BT17i USER S GUIDE

Section 2: Using the Invasive Blood Pressure Module - An Introduction

INSTRUCTION MANUAL MANUAL INFLATION BLOOD PRESSURE MONITOR

NIBP OEM Module. (Model : M_NIBP) Contents. 1. Concept 2. Composition 3. PCB Dimension 4. Specification 5. Protocol 6. Cuff & Electrical Connection

Model AUTOMATIC UPPER ARM Blood Pressure Monitor

HOME BLOOD PRESSURE KIT INSTRUCTIONS TRILINGUAL INSTRUCTION GUIDE MODEL UA-100

Aneroid Sphygmomanometer. Use, Care, & Maintenance

DIAGNOSTIX TM 922 MERCURIAL BLOOD PRESSURE INSTRUMENT. Use, Care, & Maintenance

USE, CARE & MAINTENANCE DIAGNOSTIX TM 972 MERCURIAL BLOOD PRESSURE INSTRUMENT

DISSOLVED OXYGEN SENSOR BT34i

Digital Blood Pressure Monitor. Model UA-705. Instruction Manual. Manuel d instructions. Manual de Instrucciones. Manuale di Istruzioni 1WMPD B

Instruction Manual. Auto Inflate Blood Pressure Monitor

3.1.3 Weight. Frequency. Weight is obtained at the baseline examination and annually. Equipment

Semi-Automatic Blood Pressure Monitor with Memory

Noninvasive Blood Pressure Measurement. D. J. McMahon rev cewood

RM-80 respiration monitor

Sports Wrist Digital Blood Pressure Monitor Item #

Circulation and Respiration: Vital Signs Student Version

CONTENTS SPECIFICATIONS GENERAL INFORMATION RECOMMENDED USE OPERATING PRINCIPLE TIPS ON TAKING YOUR BLOOD PRESSURE 3-4 BATTERY INSTALLATION

INSTRUCTION MANUAL MANUAL INFLATION BLOOD PRESSURE MONITOR

Oregon Scientific Wrist Blood Pressure Monitor (BPW211)

STANDARD OPERATING PROCEDURE ARTSANA MERCURY SPHYGMOMANOMETER

Analog Front End Design of a Digital Blood Pressure Meter

TECHNICAL CHARACTERISTIC CT 071

Introduction. Table of Contents. Automatic Wrist Blood Pressure Monitor With Voice-Guided Operation. Model No.: BP5K

Talking Wrist Style Blood Pressure Monitor Model INS-LAB-RevB08

Bloodpressure measurement, improvement of oscillometric method.

INSTRUCTION MANUAL. Automatic Blood Pressure Monitor with Fit Cuff. =Fit Cuff=!"#$% IA1B. Model

The RICH LIFE Project: Blood Pressure Training Certification Checklists

MANUAL BLOOD PRESSURE MONITOR BPM 168B Contents Blood Pressure Monitor Intended Use What is blood pressure?

VER: A00. Model No:BA2010

Auto Arm Blood Pressure Monitor

PHY100 s Lab: The Relationship Between Liquid Pressure and Depth as it applies to Blood Pressure. Course & Sec:

Blood Pressure Monitor

GA-300 Gas Analyzer. Technical Note. Overview. Front Panel. iworx Systems, Inc. GA-300

Non-Invasive Blood Pressure (NIBP)

5 series Blood Pressure Monitor

Lab #2: Blood pressure and peripheral circulation

Instruction Manual. Wrist Blood Pressure Monitor with Advanced Positioning Sensor (APS ) Model HEM-650 ESPAÑOL ENGLISH

Linear Infl ation Technology Non-invasive Blood Pressure Measurement. inibp Case Report Experiences in OR

In addition to reading this assignment, also read Appendices A and B.

