CATCHMENT HYDROLOGICAL RESPONSE TO CHANGING LAND SYSTEM IN KASHMIR HIMALAYA

Similar documents
Aspects and Case Studies of the Effects of Climate Change on Water Resources. Part II (Case Studies)

State of the Water. October 25, 2016 Union County Community Center

St. Johns River Water Supply Impact Study (WSIS)

Sustaining the Raritan River Watershed

Suitable Applications Check dams may be appropriate in the following situations: To promote sedimentation behind the dam.

Outline. 1. Overview 2. Population 3. Flooding 4. Land Use 5. References. Overview

Climate change impacts on water availability in three Mediterranean watersheds of Catalonia (NE Spain) Diana Pascual, Eduard Pla (CREAF)

Managing Chesapeake Bay s Land Use, Fish Habitat, and Fisheries: Studies. Jim Uphoff & Margaret McGinty, Fisheries Service

Total Suspended Solids, Stable Flow, and Wet Weather Event Monitoring in the Bass River Watershed. December The Cadmus Group, Inc.

USING BIOLOGICALLY IMPORTANT PHYSICAL CHARACTERISTICS OF ESTUARIES TO CLASSIFY AUSTRALIAN AND NEW ZEALAND ESTUARIES

Climate Change and Hydrology in the Sierra Nevada. Lorrie Flint U.S. Geological Survey Sacramento CA

Seasonal variations of hydro-chemistry in certain ephemeral streams in a tropical climate, northeastern India

What is a River Basin Restoration Priority? 1. Criteria for Selecting a Targeted Local Watershed (TLW) 2. Hiwassee River Basin Overview 3

Hydrological Condition Report including the issues of High Flow Fluctuation in Chiang Saen

Total Suspended Solids, Stable Flow, and Wet Weather Event Monitoring in the Unnamed Tributary to the Grand River Watershed.

Temperature Profiling Within the Trout Creek Sub-Watershed 2013 Prepared by the Kennebecasis Watershed Restoration Committee January 2014

Climate Change Scenarios for the Agricultural and Hydrological Impact Studies

Chapter 1: Introduction

UNDERSTANDING YOUR ESTUARY Level IA- ESTUARY SEARCH

Spatial Distribution and Seasonal Variability of Rainfall in a Mountainous Basin in the Himalayan Region

City of Del Mar Local Coastal Plan (LCP) Amendment for Sea Level Rise and Coastal Flooding

Assessing salmon vulnerability to climate change

Changes of Ecosystem & Societies on the Mongolia Plateau: Coupled Regulations of Landuse and Changing Climate

Transport and Cycling of Nutrients in Rivers and Catchments Implications for Eutrophication Risk, Resilience & Recovery

Rice Yield And Dangue Haemorrhagic Fever(DHF) Condition depend upon Climate Data

Climate Change Scenarios for the Agricultural and Hydrological Impact Studies

Performance of three Selected Convective Schemes for Predicting Indian Summer Monsoon Rainfall using RegCM4.4

GONE! Coastal Erosion Happens During Storms! Why Worry About Coastal Setbacks? Goals for Today

Assessment of Soil Erosion at a DC Park Facility Spring Valley Park NW Washington, DC

Climate Change Adaptation and Stream Restoration. Jack Williams;

Barnegat Bay-Friendly Golf Course Certification Program

Fish and Fisheries. Ian Cowx Hull international Fisheries Institute

Bay of Fundy Estuary Profile

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 5, No 2, 2014

Drought Situations and Management Policy in Vietnam

CALCASIEU SALINITY STRUCTURES. HYDRODYNAMIC MODELING (To Support Design of Salinity Barriers)

Trout Unlimited Comments on the Scope of Environmental Impact Statement for the Constitution Pipeline Project, Docket No. PF12-9

BANGLADESH: TRANSBOUNDARY RIVERS PROBLEMS AND PROSPECTS

NYS Coastal Waters. Water Resources of NYS: THE NATURE of the COASTAL ZONE. NYS Coastal Waters. NYS Coastal Atlas. Coastal Zone Management 10/10/2014

