SOARING AND GLIDING FLIGHT OF THE BLACK VULTURE

Similar documents
Aerodynamic Terms. Angle of attack is the angle between the relative wind and the wing chord line. [Figure 2-2] Leading edge. Upper camber.

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool)

Jet Propulsion. Lecture-17. Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati

AE Dept., KFUPM. Dr. Abdullah M. Al-Garni. Fuel Economy. Emissions Maximum Speed Acceleration Directional Stability Stability.

Principles of glider flight

Wing-Body Combinations

The effect of back spin on a table tennis ball moving in a viscous fluid.

Computational Analysis of Cavity Effect over Aircraft Wing

Low Speed Wind Tunnel Wing Performance

DEFINITIONS. Aerofoil

Lift for a Finite Wing. all real wings are finite in span (airfoils are considered as infinite in the span)

Welcome to Aerospace Engineering

STUDY OF VARIOUS NACA SERIES AEROFOIL SECTIONS AND WING CONTOUR GENERATION USING CATIA V5

Investigation on 3-D Wing of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent

J. Szantyr Lecture No. 21 Aerodynamics of the lifting foils Lifting foils are important parts of many products of contemporary technology.

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

Howard Torode. Member of General Aviation Group and Chairman BGA Technical Committee

AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK

II.E. Airplane Flight Controls

AERODYNAMICS I LECTURE 7 SELECTED TOPICS IN THE LOW-SPEED AERODYNAMICS

Preliminary design of a high-altitude kite. A flexible membrane kite section at various wind speeds

A COMPUTATIONAL STUDY ON THE DESIGN OF AIRFOILS FOR A FIXED WING MAV AND THE AERODYNAMIC CHARACTERISTIC OF THE VEHICLE

WHAT IS GLIDER? A light engineless aircraft designed to glide after being towed aloft or launched from a catapult.

Aerodynamic Analysis of Blended Winglet for Low Speed Aircraft

It should be noted that the symmetrical airfoil at zero lift has no pitching moment about the aerodynamic center because the upper and

No Description Direction Source 1. Thrust

PRE-TEST Module 2 The Principles of Flight Units /60 points

Uncontrolled copy not subject to amendment. Principles of Flight

DRAG REDUCTION BY WING TIP SLOTS IN A GLIDING HARRIS HAWK, PARABUTEO UNICINCTUS

EXPERIMENTAL ANALYSIS OF FLOW OVER SYMMETRICAL AEROFOIL Mayank Pawar 1, Zankhan Sonara 2 1,2

A Performanced Based Angle of Attack Display

EXPERIMENTAL ANALYSIS OF THE CONFLUENT BOUNDARY LAYER BETWEEN A FLAP AND A MAIN ELEMENT WITH SAW-TOOTHED TRAILING EDGE

STUDIES ON THE OPTIMUM PERFORMANCE OF TAPERED VORTEX FLAPS

THE COLLEGE OF AERONAUTICS CRANFIELD

SEMI-SPAN TESTING IN WIND TUNNELS

Incompressible Flow over Airfoils

CFD Study of Solid Wind Tunnel Wall Effects on Wing Characteristics

Aerofoil Design for Man Powered Aircraft

Theory of Flight Stalls. References: FTGU pages 18, 35-38

Parasite Drag. by David F. Rogers Copyright c 2005 David F. Rogers. All rights reserved.

Basic Fluid Mechanics

Experimental and Theoretical Investigation for the Improvement of the Aerodynamic Characteristic of NACA 0012 airfoil

Aerodynamics Principles

Numerical Analysis of Wings for UAV based on High-Lift Airfoils

Aero Club. Introduction to Flight

Lecture # 08: Boundary Layer Flows and Controls

Lecture # 08: Boundary Layer Flows and Drag

Aerodynamic Analysis of a Symmetric Aerofoil

BUILD AND TEST A WIND TUNNEL

Numerical Simulation And Aerodynamic Performance Comparison Between Seagull Aerofoil and NACA 4412 Aerofoil under Low-Reynolds 1

The Metric Glider. By Steven A. Bachmeyer. Aerospace Technology Education Series

Measurement of Pressure. The aerofoil shape used in wing is to. Distribution and Lift for an Aerofoil. generate lift due to the difference

THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL. By Mehrdad Ghods

Aerodynamic Analyses of Horizontal Axis Wind Turbine By Different Blade Airfoil Using Computer Program

The Fly Higher Tutorial IV

Incompressible Potential Flow. Panel Methods (3)