Declaration of Equivalence Form

Talking Wrist TypeBlood Pressure Monitor. Talking Wrist Type Blood Pressure Monitor Model: BPW810. User Manual

The University of Hong Kong Department of Physics Experimental Physics Laboratory

Mitos Fluika Pressure and Vacuum Pumps Datasheet

MEDICARE 60. Semi-automatic upper arm blood pressure monitor. Instruction manual

MODEL CH-432B INSTRUCTION MANUAL FOR DIGITAL BLOOD PRESSURE MONITOR. - Eng 1 - English Español Português Deutch. Italiano Français CH-432B

Cover Page for Lab Report Group Portion. Pump Performance

INSTRUCTIONS. Manual Home Blood Pressure Monitor MODEL Stethoscope Chestpiece. Cuff. Bulb

Constant Pressure Inlet (CCN) Operator Manual

Mouse and Rat Tail Cuff Blood Pressure Systems from 1-24 Animals. Mouse rat tail cuff blood pressure system components

Model UA-705. Digital Blood Pressure Monitor 使用手冊翻譯. Instruction Manual. Manuel d instructions. Manual de Instrucciones. Manuale di Istruzioni

LABORATORY EXERCISE 1 CONTROL VALVE CHARACTERISTICS

Digital Blood Pressure Monitor. Model UA-787

Declaration of Equivalence Form

Lab #1 Pressure: Bubblers and Water Balloons CEE 331 Fall 2003

PRESSURE SENSOR - ABSOLUTE (0 TO 700 kpa)

REF CH-302B IDENTIFICATION OF PARTS

AUTOMATIC TIRE INFLATOR # MW-60, MW-60-4WAY & MW-64HP

Device Equivalence Evaluation Form

Cell Injury Controller II (CIC II)

Basic - Peripheral Vascular Assessment VASCULAR DOPPLER PHOTO-PLETHYSMOGRAPHY PULSE VOLUME RECORDING ANKLE AND TOE BRACHIAL INDEX

Digital Blood Pressure Monitor Model UA-621 Instruction Manual

Wallmax Professional Aneroid Sphygmomanometer Model 222 User Manual

Boyle s Law: Pressure-Volume Relationship in Gases

User Manual. Hopkins IMPACT Digital Wrist BP RELATED ITEMS. Item #526014

Pressure Sensor 150 to 1150 mbar Product Number: ENPRS015

OPERATION MANUAL NTF-15

Lab 1: Pressure and surface tension. Bubblers, gravity and the mighty paper clip.

Contents. Safety Notice. Wrist Type

Blood Pressure Monitor

Fully Fuzzy Auto Digital Wrist Blood Pressure Monitor. tensio control. INSTRUCTION MANUAL Model GP-6220

G622. APPLIED SCIENCE Monitoring the Activity of the Human Body ADVANCED SUBSIDIARY GCE. Thursday 27 May 2010 Afternoon. Duration: 1 hour 30 minutes

Digital Blood Pressure Monitor for the Upper Arm INSTRUCTION MANUAL

BLOOD PRESSURE SIMULATOR LF01095U INSTRUCTION MANUAL

Model UB-328. Wrist Digital Blood Pressure Monitor. Instruction Manual. Manuel d instructions. Manual de Instrucciones. Manuale di Istruzioni

Oregon Scientific Wrist Blood Pressure Monitor (BPW120)

A4 Operation Manual. Fig.1-1 Controller Socket Diagram

INSTALLATION & MAINTENANCE INSTRUCTIONS

Pegas 4000 MF Gas Mixer InstructionManual Columbus Instruments

OIML R 16-1 RECOMMENDATION. Edition 2002 (E) ORGANISATION INTERNATIONALE INTERNATIONAL ORGANIZATION. Non-invasive mechanical sphygmomanometers

OPERATION MANUAL NTF-60 Plus

REF CH-602B IDENTIFICATION OF PARTS

A4s Operation Manual

Technical Data Sheet MF010-O-LC

Autodesk Moldflow Communicator Process settings

ONSITE PROVING OF GAS TURBINE METERS Daniel J. Rudroff Invensys Metering Systems

Fully Automatic Blood Pressure Monitor

Vapor Pressure of Liquids

A CO 2 Waveform Simulator For Evaluation and Testing of Respiratory Gas Analyzers

Lesson 12: Fluid statics, Continuity equation (Sections ) Chapter 9 Fluids

ONSITE PROVING OF GAS METERS. Daniel J. Rudroff WFMS Inc West Bellfort Sugar Land, Texas. Introduction

MIE Medical Research Ltd Digital Analyser Pinch/Grip Instruction Manual

Calculations of hydraulic resistance of simple pipelines for liquid viscous and non-newtonian products.