1.Warm Springs Creek (Anaconda) Watershed Description and Land Use

Canada s Natural Systems. Canadian Geography 1202

Table xxx: Listed and Suspected Impairments for Willow Creek 2010 Reach Impairment Pollutant Impaired Uses

IMPACTS OF COASTAL PROTECTION STRATEGIES ON THE COASTS OF CRETE: NUMERICAL EXPERIMENTS

Sea-Level Rise and Coastal Habitats in Southeastern Louisiana An Application of the SLAMM Model

Quantifying Performance of Stream Simulation Culverts in the Chehalis Basin, WA

Minnesota Department of Natural Resources Division of Fish and Wildlife Section of Fisheries. Stream Survey Report. Luxemburg Creek.

NIANGUA SNAPSHOT ISSUE Nutrients 2 Suspended Sediment 3 Salinity 4 Summary 5

Understanding Today s Environmental Issues and the Oregon Stewardship Guidelines. David Phipps GCSAA NW Field Staff

The effect of climate change on South West WA hydrology. Don McFarlane Research Manager

Skeena Salmon. Skeena River Basin. Sockeye Escapement ( ) 1. Average number of spawners. Introduction. Total Accessible Stream Length (km)

PRELIMINARY STORM DRAINAGE REPORT

Minnesota Department of Natural Resources Division of Fish and Wildlife Section of Fisheries. Stream Survey Report. Cold Spring Creek.

ABSTRACT INTRODUCTION

German agricultural sector MONICA RAUMIS temperature precipitation climatic indices forest climatic water balance wine

Physical Geography. Physical Geography III of the United States and Canada. Formation of Great Lakes. Climates of North America. Definitions 2/21/2013

1.Mill Creek Watershed Summary Description and Land Use

The Tidal Elbe Concept Sustaining the Tidal River Seaport of Hamburg

Monitoring tidal movements in Cook Inlet, Alaska, using the integration of remote sensing data, GIS, and inundation models

Watershed Restoration Plan for the Hiwassee River Basin

Importance of un-named tributary streams to Brook Trout populations. Dr. Jonathan M. Niles Dr. Dan Ressler

Low Gradient Velocity Control Short Term Steep Gradient Channel Lining Medium-Long Term Outlet Control Soil Treatment Permanent [1]

APPENDIX C VEGETATED EMERGENCY SPILLWAY. VERSION 1.0 March 1, 2011

Country report. Belgian bathing water quality in Belgium. May Photo: Peter Kristensen/EEA

Upper Iowa River Watershed GIS Analysis

DMU 056 Midland County Deer Management Unit

RI Regulatory Setbacks & Buffers: Coastal Management Issues

JAP Additional Information Sheet

Tips for Using & Printing Spreadsheets

DALE HOLLOW LAKE TROOPER ISLAND IMPROVEMENT PROJECT Proposal for Reservoir Fisheries Habitat Partnership (RFHP)

San Lorenzo Valley Water District, Watershed Management Plan, Final Version Part I: Existing Conditions Report

TROUT CREEK WATERSHED (Second Year of Snowline Data)

SECTION 2 HYDROLOGY AND FLOW REGIMES

A Cost Effective and Efficient Way to Assess Trail Conditions: A New Sampling Approach

Nearshore Waves and Erosion Model Quantifying the Coastal Protection Benefits Provided by Natural Habitats

Water in the Deschutes Who needs it?