Aerodynamics of Winglet: A Computational Fluid Dynamics Study Using Fluent

Aerodynamic Basics Larry Bogan - Jan 2002 version MECHANICS

Aerodynamically Efficient Wind Turbine Blade S Arunvinthan 1, Niladri Shekhar Das 2, E Giriprasad 3 (Avionics, AISST- Amity University, India)

PITCHING EQUILIBRIUM, WING SPAN AND TAIL SPAN IN A GLIDING HARRIS' HAWK, PARABUTEO

Comparing GU & Savier airfoil equipped half canard In S4 wind tunnel (France)

HEFAT th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics July 2012 Malta

8d. Aquatic & Aerial Locomotion. Zoology 430: Animal Physiology

AERODYNAMIC ANALYSIS OF MULTI-WINGLETS FOR LOW SPEED AIRCRAFT

Chapter 5 Wing design - selection of wing parameters - 3 Lecture 21 Topics

Induced Drag Reduction for Modern Aircraft without Increasing the Span of the Wing by Using Winglet

Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped Fuselage

Aerodynamic investigation of Winglets on Wind Turbine Blades using CFD

48 JAXA Special Publication JAXA-SP-16-8E effective for enhancing a straight-line stability. However, the elasticity in the wing model caused a proble

Chapter 5 Wing design - selection of wing parameters - 4 Lecture 22 Topics

Design and Development of Micro Aerial Vehicle

A Different Approach to Teaching Engine-Out Glides

A Simple Horizontal Velocity Model of a Rising Thermal Instability in the Atmospheric Boundary Layer

Incompressible Flow over Airfoils

Detailed study 3.4 Topic Test Investigations: Flight

THE DESIGN OF WING SECTIONS

COMPUTATIONAL FLUID DYNAMIC ANALYSIS OF AIRFOIL NACA0015

AF101 to AF109. Subsonic Wind Tunnel Models AERODYNAMICS. A selection of optional models for use with TecQuipment s Subsonic Wind Tunnel (AF100)

ScienceDirect. Investigation of the aerodynamic characteristics of an aerofoil shaped fuselage UAV model

CASE STUDY FOR USE WITH SECTION B

Reduction of Skin Friction Drag in Wings by Employing Riblets

CFD AND EXPERIMENTAL STUDY OF AERODYNAMIC DEGRADATION OF ICED AIRFOILS

Investigation and Comparison of Airfoils

Design & Analysis of Natural Laminar Flow Supercritical Aerofoil for Increasing L/D Ratio Using Gurney Flap

Group Project Flume Airfoil Flow

Aircraft Design Prof. A.K Ghosh Department of Aerospace Engineering Indian Institute of Technology, Kanpur

Aircraft Stability and Performance 2nd Year, Aerospace Engineering. Dr. M. Turner

Wind Tunnel Measurements on Details of Laminar Wings

LAPL(A)/PPL(A) question bank FCL.215, FCL.120 Rev PRINCIPLES OF FLIGHT 080

ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT

Helicopters / Vortex theory. Filipe Szolnoky Cunha

Flight Control Systems Introduction

5th Symposium on Integrating CFD and Experiments in Aerodynamics (Integration 2012) th Symposium on Integrating CFD and Experiments in Aerodynam

LEVEL FOUR AVIATION EVALUATION PRACTICE TEST

Experimental Study on Flapping Wings at Low Reynolds Numbers

Wind Tunnel Measurements on Details of Laminar Wings

Performance Analysis of the Flying Wing Airfoils

BRONZE LECTURES. Slides on bayriver.co.uk/gliding

EFFECT OF GURNEY FLAPS AND WINGLETS ON THE PERFORMANCE OF THE HAWT

THE BRIDGE COLLAPSED IN NOVEMBER 1940 AFTER 4 MONTHS OF ITS OPENING TO TRAFFIC!