DPC-30 DPC-100. Reference Manual

INSTALLATION & MAINTENANCE INSTRUCTIONS DESCRIPTION SPECIFICATIONS. CE (EMC) Compliant

Non-Invasive Blood Pressure

Gas Pressure Sensor (Order Code GPS-BTA)

ICS Supersedes EN :1997. English Version

Simulation for emergency care

Transcription:

BLOOD PRESSURE SENSOR 0377i USER S GUIDE CENTRE FOR MICROCOMPUTER APPLICATIONS http://www.cma-science.nl

Short description The Blood Pressure sensor 0377i is used to measure arterial blood pressure in humans (non- invasively). It measures the pressure signal caused by the interaction between the cuff and the blood flow through the brachial artery. The pressure sensor uses the SenSym SDX05D4 pressure transducer. This element has a membrane that flexes as pressure changes. It is arranged to measure differential pressure. The sensor produces an output voltage that varies in a linear way with pressure. Special circuitry minimizes the errors that might be caused by changes in temperature. The sensor is delivered with standard adult size adjustable cuff (27 cm to 39 cm) and bulb pump (with release valve). The Blood Pressure sensor can be directly connected to the analog BT inputs of the CMA interfaces. Important: The Blood Pressure sensor is not appropriate for medical applications. This sensor is to be used only for educational purposes. Read this manual before you start measurements with the sensor. Notice that over inflation of the cuff may cause pain and/or injury. Sensor recognition The Blood Pressure 0377i has a memory chip (EEPROM) with information about the sensor: its name, measured quantity, unit and calibration. Through a simple protocol this information is read by the CMA interfaces and the sensor is automatically recognized when it is connected to these interfaces. If your Blood Pressure sensor is not automatically detected by an interface you have to manually set up your sensor by selecting it from the Coach Sensor Library. Calibration The Blood Pressure sensor is supplied calibrated. The output of the Blood Pressure sensor is linear with respect to pressure. The calibration function is: p (mm Hg) = 64.94 * V out (V). The Coach software allows selecting the calibration supplied by the sensor memory (EEPROM) or the calibration stored in the Coach Sensor Library. For better accuracy the pre- defined calibration can be shifted. About blood pressure During each heart beat the arterial blood pressure varies between two utmost values: the systolic and the diastolic pressure. The peak pressure in the arteries is the systolic Figure 2. Pressure course of the heart beat in pressure and the lowest pressure is the the brachial artery. diastolic pressure. In between these is the Mean Arterial Pressure (MAP),which is used to describe the average blood pressure. 2 0377i Blood Pressure Sensor User s Guide

Oscillometric Method The blood pressure sensor can be used to determine blood pressure via the so- called oscillometric method. With this method, which is non- invasive, a cuff is placed around the arm and inflated by means of a pump, after which the cuff deflates via an automatic valve. The sensor measures the cuff pressure. This pressure varies because of the blood flow in the brachial artery. With inflation of the cuff, the external pressure on the artery rises, and hence the artery is increasingly compressed. At pressures exceeding the systolic blood pressure, the artery will be occluded. There are weak pressure pulses against the cuff in the rhythm of the heart beat which shows as small peaks in the graph. When the cuff is slowly deflated, the cuff pressure, and hence the external pressure on the artery will be lowered to that of the systolic blood pressure. Now, the artery is no longer continuously occluded. At systolic blood pressure, small amounts of blood pass through the compressed artery segment and cause changes in the artery volume, conducted to the cuff. This leads to pressure oscillations in the cuff. These oscillations increase with lower cuff pressure values, as more blood passes through the compressed artery. The maximum oscillation amplitude is reached around the mean arterial blood pressure. Then, as the pressure decreases until the cuff becomes fully deflated, the blood flow returns to normal and the oscillation amplitude decreases in the cuff decreases and small pulses remain at a low level below diastolic pressure. The point at which the largest oscillations are occurring corresponds to the mean arterial pressure (MAP). The point above the mean pressure at which the pressure difference grows rapidly correlates to the systolic pressure. The point below the mean pressure where the differences start to get small corresponds to the diastolic pressure. A similar method is used during the regular blood pressure measurement, a clinician, using the stethoscope, listens at the brachial artery for characteristics sounds of the pressure pulses (so- called Korotkoff sounds). Measurements with the Blood Pressure sensor When performing blood pressure measurements, it is best to work with a partner. 1. Connect the Blood Pressure sensor to your interface. Attach the rubber hose from the cuff to the connector on the sensor. 2. Wrap the cuff firmly around your partner s arm, approximately 2 cm above the elbow. The two rubber hoses from the cuff should be positioned over the bicep muscle (brachial artery) and not under the arm. Important: The person having his or her blood pressure measured must remain still during data collection no movement of the arm or hand during measurements. 3. Start your measurement in the Coach program. 4. Quickly and repeatedly squeeze the bulb to inflate the cuff on your partner s arm. Continue inflating the cuff to a pressure between 150 and 170 mm Hg. The measured by the sensor value is displayed on the sensor icon in Coach. When the maximum pressure is reached, set the bulb pump down onto the table. The built- in pressure release valve will slowly deflate the cuff. 0377i Blood Pressure User s Guide 3

