CONVECTION SECTION FAILURE ANALYSIS AND FITNESS-FOR-SERVICE ASSESSMENT

Similar documents
Fitness for Service Assessment of Ageing Pressure Vessel Experiencing External Corrosion: A Case Study

Best Practice RBI Technology Process by SVT-PP SIMTECH

DGZfP-Proceedings BB 90-CD Lecture 4 EWGAE 2004

Inspection Credit for PWSCC Mitigation via Peening Surface Stress Improvement

Fail-Safe Design by Outer Cover of High Pressure Vessel for Food Processing

NASA AEROSPACE PRESSURE VESSEL SAFETY STANDARD

Enbridge Pipelines Inc. PIPELINE INTEGRITY AXIAL CRACK THREAT ASSESSMENT

THE PROCESS OF JOINT INTEGRITY

CERTIFICATION PROGRAM FOR ASSESSING THE MECHANICAL INTEGRITY OF PRESSURE VESSEL SYSTEMS

Tightening Evaluation of New 400A Size Metal Gasket

Vessels subject to External Pressure

Tube rupture in a natural gas heater

CERTIFICATION OF COMPLIANCE OF THE USER S DESIGN SPECIFICATION

Steam generator tube rupture analysis using dynamic simulation

Copyright by Turbomachinery Laboratory, Texas A&M University

OPENINGS AND REINFORCEMENTS 26

J. J. Daly Metal Improvement Company Paramus New Jersey USA

FEA case Study: Rubber expansion joint for piping systems

RUPTURE HAZARD OF PRESSURE VESSELS

Kiefner & Associates, Inc.

STANDARD SPECIFICATION FOR SPLIT TEES (HOT TAP MATERIAL)

Stress Analysis of The West -East gas pipeline with Defects Under Thermal Load

MSC Guidelines for Pressure Vessels

2003 WJTA American Waterjet Conference August 17-19, 2003 Houston, Texas Paper PIPE THREADS-WHAT IS THE LIMIT?

Australian/New Zealand Standard

2.1 Introduction to pressure vessels

Challenges in Relief Design for Pilot Plants

A FINITE ELEMENT PROCEDURE TO MODEL THE EFFECT OF HYDROSTATIC TESTING ON SUBSEQUENT FATIGUE CRACK GROWTH

JAPANESE PD EXAMINATIONS FOR DEPTH SIZING OF SCC IN AUSTENITIC STAINLESS STEEL PIPES FROM 2006 TO 2012

Paper #: POWER

A New Test Setup for Testing Polyethylene Tubes under Constant and Cyclic Internal Pressures

HIGH FLOW PROTECTION FOR VARIABLE SPEED PUMPS

MAY JUNE Mechanical p. 4 Integrity Assessment of NGL Pressure Vessel Mary p. 13 Kay O Connor Safety Symposium

Guided Wave Testing (GWT)

METHODOLOGY FOR ASSESSING THE EFFECTS OF PLAIN DENTS, WRINKLE BENDS, AND MECHANICAL DAMAGE ON PIPELINE INTEGRITY

A parametric study of metal-to-metal contact flanges with optimised. geometry for safe stress and no-leak conditions

Analysis of the application and sizing of pressure safety valves for fire protection on offshore oil and gas installations Annex I

I. CHEM. E. SYMPOSIUM SERIES NO. 85

EXPERIMENTAL RESULTS OF GUIDED WAVE TRAVEL TIME TOMOGRAPHY

Employer s Unit of Competence Magnetic particle testing of materials, products and plant

USA (Bartlett, IL) Division

Testing Services Overview

PVP2006-ICPVT

Introduction Introduction

HYDROGEN STANDARDIZATION INTERIM REPORT For

THE USE OF SPIN FIN PILES IN MASSACHUSETTS

Technical Standards and Legislation: Risk Based Inspection. Presenter: Pierre Swart

Pulsed Eddy Current (PEC) Inspection through Insulation

LIMIT STATE DESIGN BASED ON EXPERIMENTAL METHODS FOR HIGH PRESSURE SUBSEA PIPELINE DESIGN

Improving distillation tower operation

ASME Boiler & Pressure Vessel Code Analysis of the 1497 MHz High-Current Cryomodule Helium Vessel

INTEGRITY MANAGEMENT OF STRESS CORROSION CRACKING IN GAS PIPELINE HIGH CONSEQUENCE AREAS

ASSESSMENT AND ANALYSIS OF PIPELINE BUCKLES

Infrared Thermal Imaging, Inc.