CLYDE RIVER FISH KILL 2016 PRELIMINARY REPORT

Chapter 4: Google Earth Exercise

Potomac River Water Quality: Current Status & Trends

WINDA-GALES wind damage probability planning tool

FISHERIES BLUE MOUNTAINS ADAPTATION PARTNERSHIP

Upper Iroquois River atershed Management Plan

Description of the Fields

KOOTENAI RIVER BASIN WATERSHED RESTORATION PLAN

EFFECT OF LARGE-SCALE RESERVOIR OPERATION ON FLOW REGIME IN THE CHAO PHRAYA RIVER BASIN, KINGDOM OF THAILAND

STUDY GUIDE. Physical Features. The Land. Chapter 23, Section 1. Landforms. Rivers. Natural Resources. Terms to Know DRAWING FROM EXPERIENCE

Back to TOC. Title: Encouraging adoption of precision irrigation technology through on-course application and demonstration of water savings

Water budgets of the two Olentangy River experimental wetlands in 2001

Dr. Prakash N. Mesta

VWP CONSTRUCTION INSPECTION REPORT. Project Name: Berkmar Drive Extension Locality: Albemarle County Inspector: ERM

Pearls in Peril (PIP): Securing the future of the freshwater pearl mussel in Great Britain. Layman s Report LIFE project LIFE/NAT/000383: PIP GB

Drought: What is the Status?

Hydrodynamic and hydrological modelling to support the operation and design of sea ports

Youngs Creek Hydroelectric Project

VIRGINIA SOIL AND WATER CONSERVATION BOARD GUIDANCE DOCUMENT ON DAM BREAK INUNDATION ZONE AND INCREMENTAL DAMAGE ANALYSIS AND MAPPING PROCEDURES

Assessment of Baseline Geomorphic Features at. Proposed Stream Crossings On The Proposed County Road 595. Marquette County, Michigan

Legacy Funding 2011 Special Session

Science Skills Station

Water Level Fluctuations of Lake Enriquillo and Lake Saumatre in Response to Environmental Changes

Pest Management Activities

Florida Seagrass Integrated Mapping and Monitoring Program

Transcription:

IGC, 2012 28 August, 2012 CATCHMENT HYDROLOGICAL RESPONSE TO CHANGING LAND SYSTEM IN KASHMIR HIMALAYA Prof. SHAKIL A ROMSHOO HEAD, DEPT OF EARTH SCIENCES KASHMIR UNIVERSITY

PRESENTATION OVERVIEW KASHMIR HIMALAYAS UPPER INDUS SYSTEM DYNAMIC COMPONENTS STREAM FLOW CHANGES WETLANDS/LAKES LAND SYSTEM CHANGES AND PROJECTIONS CRYOSPHERE CLIMATE CHANGE SCENARIO HYDROLOGICAL CHANGES W.R.T. LULC BMPs/SCENARIO MAPPING CONCLUSIONS

HYDROLOGIC SYSTEM LINKAGES

Discharge (Cusecs) Discharge (Cusecs) Discharge (Cusecs) Discharge (Cusecs) Observed Stream Flow Changes 300 250 Yearly Discharge 120 100 Winter Season 200 80 150 60 100 40 50 20 0 0 Years Years 450 400 350 300 SpringSeason 350 300 250 SummerSeason 250 200 200 150 150 100 100 50 0 50 0 Years Years

DACHIGAM (yearly) Name of the Test Test Static a=0.1 a=0.5 a=0.01 Result Mankendall -3.787 1.645 1.96 2.576 S (0.01) Spearman s Rho -3.449 1.645 1.96 2.576 S (0.01) Linear Regression -4.468 1.687 2.025 2.713 S (0.01) Test Type DACHIGAM (Seasonal) Season Test statistic a=0.1 a=0.05 a=0.01 Result Winter -2.901 1.645 1.96 2.576 S (0.01) Mann-Kendall Spearman's Rho Linear Regression Spring -3.577 1.645 1.96 2.576 S (0.01) Summer -3.449 1.645 1.96 2.576 S (0.01) Winter -2.698 1.645 1.96 2.576 S (0.01) Spring -3.507 1.645 1.96 2.576 S (0.01) Summer -3.231 1.645 1.96 2.576 S (0.01) Winter -3.06 1.687 2.025 2.713 S (0.01) Spring -4.402 1.687 2.025 2.713 S (0.01)