5. After the pressure drops to 50 mm Hg, press down on the pressure release valve to release any air left in the cuff. If the pressure does not reach 50 mm Hg by the time data collection ends, adjust the exhaust rate of the pressure release valve. Adjusting the Pressure Release Valve The pressure release valve is set to release at a rate of 3.0 mm Hg/second on an arm of 32 cm in circumference. For arms much larger or much smaller it may be necessary to adjust the valve so that the exhaust rate stays in the range of 2.0 4.0 mm Hg/s. With the bulb in hand and the hose leading away from you, place a screwdriver into the metal slot on the top of the release valve. To increase the rate of exhaust, turn the screwdriver clockwise. To decrease the rate of exhaust, turn the screwdriver counter- clockwise. The larger a subject s arm the slower the release valve will exhaust. Helpful Tips Blood pressure readings will differ from person to person and even between measurements on the same individual. Do not expect to receive the same measurements each trial since there are many factors that cause a person s blood pressure to increase or decrease. Use the following tips to take accurate measurements. The subject s arm and hand must remain still during measurements (hand open no fist!). The arm should be at heart level and is best supported. Figure 3. A typical measurement with the Blood Pressure sensor. The cuff is slowly deflated and arterial blood pressure pulses are detected. Proper placement of the pressure cuff will increase the accuracy of your blood pressure measurements. The rubber hoses from the cuff should exit over the brachial artery and 2 cm above the crease in the elbow. Remove any clothing that may cover or constrict the portion of the arm being measured. For most individuals it is not necessary to inflate the pressure cuff higher than 170 mm Hg. Over inflation of the cuff may cause pain and/or injury. If the pressure release valve is exhausting slower or faster than 2.0 4.0 mm Hg /s, then adjust the exhaust rate of the pressure valve. There should be at least 10 minutes break between two measurements on the same individual. 4 0377i Blood Pressure Sensor User s Guide

The blood pressure increases with the age. The rule of thumb for the normal systolic pressure is the formula 100 + age. Blood pressure values are rounded to 5 mmhg. Calculating the blood pressure in the Coach software The blood pressure cannot be read directly from the measurement graph. A detailed description of the data processing is given in this chapter. The result of the measurement with the Blood pressure sensor is a pressure - time graph in which the pressure pulses of the blood are superposed on the decaying trend pressure of the cuff. The pressure pulses, when extracted from the cuff pressure, form an oscillating waveform. The peak- to- peak amplitudes of this waveform create a bell shaped envelope curve vs. pressure. Within the envelope, the pulse amplitudes increase through the systolic blood pressure and continue increasing until a maximum amplitude (Mean Arterial Pressure - MAP), is reached. After that the pulse amplitudes decrease further until hardly noticeable. Generally, the systolic blood pressure is calculated by determining the point along this bell- shaped envelope for which p>map using a known percentage of the maximum amplitude (usually 50%). Diastolic blood pressure is calculated using the same method and the portion for p<map (usually 75%). These percentage values are obtained from empirical research. 1 The bell shaped envelope curve is extracted from the measurement graph as the difference graph of the pulse pressure graph (the maximal values of the pressure pulses) and the trend pressure graph. Important: Save your original blood pressure measurements. These are needed for the data processing. Determination of the cuff pressure 1. Determine the number of the measured points in your measurement (from the measurement settings or from the measurement table). 2. Select in the diagram window menu the Process > Select/Remove data option. 3. Select the method Point- by- point. Figure 4. Select the points at which the pressure value is minimal, just before the pressure signal rises again. 4. Mark the very first point, very last point and points where the pressure values are locally minimal. These points indicate the graph of the deflating pressure trend of the cuff (i.e. without the pulses). It is enough to take every second minimum (see figure 4). Tip: Use the cursor key to go through points. Find the point where the pressure value 1 Mehlsen J et al (1999). Vejledende retnigslinier for hjemmeblodtryksmåling. Ugesk Læ Klaringsrapport nr. 8, 1999. Online beschikbaar op http://www.hypertension.suite.dk/klar899.pdf 0377i Blood Pressure User s Guide 5