INSPECTION OF RECOVERY BOILERS

Design of submarine pressure hulls to withstand buckling under external hydrostatic pressure

WELCOME to CAUx Local India 2018

Design. Pompetravaini-NSB API SB Liquid Ring Compressor for Gas Processing. Working Principle

Impact of the Esso Verdicts on Engineering Practice First Published in Engineers Australia, March 2001, reprinted with permission

Use of Underwater Dry Welding for In Situ Repair to Offshore Structures. Sabine Powell 02/12/2016

Design and Analysis of Pressure Safety Release Valve by using Finite Element Analysis

Elastic-Plastic Finite Element Analysis for Zhongwei--guiyang Natural Gas Pipeline Endangered by Collapse

PIP PNE00012 Piping Examination and Leak Test Guide

Design and Safety Document for the Vacuum Windows of the NPDGamma Liquid Hydrogen Target at SNS

The Use of Ultrasonic Inspections at Elevated Temperature

A hose layline contains important information for specifying the replacement assembly: manufacturer, hose trade name, working pressure and hose ID.

TIGHTNESS. Glass sealing Thanks to our glass-sealing technology, ODU products can meet the most demanding tightness requirements.

Pressure Vessel Design

Liquefied gas cargo tanks and process pressure vessels

Procedure: Pressure equipment safety

API-510 PRESSURE VESSEL INSPECTOR

MAE 322 Machine Design Lecture 5 Fatigue - 2. Dr. Hodge Jenkins Mercer University

Perform Pressure & Leak Test, Tubing & Piping. Module 12306

Transient Analyses In Relief Systems

ASPIRE for Integrity Management Support for Upstream Assets. Payam Jamshidi, TWI Ltd Sebastian Hartmann, Innospection Ltd

17J Third Edition, January 2008 Specification for Unbonded Flexible Pipe

Acoustic Emission Testing

USE OF THE EXCEEDANCE CURVE APPROACH IN OCCUPIED BUILDING RISK ASSESSMENT

INF.41/Add.1/Rev.1. Economic Commission for Europe Inland Transport Committee

PUSH PIER SYSTEMS STABILITY. SECURITY. INTEGRITY. Push Pier Systems PN #MBPPT

QUALITY ASSURANCE SPECIFICATION NONDESTRUCTIVE EXAMINATION PAGE 1 OF 7

Subpart E. Pressure Testing

Assessment of correlations between NDE parameters and tube structural integrity for PWSCC at U-bends

Avoiding Short Term Overheat Failures of Recovery Boiler Superheater Tubes

Ballot ID: Action item Reference Number: Addition of common causes and susceptibility diagram to API RP 581, 3rd Edition, Section 12

Perforating Center of Excellence TESTING SERVICES OVERVIEW

An Introduction to Deep Foundations

Slug Catchers Engineered Solutions to Separation Problems

PMI Pulse Decay Permeameter for Shale Rock Characterization Yang Yu, Scientist Porous Materials Inc., 20 Dutch Mill Road, Ithaca NY 14850

Justification of Risk Reduction through In-Service Inspection / REDUCE

A Rationale for Pressure Relief Device(s) Qualification Requirements (LH2)

DR.ING. CARLO AVANZINI PROFESSIONAL ENGINEER GRIP TEST REPORT NOVA SIRIA, ROLETTO, Premise

Process Safety Management Of Highly Hazardous Chemicals OSHA 29 CFR

Along-string pressure, temperature measurements hold revolutionary promise for downhole management

Design and optimization of a low pressure vessel

Development of a High Pressure, Oil Free, Rolling Piston Compressor

Infrared Thermal Imaging, Inc.

BODY OF KNOWLEDGE API-510 PRESSURE VESSEL INSPECTOR CERTIFICATION EXAMINATION

RESIDUAL EXPANSION OF CYLINDERS. INTERMEDIATE TEST RESULTS

Casing Collapse Pressure for Non-zero Internal Pressure Condition. (Effect of Internal Pressure on Collapse)

Transcription:

ASSET INTEGRITY INTELLIGENCE CONVECTION SECTION FAILURE ANALYSIS AND FITNESS-FOR-SERVICE ASSESSMENT JAMES R. WIDRIG, Manager Advanced Engineering at Quest Integrity Group VOLUME 23, ISSUE 6 NOVEMBER DECEMBER 2017