0 50 100 150 200 250 300 350 400 450 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004 2007 2010 J 0 100 200 300 400 500 600 700 800 1971 1975 1979 1983 1987 1991 1995 1999 2003 2007 F 0 200 400 600 800 1000 1200 1400 1600 1971 1975 1979 1983 1987 1991 1995 1999 2003 2007 M 0 500 1000 1500 2000 2500 3000 3500 1971 1975 1979 1983 1987 1991 1995 1999 2003 2007 0 1000 2000 3000 4000 5000 6000 1971 1975 1979 1983 1987 1991 1995 1999 2003 2007 0 1000 2000 3000 4000 5000 6000 1971 1975 1979 1983 1987 1991 1995 1999 2003 2007 0 1000 2000 3000 4000 5000 6000 7000 8000 1971 1975 1979 1983 1987 1991 1995 1999 2003 2007 0 1000 2000 3000 4000 5000 6000 1971 1975 1979 1983 1987 1991 1995 1999 2003 2007 0 500 1000 1500 2000 2500 3000 1971 1975 1979 1983 1987 1991 1995 1999 2003 2007 S 0 500 1000 1500 2000 2500 1971 1975 1979 1983 1987 1991 1995 1999 2003 2007 0 100 200 300 400 500 600 700 800 900 1971 1975 1979 1983 1987 1991 1995 1999 2003 2007 N L 0 100 200 300 400 500 600 1971 1975 1979 1983 1987 1991 1995 1999 2003 2007 D

1971 1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 Discharge (Cusecs) Discharge (Cusecs) Discharge (Cusecs) Discharge (Cusecs) Observed Stream Flow Changes 70 60 50 40 30 20 10 0 50 45 40 35 30 25 20 15 10 Winter Season Years Years 100 Summer Season 100 Spring Season 90 90 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 Years

Name of the Test DAKIL (yearly) Test Static a=0.1 a=0.5 a=0.1 Result Mankendall 1.478 1.645 1.96 2.576 NS Spearman s Rho 1.544 1.645 1.96 2.576 NS Linear Regression 1.337 1.687 2.025 2.713 NS Test Type DAKIL (seasonal) Season Test statistic a=0.1 a=0.05 a=0.01 Result Winter 1.27 1.645 1.96 2.576 NS Mann-Kendall Spring 1.934 1.645 1.96 2.576 S(0.1) Summer 2.4 1.645 1.96 2.576 S(0.05) Spearman's Rho Winter 1.497 1.645 1.96 2.576 NS Spring 2.185 1.645 1.96 2.576 S(0.05) Summer 2.771 1.645 1.96 2.576 S(0.01) Linear Regression Winter 1.065 1.687 2.025 2.713 NS Spring 2.259 1.687 2.025 2.713 S(0.05)

Introduction Water Resource Map of UIB Various beneficial functions of wetlands include life sustaining processes like water storage (domestic, agriculture, industrial usage) protection from storm and floods, ground water recharge, storage for nutrients, erosion control and stabilisation of local climate (temperature, rainfall) and thus helps in maintaining ecological balance. During the recent past wetlands have been recklessly destroyed to create land for development and only in recent years their uses and values have begun to be understood and appreciated.

WATER RESOURCES

Land System Changes in Kashmir CLASS NAME 1972 AREA (HA) 1992 AREA (HA) 2008AREA (HA) FOREST 485473.31 464798.36 391368.55 AGRICULTURE 337788.45 301094.00 269138.93 PLANTATION 92240.15 89443.34 85876.76 HORTICULTURE 17954.44 28858.26 71899.18 WATER 12795.11 11024.42 6827.09 RIVER BED 9899.81 9812.22 7512.82 AQUA_VEGETATION 3981.44 7503.56 11729.20 BUILT-UP 578.07 5914.96 21432.81

Land System Change Projections (2001-2020)

Changes in Kashmir Cryosphere Total Glacier area in Total Glacier area Total Glacier area Total Glacier area 1969 (sq. Km) 1992 (Sq. Km) 2001(sq. Km) 2010 (Sq. Km) 45.63 41.74 38.96 38.48

