Chance and Uncertainty: Probability Theory

Similar documents
Working Draft: Gaming Revenue Recognition Implementation Issue. Financial Reporting Center Revenue Recognition

DOWNLOAD PDF TELEPHONE NUMBERS THAT PROVIDE THE WINNING NUMBERS FOR EACH LOTTERY.

Original Article. Correlation analysis of a horse-betting portfolio: the international official horse show (CSIO) of Gijón

5.1A Introduction, The Idea of Probability, Myths about Randomness

Primary Objectives. Content Standards (CCSS) Mathematical Practices (CCMP) Materials

101 Ways to. Way #27 Understanding the Odds.

Hearing on Keno Bingo & Slots IRS Auditorium, Internal Revenue Building, 1111 Constitution Avenue NW., Washington, DC. June 17, :00 a.m.

LOCATION: Los Alamitos Race Course, 4961 Katella Avenue, CA 90720

The key principle behind this system is as simple as it is brilliant find horses that are under-bet by the market, and then bet on them ourselves.

ARTICLE 14. CASINO SIMULCASTING

FAST FACTS. DATE: Saturday, September 20 at Los Alamitos Race Course. LOCATION: Los Alamitos Race Course, 4961 Katella Avenue, CA.

Win Lotto Systems Free

Become Expert at Something

A school carnival committee features a different version of the Making Purple game, as shown below.

Pass or Play?... That Should Be the Question!

Proposed Changes to 205 CMR 6.00 Pari-mutuel rules for thoroughbred racing, harness racing, and greyhound racing.

OFFICIAL RULES FOR THE APRIL 14, 2018 KEENELAND $400 FALL CHALLENGE

FAST FACTS DECEMBER 8 CONTEST

Handicapping and Making a Betting Line - A Different Approach

Lesson 14: Games of Chance and Expected Value

STUDY BACKGROUND. Trends in NCAA Student-Athlete Gambling Behaviors and Attitudes. Executive Summary

Gamblers Favor Skewness, Not Risk: Further Evidence from United States Lottery Games

FAST FACTS ****** LOCATION: Los Alamitos Race Course, 4961 Katella Avenue, CA., 90720

RULES AND REGULATIONS OF FIXED ODDS BETTING GAMES

presented by: Table of Contents:

Whitepaper. V2 August BetKings

LOCATION: Los Alamitos Race Course, 4961 Katella Avenue, CA 90720

When Betting Odds and Credences Come Apart: More Worries for Dutch Book Arguments

e-books From LPC From the Masters

STA 103: Midterm I. Print clearly on this exam. Only correct solutions that can be read will be given credit.

Picking a number from 0 to 10, Event A: getting a prime number and Event B: Getting an even number

TRPB TOTE SECURITY SYSTEM

Expected Value 3.1. On April 14, 1993, during halftime of a basketball game between the. One-and-One Free-Throws

Martin J. Silverthorne. SILVERTHORNE PuBLICATIONS

Deciding When to Quit: Reference-Dependence over Slot Machine Outcomes

Five Great Activities Using Spinners. 1. In the circle, which cell will you most likely spin the most times? Try it.

Sportsbook pricing and the behavioral biases of bettors in the NHL

A Perspective on Gambling. Horace Heffner November, 2004

Thoroughbred Racetrack Economics: Emerging Issues in Competition, Regulation, and Wagering

1. OVERVIEW OF METHOD

A PRIMER ON BAYESIAN STATISTICS BY T. S. MEANS

Building a Solid Foundation

Session of HOUSE BILL No By Committee on Commerce, Labor and Economic Development 2-12

COLORADO LOTTERY MULTI-STATE JACKPOT GAME, LUCKY FOR LIFE

Ten Problems About Twenty- Five Horses

BIASES IN ASSESSMENTS OF PROBABILITIES: NEW EVIDENCE FROM GREYHOUND RACES. Dek Terrell* August Abstract

PROFIT RECALL 2 USER GUIDE

[Check Out A Short Video Of The Ratings Software >Here<]

TOPIC 10: BASIC PROBABILITY AND THE HOT HAND

Mathematics of Pari-Mutuel Wagering

"All Clear" All clear means that the racing stewards deem the finishing order of horses is correct, and that

Most hit keno numbers ohio

Reproduced by Sabinet Online in terms of Government Printer s Copyright Authority No dated 02 February 1998

Russell Hunter Roulette Strike Strategy Video Guide Russell Hunter Publishing, Inc.