CONVECTION SECTION FAILURE ANALYSIS AND FITNESS-FOR-SERVICE ASSESSMENT BY: JAMES R. WIDRIG, Manager Advanced Engineering at Quest Integrity Group INTRODUCTION In-service equipment failures present a considerable challenge to reliability engineers. Since these events are unplanned, the spare parts and resources to quickly and efficiently make repairs may not be readily available. Facility management is faced with decisions to perform short-term repairs to equipment to safely operate until repair parts, equipment, manpower and product supply permit an extended outage and long-term repair. In these instances, the reliability engineer will need to answer many questions, but in the case of a failure of convection tubes in a furnace (as presented in this article), they will need to answer whether the facility can restart the furnace and continue to operate reliably until the next planned shutdown. TUBE FAILURE ANALYSIS A large-scale natural gas manufacturing plant in the United States suffered a tube failure in the convection section of a fired heater. The failure occurred in one of the eight passes of finned tubes near the top of the convection section (Figure 1). Figure 1. Tube Failure at Center Support. Results of the failure analysis indicated that the finned convection tube failed by tensile overload from a through-wall crack near the hot face of the tube. A brittle fracture occurred through the circumferential tube weld at the center of the tube located at the middle tube support (Figure 2). The weld was embrittled by sigma phase (σ) formation in the material of construction that results in a loss of fracture toughness in heat resistant castings from elevated temperature exposure. The tube bundle was supported by three tube sheets (tube supports); two on the ends and one in the middle. Subsequent inspection identified that both end tube supports had dropped down due to failure of the four support bolts (two for each end support). The loss of support at the end tube sheets resulted in the tube coil having a high tensile stress, with a bending and possibly a torsional component, on the top of the tubes at the failure site(s) along the middle support. REPAIRS AND TESTING The operator had an inventory of replacement tubes for the convection section to allow for immediate replacement of several tubes. During the removal of the damaged tube, an adjacent tube was found to be cracked on the outside. No additional tubes were found to be cracked by visual inspection. However, the full extent of the tube cracking was unknown from the inspection due to the configuration of the convection section and the use of finned tubes. Visual or NDT testing of the tubes would be difficult or impossible without the removal of a substantial number of tubes. Visual inspection, dye penetrant inspection, or a proof hydrotest would only locate tubes which had through wall cracks or tubes where cracking could be located on the external surface. Existing Figure 2. Cross Section of Fracture Surface. cracks which were not through wall and initiated from the inside diameter (ID) could not be found with confidence using these conventional methods. FAILURE ASSESSMENT DIAGRAM (FAD) METHOD Rather than proceeding with a full repair, a hydrotesting procedure was developed using fracture mechanics and a failure assessment diagram (FAD) analysis to proof test the remaining tubes (see Figure 3). FAD is a fracture mechanics model for assessing crack-like flaws. A series of calculations are performed using the component geometry, crack dimensions, and material properties. These calculations result in an assessment point on the FAD. Failure is predicted if the point falls on or outside of the curve. The crack is considered to be stable if the point falls inside of the curve. The FAD assessment method is implemented in API 579, Part 9, Level 2. 2 Inspectioneering Journal NOVEMBER DECEMBER 2017

Figure 3. FAD Diagram. Figure 4. Critical Existing Flaw Sizes, Calculated from Hydrotest Conditions. The proof hydrotest was to be performed at a much higher pressure than required by API 530 for testing new tubes during construction. The desired pressure would be high enough that existing crack-like flaws of a critical size or greater in the tubes would propagate to failure under the hydrotest conditions. The maximum pressure would also be limited by the API 560 limitation of 90% of yield strength at ambient temperature for testing (Table 1). In theory, the tubes that survive the hydrotest pressure could then be assumed to have existing crack-like flaws that would not fail in operation. Table 1. Comparison of Test Pressures. Design Pressure Design Tube Wall Temperature Minimum Test Pressure Maximum Test Pressure Proof Test Pressure 530 psig (3.65 MPa) 1,482 F (806 C) 1,460 psig (10.07 MPa) 6,630 psig (45.7 MPa) 3,500 psig (24.1 MPa) The proof hydrotesting of the furnace tubes was accomplished by testing each of the eight passes in the convection coil at 3,500 psig (24.1 MPa) and holding the pressure for one hour. During the testing, one additional tube failed at 900 psig (6.2 MPa) and was replaced. The tube was removed and the failure location was preserved for failure analysis. Upon completion of the hydrotesting, the furnace was successfully returned to operation. However, these repairs were considered temporary. WHEN SHOULD WE PLAN FOR REPLACEMENT OF THE TUBES? The initial tube failure event likely resulted in additional cracklike flaws in surrounding tubes. Further failure analysis and engineering assessment were planned to fully understand the root cause of the failures and to determine the remaining life of the convection coil tubes. The desired outcome of the failure analysis and engineering assessment was to determine if the convection tubes were fit to operate until either of two future shutdown opportunities defined by the facility. MATERIAL TESTING In order to accurately calculate critical flaw sizes, material properties such as toughness, yield strength, and ultimate tensile strength must be identified. These material properties were obtained by destructive tests from tube samples removed from the heater. MAXIMUM POSSIBLE EXISTING FLAW SIZES Maximum possible existing flaw sizes in the tubes were calculated using the material properties data obtained from the ex-service tube. The analysis used commercial software that uses the calculation guidelines contained in the British Standards BS-7910 and API 579/ASME FFS-1. CRITICAL CRACK SIZE CURVES The result of this analysis is a plot of flaw depth (a) versus flaw length (2c) for an assumed elliptical surface flaw. Additionally, it is possible for a 360º surface flaw to exist in the tubes. This analysis was also done in order to identify a critical depth for a 360º surface flaw. Figure 4 shows the resulting critical crack size curve. The critical 360º flaw is plotted with a flaw length equal to the outer circumference of the tube. These flaw sizes represent the maximum possible flaw sizes that could withstand hydrotest conditions of 3,500 psig (24.1 MPa) and a temperature of 70 F (21 C). Any combination of flaw depth and flaw length that falls on or below the curve can exist in the tubes. The actual possible crack configurations could not be narrowed down beyond this due to the limitations of back-calculating an existing flaw size from hydrotest conditions. EXTENT OF EXISTING FLAW SIZE In theory, it is possible that a long and shallow crack or a 360º surface crack would exist in the tubes that passed the proof test. However, a qualitative conclusion regarding which flaw length/ depth combinations are more likely to occur can be reached based upon the axial stress profile of the tubes. The axial stress due to bending at the top of the pipe cross-section is tensile, while the axial stress due to bending at the bottom of the pipe cross section is compressive. This results in the overall axial stress that tends to grow a crack being higher at the top of NOVEMBER DECEMBER 2017 Inspectioneering Journal 3