Water Tower of Asia

Rainfall (mm) Rainfall (mm) Average_Temperature ( 0 C) Temperature (0C) Average Temperature (Dec. & Jan.) ( 0 C) 6 5 4 3 2 1 0 1880 1900 1920 1940 1960 1980 2000 2020 Average Temperature (Dec &Jan) 8,00 7,00 6,00 5,00 4,00 3,00 2,00 1,00 0,00 1970-1,00 1980 1990 2000 201-1 Total Precipitation Dec-Jan 95 75 55 35 15-5 1971197419771980198319861989199219951998 500 Total Precipitation (Dec. &Jan. ) 450 400 350 300 250 200 150 100 50 0 1979 1982 1985 1988 1991 1994 1997 2000 2003 2006

HYDROLOGIC STYTEM LINKAGES

CATCHMENT SCALE STUDIES The study area is the Dal Lake Catchment highly urbanized and situated in Srinagar city (KASHMIR HIMALAYAS) having an area of 337 km². Location of Dal Lake Catchment

LU/LC MAP OF DAL LAKE CATCHMENT: 1992

LU/LC MAP OF DAL LAKE CATCHMENT: 2005

Area change in LULC from 1992 to 2005 S. No. Class Name Area (Km 2 ) 1992 2005 Area change % change 1 Built up 9.31 21.39 +12.08 3.58 2 Agriculture 14.71 12.87-1.84 0.54 3 Fallow 0.08 0.004-0.076 0.02 4 Horticulture 26.91 19.34-7.57 2.24 5 Coniferous Forest 51.87 46.2-5.67 1.68 6 Deciduous Forest 76.49 74.69-1.8 0.53 7 Sparse Forest 19.76 18.8-0.96 0.28 8 Grasslands 33.31 25.42-7.89 2.34 9 Scrubland 3.68 15.65 +11.97 3.55 10 Plantation 47.9 35.00-12.9 3.82 11 Aquatic Vegetation 1.03 4.50 +3.47 1.02 12 Bare Land 20.82 25.26 +4.44 1.31 13 Bare Exposed Rocks 14.09 15.7 +1.61 0.47 14 Water Bodies 14.8 13.89-0.91 0.27 15 Water Channel Area 1.24 1.30 +0.06 0.01 16 Snow 1.05 6.50 +5.45 1.61 17 Golf course/turf 0.00 0.51 +0.51 15.37

c Reference Totals Classified Totals Number Correct Producers Accuracy (%) Users Accuracy (%) Built up 9 8 8 88.89 100.00 Agriculture 5 8 5 100.00 62.50 Agriculture Fallow 2 5 2 60.00 40.00 Horticulture 13 11 11 84.62 100.00 Coniferous Forest 21 24 20 95.24 83.33 Deciduous Forest 41 35 31 75.61 88.57 Sparse Forest 14 13 10 71.43 76.92 Grasslands 8 10 5 62.50 50.00 Scrubland 2 2 1 50.00 50.00 Plantation 15 18 14 93.33 77.78 Aquatic Vegetation 3 3 3 100.00 100.00 Barren 8 10 4 40.00 30.00 Bare Exposed Rocks 4 4 3 75.00 75.00 Water 4 4 4 100.00 100.00 Water Channel Area 2 5 2 40.00 20.00 Snow 2 2 2 100.00 100.00 Totals 308 308 283 Overall Accuracy = 89.67% %

KAPPA (K^) STATISTICS OVERALL KAPPA STATISTICS = 0.8541 KAPPA FOR EACH CATEGORY Class Name Kappa Built up 1 Agriculture 0.6186 Agric. Fallow 0.3213 Horticulture 1 Coniferous Forest 0.8208 Deciduous Forest 0.8676 Sparse Forest 0.7579 Grasslands 0.4863 Scrubland 0.4966 Plantation 0.7661 Aquatic Vegetation 0.463 Barren 0.3836 Bare Exp. Rocks 0.7466 Water 1 Water Channel 0.658 Snow 0.333 OVERALL KAPPA STATISTICS= 0.91314 KAPPA (K^) STATISTICS KAPPA FOR EACH CATEGOR Class Name Kappa Built up 0.8851 Agriculture 0.8305 Agricultural Fallow 0.3213 Horticulture 1 Coniferous Forest 0.9094 Deciduous Forest 0.8304 Sparse Forest 0.8851 Grasslands 1 Scrubland 0.8305 Plantation 0.7902 Aquatic Vegetation 0.6644 Barren.9126 Bare Exposed Rocks.6610 Water 1 Water Channel Area 0.658 Snow.6644