Transcription:

[ 280 ] SOARING AND GLIDING FLIGHT OF THE BLACK VULTURE BY B. G. NEWMAN* Department of Engineering, University of Cambridge {Received 10 September 1957) INTRODUCTION In 1950 Raspet published an interesting paper giving the glide performance of the black vulture {Coragyps atratus atratus). The sinking speed of several birds of this species was measured by flying in formation with them in a light sailplane and estimating the relative rate of descent. Prior knowledge of the sinking speed of the sailplane then enabled the performance of the bird to be determined. It was discovered that the bird had two distinct types of gliding flight, which were designated soaring and gliding. When soaring the bird circles in a rising current of air, usually a thermal, and remains aloft without flapping its wings; to do this a low sinking speed in still air is required. When gliding, on the other hand, the bird travels over ground possibly looking for food or possibly travelling from thermal to thermal. To do this a low rate of sink combined with a comparatively large airspeed is required, because it may be necessary to penetrate into the prevailing wind. It appears that the black vulture, in common with other land-soaring birds, satisfies these two requirements by altering the geometry of its wings. When soaring the primary tip feathers may be spread and the leading edge of the wing is bent forward slightly; when gliding the primaries are closed and bent backwards. Typical wing planforms are reproduced from Aymar (1935) in Fig. 1. Some good photographs of these birds can be seen in the works of Aymar (1935), Storer (1948) and Barlee (1953). When soaring with a wind crossing the thermal the birds appear to combine both types of flight; wings fully open on the downwind part of the circuit and slightly closed when completing the turn into wind. In this way the bird manages to remain within the thermal at zero or negative sinking speed. The opening of the wing feathers clearly increases the span of the wing and thereby reduces the trailing vortex, or induced drag, but probably at the expense of increasing the profile drag slightly. The minimum sinking speed is proportional to C^tjbi, where Cp, is the profile drag coefficient and b is the wing span; thus it is apparent that an increase of b, even with a similar proportionate increase of C Di, is beneficial. For fast gliding, on the other hand, the vortex drag, which decreases with the square of the speed, becomes relatively less important than the profile drag, which increases with the square of the speed; then it is beneficial to reduce the area of the wing by reducing the wing span. University Lecturer, Engineering Department, Cambridge University. Visiting Lecturer, Department of Aerophysics, Mississippi State College.

Soaring and gliding flight of the black vulture 281 The purpose of the present paper is to re-examine in more detail Raspet's measurements on the black vulture, to analyse the effect of opening the tip feathers and, in the light of this, to suggest the reason for the existence of slotted primary feathers on land-soaring birds. Soaring Gliding Fig. 1. Sketches of wings of black vulture. RE-EXAMINATION OF RASPET'S MEASUREMENTS Gliding flight. For this type of the flight the geometry of the wing planform is constant or nearly so. Thus, the rate of sink in still air, V 8, may be related to the equivalent air speed, V e, by the usual performance equation WV 1 W 2 V^KTP = c * ( **^S+ isf (W*)«where W is the all-up weight, p is the prevailing air density, p 0 is the standard sea level density (1-23 kg./cu. m.), S is the wing area, b is the wing span, e is the Oswald span efficiency factor. Thus VV-ldS_ C (Finding the minimum value of V t from this expression and assuming S to be proportional to b, yields the formula for minimum rate of sink quoted in the introduction.) Raspet's data for gliding flight are plotted as V s V e against V* in Fig. 2 and the measurements are seen to lie accurately on a straight line. Assuming W= 2-32 kg. p = 1-19 kg./cu. m. estimated to be prevailing at the time of flight. = 90% an estimated value for the gliding planform (Fig. 1), the intercept of the line with the V s V e axis yields b= 1-12 m. which is' about 20% less than the value in the soaring flight configuration (b= 1-44 m.). Observation of the black vulture does indicate a change of wing span of this order (see Fig. 1).

282 B. G. NEWMAN Assuming that the wing area is also 20 % less than that of the soaring configuration, the slope of the line gives Q _ 0-0064, and, with a ratio of wetted area to wing area of about 2-5, the drag coefficient based on wetted area is 0-0026. The range of Reynolds's number based on mean wing chord for the gliding flight is 2-9 x io 6-4-4 x IQ6 zn & th e drag coefficient of a smooth flat plate moving parallel to its plane at these Reynolds numbers varies from 0-0025 to 0-0020 if the boundary layer flow is laminar, and from 0-0059 t0 O ' 53 if i* i s turbulent. Hence, as noted by Raspet, the bird achieves a drag only slightly in excess of the value for a flat plate with laminar flow. 40 Gliding flight 30 I 20 - r^ 10 1 2 3 V.«(m./tec)< Fig. 2. Gliding flight of black vulture. 5x105 Soaringflight. The measurements for soaring flight are presented in the form V a V e against V* in Fig. 3. This figure includes the gliding curve of Fig. 2 and also the curve obtained by assuming a 20 % increase of span and wing area, combined with a 20 % increase of drag coefficient. It is seen that the results at low air-speeds lie fairly well on the latter curve, that one point lies on the glide curve and that a second point is well above both curves. For this second point, the bird is travelling at low incidence with highly cambered wings, and thus the drag coefficient is increased due to separation of the airflow from the under surface. In addition the drag may also be increased by aerodynamic distortion of the primary feathers when in the soaring configuration. Thus, the drag coefficient may well be increased by a factor of something like 100% and account for the increased rate of sink which was measured. It is seen, therefore, that the results are consistent with plausible changes of wing geometry and drag coefficient with forward speed.