Figure 5. Possible Crack Growth Scenarios for Existing Flaws in Convection Tubes. the pipe cross-section than at the bottom, leading to the identification of the likely and unlikely crack growth scenarios shown in Figure 5. Another factor that supports the idea that the existing flaws in the tubes are more likely to be shorter and deeper can be drawn from the probable cause of the crack formation. The existing flaws were probably initiated and propagated significantly when a tube sheet support failed and overloaded the welds in the tubes. Alternatively, the crack may have grown after the tube sheet failure due to tube vibration. Such a scenario would cause the crack to break through at the 12 o clock position rather than grow as a circumferential surface crack. The cracks observed in the sampled tubes that failed the hydrotest at 900 psig supports the hypothesis that cracks will be shorter and deeper rather than longer and shallower. CONCLUSION A fractured finned convection tube from a convection coil failed down the center of a circumferential tube weld which suffered sigma phase (σ) embrittlement. In order to safely resume operations and avoid a potentially long repair timeframe, hydrotesting at a proof pressure was used to provide reasonable assurance that tubes in the convection section would not fail upon restart or in the near term operation. We had a failure. Can we restart and continue to operate reliably until our next planned shutdown? Failure analysis and fitness-for-service are valuable tools that you can use to answer these questions. n For more information on this subject or the author, please email us at inquiries@inspectioneering.com. REFERENCES 1. The American Petroleum Institute and The American Society of Mechanical Engineers, Fitness-for-Service API 579/ASME FFS-1 (API 579 Second Edition). API Publishing Services June 5, 2007. 2. ASME (2010), ASME Boiler and Pressure Vessel Code, Section VIII, Division 2, the American Society of Mechanical Engineers, New York, NY. Further failure analysis and engineering assessment were performed to fully understand the root cause of the failures and to determine the remaining life of the convection coil tubes. The failure analysis and engineering assessment results were successfully used to evaluate if the convection tubes were fit to operate until either of two future shutdown opportunities. These methods exemplify how failure analysis and fitness-for-service provided the operator a sound basis to evaluate the business and safety risks of continued operation until long-term repairs and system improvements could be implemented. 4 Inspectioneering Journal NOVEMBER DECEMBER 2017

CONTRIBUTING AUTHOR JAMES R. WIDRIG James (Jim) Widrig has worked on Petrochemical plants and Refineries for 30+ years and has been employed by Quest Integrity since 2007. Mr. Widrig is a Principal Consulting Engineer and currently holds the position of Manager, Advanced Engineering. Throughout his career, he has held various positions of responsibility including Health and Safety Program Manager, Operations Manager, Project Team Manager, Senior Operations Engineer, and Process Engineer. He has extensive experience in risk-based inspection, failure investigations, fitness-for-service, process plant operations, process safety, risk management, incident investigation, loss control, and process design. 6 Inspectioneering Journal NOVEMBER DECEMBER 2017