DW1 DW2 DW 3 D W 7 DW4 DW5 D W6 DW 11 D W 8 DW1 3 DW 12 D W 9

DAL LAKE ENVIRONS

LULC CHANGES AROUND DAL LAKE (1969-2008) CLASS NAME Area (hectares) 1969 1980 1992 2001 2008 Area change (1969-2008) Agriculture 4350.52 2717.17 2141.96 2242.43 1936.26-2414.26 Aquatic veg 510.53 777.07 335.51 931.20 1226.82 716.29 Bare Land 260.00 96.33 126.47 147.53-147.53 Builtup 1306.80 1184.81 2023.12 2374.21 3020.68 1713.89 Fallow Land 333.18 174.73 172.57 89.29 134.80-198.38 Forest 208.46 145.55 137.70 89.81 86.77-121.69 Grasslands 58.05 253.93 334.11 237.62 214.02 155.97 Horticulture 1737.21 2406.59 1498.72 1977.04 2109.72 372.51 Plantation 1004.90 1807.14 2878.91 1680.95 1044.42 39.52 Stream Bed 72.00 50.97 46.18 50.63 42.30-29.69 Water 1455.75 1259.41 1332.27 1237.74 1074.05-381.70

ETM, 1992 LISSIII, 2005 SOIL ERODIBILITY (K) FACTOR CURVE NO MULTIDATE LU/LC MAPS SLOPE LENGTH (LS) FACTOR C & P PRACTICES WEATHER DATA MULTIDATE CSA MAPS TRANSPORT DATA DAILY TEMP & PCPT GWLF MODEL SIMULATION OF RUNOFF, EROSION & SEDIMENT/NUTRIENT LOADS QUANTIFING THE HYDROLOGICAL PROCESSES

Hydrological Model Q kt ( R t R t M t M t 0.2DS kt 0.8DS kt ) 2 DS kt 2540 25.4 CN kt X kt 0.132* RE t * K k *( LS) k * C k * P k * AR k SR 0.001* C * Y m s m

DATA SETS USED SATELLITE DATA/GEOSPATIAL DATA: LANDSAT- ETM (1992) IRS: LISS III (2005) Topographic data DEM (30m) Time series of Hydrometeorological data II) FIELD DATA/ LAB INVESTIGATION Physicochemical data generated for soil Ground truth data III) ANCILLARY DATA Published reports and journals

HYDROLOGOICAL PARAMETERS(CM) HYDROLOGOICAL PARAMETERS(CM) Geospatial Analysis-Parameters

Input parameters used in the GWLF Model Source Areas Hydro Conditions LS C P K WCN Agriculture Fair 2.609 0.42 0.52 0.169 82 Horticulture Fair 3.206 0.05 0.1 0.186 87 Forest Fair 46.33 1 1 0.226 68 Hay/Pasture Fair 59.38 0.03 0.74 0.255 63 Low int Devel N/A 1.964 0.08 0.2 0.159 80 High int Devel N/A 0.488 0.08 0.2 0.13 94 Bare land Poor 42.66 0.8 0.8 0.15 89

CHANGES IN NUTRIENT LOADING OF DAL LAKE (1981-2008) Hydrological Process Runoff (mm) Year 1992 2005 329.07 341.34 Change (Tons/Yr) +12.27 (mm) Erosion 1302.29 1953.66 +651.37 Sediment 232.45 354.65 +122.2 NUTRIENT LOADS Total Nitrogen (TN) 2037.13 2381.7 +344.57 Dissolved Nitrogen (DN) 1661.99 1865.87 +203.8 Total Phosphorus (TP) 166.02 238.3 +72.28 Dissolved Phosphorus (DP) 60.89 76.19 +15.3