Soaring and gliding flight of the black vulture 283 The results do not support the contention of Fisher (1946) and Raspet (1950) that, from the viewpoint of vortex drag, the effective aspect ratio of a wing with open tips is higher than the purely geometric value. This is investigated further in the 50 Soairlng fll e 20 c 10 JO 1 2 3 V.«(m./sec)< Fig. 3. Soaring flight of black vulture. 5x10* Direction of flight Velocity U Fig. 4. Three-dimensional sketch of bound vortices in tandem. appendix of the present paper where it is shown, within the framework of certain simplifying but, nevertheless, plausible assumptions, that the vortex drag of a series of equally loaded tandem wings is identical with that of the single wing obtained by closing the gaps. There appears to be no support therefore for the theory that the vortex drag is reduced by opening the primaries. 19 Exp. Biol. 35, 2

284 B. G. NEWMAN SUMMARY 1. The soaring and gliding performance of the black vulture has been analysed and the following conclusions are drawn. 2. The wing span of the bird is altered in flight so that it may perform two tasks efficiently. First, that it may soar in rising currents of air for which a low sinking speed and thus a large wing span are required. Secondly, that it may penetrate into wind without undue loss of height for which a reduced wing area is desirable. Adjustment of the wing geometry towards the optimum soaring configuration is achieved by bending forward and opening the primary tip feathers. 3. Since the airflow readily separates from the flat primary feathers at high angle of attack, these feathers, which are emarginated, are parted to form slots. The alula also presumably assists in delaying the flow separation over the primaries. 4. It is unlikely that the opening of the primaries reduces the vortex drag. I am indebted to Dr August Raspet for giving me access to unpublished information and for commenting upon this paper. REFERENCES AYMAR, G. C. (1935). Bird Flight. New York: Garden City Publishing Co., Inc. BARLEE, J. (1953). Slots and flaps. Shell Aviat. News, no. 183, pp. 11-13. FISHER, H. L. (1946). Adaptations and comparative anatomy of the locomotor apparatus of new world vultures. Amer. Midi. Nat. vol. 35, no. 3, pp. 545-727. GLAUERT, H. (1948). The dementi of aerofoil and airscrew theory, 2nd ed. Cambridge University Press. RASPET, A. (1950). Performance measurements of a soaring bird. Aeronaut. EngngRev., vol. 9, no. 12. STORER, J. H. (1948). The flight of bird*. Inst. Sri. Cranbrook Bull. no. 28. APPENDIX The trailing vortex drag of tandem wings Consider two wings I and II in tandem. Using conventional lifting line theory (see, for example, Glauert (1948)) the wings are each replaced by a bound, line, vortex. In Fig. 4 the loading or, what is equivalent, the circulation is as shown. It is assumed to be the same on each wing. In order to determine the drag of the tandem wings, the induced down-wash due to the bound vortices and the trailing vortices shed from them is examined. On Wing I the induced downwash velocity at Q x due to the infinitesimal trailing vortex shed at P, is The downwash at Q x due to the trailing vortex leaving the wing at P 2 on Wing II, - dt(i - cos </>) 1 n A /-» is -. r-^, where 4> = PoQ 1 Q i, and due to the infinitesimal portion dy of bound vortex at P 2, is -Ydyco&<f> 477*1

Soaring and gliding flight of the black vulture 285 Thus, the total downwash at Q x is +«-dy r+t cos 3 4>dy C + '{i-cos4>)dt J Similarly, the total downwash at Q t is C + ' ~dt C+'T costly r+>(i+cos <f>)dt J Thus 10! + ^=- -7 r. The total traiung vortex drag of both wings where p is the air density r+m = \ pi^ J -» This is identical with the vortex drag of a single wing with the same distribution of circulation and the same total lift. In other words splitting a wing to produce two tandem wings does not alter the vortex drag. Furthermore, the above result is clearly true for any number of equally spaced wings in tandem as long as the loading is distributed equally between them. 19-3