(displayed in the pressure coordinate field) is locally minimal. Select/Deselect with space key. In Coach 6 you can maximize the Select/ Remove dialog. 5. Mark Keep selected and click OK. As the result you get circa 25 points of the lower part of the envelope curve. These points determine the graph of the trend pressure. 6. To get a smoothed graph with the number of points of the original graph through these points you are going to use the Spline function. Select the option Process > Smooth. 7. Select as Function type Spline. Click Start to draw the smooth graph. If needed adjust smooth factor. When you are satisfied mark Replace data and click OK. Type the original number of points (determined in step 1) in the Number of Points field and confirm. The calculations may take some time. 8. Rename the pressure quantity p to p- trend. 9. Save the results under the new name Trend pressure by using the option Save as. Determination of upper pressure values 1. Open the original measurement results. 2. Repeat the steps 2 to 6, but this time mark the maximal pressure values, the tops of the pulses. 3. Rename the pressure quantity to p- pulse and save the results as Pulse pressure. Determination of the envelope curve You have now two result graphs from Figure 5. Selection of the upper pressure points. which the difference graph should be made. 1. Open the original measurement result. Place the measurement table in one of the Coach panes. 2. Select in the Table menu the Import data > Coach Result option. 3. Select in the dialog the result Pulse Pressure. 4. In the Import data dialog column C1 is selected in the Original data part, select in the Import as part Column: none. 5. Click column C2 in the Original data part and set in the Import as part Column: C3. Do not change other options. Click OK. 6. In the same way import to the Column C4 the pressure data from the Trend pressure. 7. Open the Create/Edit Table dialog by clicking the Create/Edit Table menu option. Make data ranges C3 and C4 invisible. For C5 select Formula and create, using the Formula Wizard, the formula [p- pulse] [p- trend]. Name this quantity p- difference. Make this column also invisible. 8. Create a new diagram with the name Envelope curve. Select for the data range C1 Manual: p- trend. Select for the data range C2 Formula: p- difference. 6 0377i Blood Pressure Sensor User s Guide

An example of a bell shaped envelope curve is shown in the diagram below. Figure 6: A bell shaped envelope curve vs. the trend pressure. As blood pressure values are usually rounded to 5 mmhg we find a blood pressure of 120/80. A best- fit bell- shape envelope is sketched in the graph to find the maximum (MAP). Age Heart frequency per minute Systolic pressure average ± SD Diastolic pressure average ± SD boys girls boys girls boys girls 10 jr 132 129 108±12 109±13 67± 9 64±11 11 jr 160 131 109±11 110±12 65±11 66±10 12 jr 150 147 111±13 114±14 65±10 68±10 13 jr 144 141 116±14 116±14 66±11 68±10 14 jr 127 143 118±14 116±12 66±10 69± 8 15 jr 128 127 123±14 116±11 66±11 68±11 16 jr 106 135 125±14 118±12 68±11 69± 9 17 jr 107 115 126±13 121±13 70±11 70±10 18 jr 85 85 129±15 122±14 71± 9 71±11 19 jr 94 77 131±15 120±12 71±10 70±10 Table 1: Normal heart frequency and blood pressure values for boys and girls for ages between 10-19 years old. (From: van den Brande, Heymans & Monnens, Kindergeneeskunde, Elsevier) 0377i Blood Pressure User s Guide 7

Technical Specifications Sensor kind Measurement range Typical accuracy Calibration function Max. pressure Analog, generates an output voltage between 0-4.5 V 0.. 250 mm Hg ± 3 mm Hg Temperature compensated 0 C to 50 C Combined linearity and hysteresis Response time Connection p (mm Hg) = 64.94 * V out (V) 1030 mm Hg without permanent damage typical ±0.2% full scale 100 microseconds Attached cable with right- hand BT (British Telecom) connector Warranty: The Blood Pressure sensor 0377i is warranted to be free from defects in materials and workmanship for a period of 12 months from the date of purchase provided that it has been used under normal laboratory conditions. This warranty does not apply if the sensor has been damaged by accident or misuse. Note: This product is to be used for educational purposes only. It is not appropriate for industrial, medical, research, or commercial applications. Rev. 13/09/2016 8 0377i Blood Pressure Sensor User s Guide