Source area contribution to sediment & erosion yields SOURCE 1992 LULC Erosion Tons/yr 2005 LULC Erosion Tons/yr 1992 LULC Sediment Tons/yr 2005 LULC Sediment Tons/yr pastures 11.41 57.55 3.20 26.19 Cropland 94.25 117.15 30.1 49.68 Forest 25.16 27.88 1.3 8.64 Horticulture 1.33 1.57 0.0007.01 Bare 1,171.16 1,750.06 90.7 121.31 Lo_Int_Dev 0.018 0.054 0.00097.02 Hi_Int_Dev 0.164 0.444.0084.0023 Stream bank 106.2 148.8 Total 1302.295 1953.66 232.4 254.65

Sediment (mg/l) VALIDATION STUDY RESULTS NATSH-SUTCLIFFE (R2) COEFFICIENT : 0.85

Source area contribution to avg. sediment & erosion yields

SCENARIO MAPPING

PREDICT POLLUTANT REDUCTION IMPACT COMPARISON TOOL developed for use in evaluating the implementation of both rural and urban pollution reduction strategies at the watershed level. allows the user to create various scenarios in which current landscape conditions can be compared against future conditions that reflect the use of different pollution reduction strategies.

METHODOLOGY ADOPTED FOR PREDICT MODEL BMPS STRUCTURAL/ NON-STRUCTURAL URBAN Constructed wetlands Bio-retention areas Detention basins AGRICULTURAL Crop rotation Cover crops Contour farming Agr. to wetland conversion Agr. to forest conversion Grazing land management Terraces & diversions STREAMS Vegetative buffers Stream bank fencing Stream bank stabilization SCENARIOS PREDICT MODEL BEST CASE SCENARIO

SOME OF THE BMPs

SOURCE Nutrient load reduction in response to BMP Baseline Scenario MSCN1 MSCN2 Nitrogen (Tons/Yr) Baseline Scenario MSCN1 Phosphorus (Tons/Yr) MSCN2 Hay/Pasture 195.2 140.01 100.13 20.32 16.17 12.7 Agriculture 751.4 600.3 454.8 89.64 59.82 51.2 Forest 160.2 128.94 98.82 7.73 5.97 4.8 Horticulture 85.45 65.76 40.54 21.23 17.9 14.9 Turf /Golf course 4.82 3.9 2.27 Bare Land 246 200.65 168.15 30.61 22.49 18.54 Low Int. Dev 10.32 7.45 3.27 2.04 1.5 0.7 High Int. Dev 315.7 250.9 141.9 46.23 35.05 28.27 Stream Bank 7.51 6.83 3.98 6.09 5.81 4.18 Ground water 605.2 500.9 486.8 14.45 10.04 7.71 Totals 2382 1905.6 1500.66 238.34 174.75 143.0 % Reductions 20.0% 37.0% 26.6% 40.0%

Reduction in sediment loads in response to different scenarios SOURCE Baseline Scenario MSCN1 Sediment (Tons/Yr) MSCN2 Hay/Pasture 26.19 21.43 16.71 Agriculture 49.68 34.92 18.56 Forest 8.64 6.54 5.1 Bare Land 121.31 95.31 78.76 Low Int Dev 0.002 0.001 0.001 Hi Int Dev 0.02 0.005 0.001 Stream Bank 148.80 130.84 105.93 Total Sediment 354.65 289.04 225.07

Conclusions The study demonstrated the effectiveness of the GIS based Modeling system in quantifying the hydrological processes and nutrient loads from the critical source areas at the catchment scale. The change in the LULC of the catchment has contributed significantly towards increased nutrient loads at the catchment scale. The implementation of different BMPs can prove quite effective in controlling the nutrient pollution of water body and thus improve the ecological condition of the lake including the water quality

Thank you 46

50 km 2 RCM data downscaled to 10 km 2 grids

ANNUAL AVERAGE MAXIMUM TEMPERATURE 9 10 11 12 13 14 15 16 17 18 2011 2016 2021 2026 2031 2036 2041 2046 2051 2056 2061 2066 2071 2076 2081 2086 2091 2096 Temperature ( 0C) Years 7 8 9 10 11 12 13 14 15 16 17 2011 2016 2021 2026 2031 2036 2041 2046 2051 2056 2061 2066 2071 2076 2081 2086 2091 2096 Temperature ( 0C) Years 15 16 17 18 19 20 21 22 23 24 2011 2016 2021 2026 2031 2036 2041 2046 2051 2056 2061 2066 2071 2076 2081 2086 2091 2096 Temperature (0C) Years 15 16 17 18 19 20 21 22 23 24 25 2011 2016 2021 2026 2031 2036 2041 2046 2051 2056 2061 2066 2071 2076 2081 2086 2091 2096 Temperature (0C) Years

ANNUAL AVERAGE MINIMUM TEMPERATURE -9-8 -7-6 -5-4 -3-2 -1 0 2011 2016 2021 2026 2031 2036 2041 2046 2051 2056 2061 2066 2071 2076 2081 2086 2091 2096 Temperature (0C) Years -11-10 -9-8 -7-6 -5-4 -3-2 -1 0 2011 2016 2021 2026 2031 2036 2041 2046 2051 2056 2061 2066 2071 2076 2081 2086 2091 2096 Temperature (0C) Years 2 3 4 5 6 7 8 9 10 2011 2016 2021 2026 2031 2036 2041 2046 2051 2056 2061 2066 2071 2076 2081 2086 2091 2096 Temperature (0C) Years 1 2 3 4 5 6 7 8 9 2011 2016 2021 2026 2031 2036 2041 2046 2051 2056 2061 2066 2071 2076 2081 2086 2091 2096 Temperature (0C) Years

5 10 15 20 25 30 1961 1964 1967 1970 1973 1976 1979 1982 1985 1988 1991 1994 1997 2000 Temperature (0C) Years Baramulla WMO RCM 5 10 15 20 25 30 35 1961 1964 1967 1970 1973 1976 1979 1982 1985 1988 1991 1994 1997 2000 Temperature (0C) Years Budgam WMO RCM Validation of mean maximum temp 5 10 15 20 25 30 1961 1964 1967 1970 1973 1976 1979 1982 1985 1988 1991 1994 1997 2000 Temperature (0C) Years Anantanag WMO RCM 5 7 9 11 13 15 1961 1964 1967 1970 1973 1976 1979 1982 1985 1988 1991 1994 1997 2000 Temperature (0C) Years Kupwara WMO RCM

ANNUAL AVERAGE PRECIPITATION 500 1000 1500 2000 2500 3000 3500 4000 2011 2016 2021 2026 2031 2036 2041 2046 2051 2056 2061 2066 2071 2076 2081 2086 2091 2096 Rainfall (mm) Years 500 1000 1500 2000 2500 3000 3500 4000 2011 2016 2021 2026 2031 2036 2041 2046 2051 2056 2061 2066 2071 2076 2081 2086 2091 2096 Rainfall (mm) Years 500 1000 1500 2000 2500 3000 3500 4000 2011 2016 2021 2026 2031 2036 2041 2046 2051 2056 2061 2066 2071 2076 2081 2086 2091 2096 Rainfall (mm) Years 200 400 600 800 1000 1200 1400 1600 2011 2016 2021 2026 2031 2036 2041 2046 2051 2056 2061 2066 2071 2076 2081 2086 2091 2096 Rainfall (mm) Years

The maximum mean annual temperature is projected to increase by 2 0 C (± 0.9) from 2011 to 2040 and 3.38 0 C (±1.17) from 2040 to 2099. The minimum mean annual temperature is projected to increase by 2.33 0 C (± 0.61) from 2011 to 2040 and 2.75 0 C (± 0.88) in 2040 to 2099. The annual precipitation is likely to decrease by about 13.1 % from 2011-2040 and 4.07 % from 2040-2090 respectively.