RACING AND ATHLETICS REGULATION 6 SIMULCAST WAGERING

SESSIONS OF IFHA CONFERENCE IN PARIS BETTING / STIMULATING WAGERING TURNOVER - HONG KONG

Advanced Handicapping Quirin Speed Points The Basics

Tote Ninja. Pari-mutuel Wager Placement Guide. Version 1.0

Tote Ninja. Pari-mutuel Wager Placement Guide. Version 1.0

What Causes the Favorite-Longshot Bias? Further Evidence from Tennis

Players may enter as many contests as they may like, with a maximum of two (2) entries per person, per contest.

How to Play Craps Online Like a Pro!

Game Theory (MBA 217) Final Paper. Chow Heavy Industries Ty Chow Kenny Miller Simiso Nzima Scott Winder

Examples of Dependent and Independent Events

From Bombe stops to Enigma keys

Using Actual Betting Percentages to Analyze Sportsbook Behavior: The Canadian and Arena Football Leagues

OFFICIAL RULES FOR THE APRIL 15, 2018 KEENELAND $3,000 GRADE ONE GAMBLE

Staking plans in sports betting under unknown true probabilities of the event

Chapter 5 - Probability Section 1: Randomness, Probability, and Simulation

All the Mail Pay instructions will be clearly printed on the back of your winning ticket!

Columbia University. Department of Economics Discussion Paper Series. Auctioning the NFL Overtime Possession. Yeon-Koo Che Terry Hendershott

July 2011, Number 62 ALL-WAYS TM NEWSLETTER

INFORMATION ON AND APPLICATION TO USE ACT RACE FIELD INFORMATION

OFFICIAL RULES FOR THE APRIL 15, 2018 KEENELAND $3,000 GRADE ONE GAMBLE

How To Beat The Bookie Scientific Betting In An Uncertain World By Rich Allen READ ONLINE

The 20% Back/Lay System

A Failure of the No-Arbitrage Principle

The Mathematics of Gambling

Use Backnine Bookie as the center of a charity event. Not only is it great fun, but its also a great way to help raise those much-needed funds.

CHAPTER 9 RULES FOR PARI-MUTUEL BETTING

Heads&Heads Matched Betting Guide. Turn 100 into 1000

#1 Accurately Rate and Rank each FBS team, and

AP Statistics Midterm Exam 2 hours

Announcements. Homework #8 due tomorrow. 2 nd midterm on Thursday CMSC 250

DR. JAY S INFALLIBLE BASEBALL SYSTEM!!!

MATCHED BETTING GUIDE

Surprisals Revisited. Outcome Surprisal

Danish gambling market statistics Third quarter, 2017

How to Win Football Predic2on Leagues. By Michael Gibson

ECO 199 GAMES OF STRATEGY Spring Term 2004 Precept Materials for Week 3 February 16, 17

Answers Investigation 4

The Winning Horseplayer: An Advanced Approach To Thoroughbred Handicapping And Betting Ebooks Gratuit

OFFICIAL RULES FOR THE OCTOBER 16, 2016 KEENELAND $3000 BCBC CHALLENGE

April 2008, Number 49 ALL-WAYS TM NEWSLETTER

Tournament Terms and Conditions

$50 to $50,000 Betting System Betting on football games

INTELLIGENT BETTING USER GUIDE

NCSS Statistical Software

Automatic Bet Tracker!

This is a real money handicapping contest with players competing with live money wagering cards. This contest requires a $500 buy-in, per entry.

Transcription:

Chance and Uncertainty: Probability Theory Formally, we begin with a set of elementary events, precisely one of which will eventually occur. Each elementary event has associated with it a probability, which represents the likelihood that a particular event will occur; the probabilities are all nonnegative, and sum to 1. For example, if a five-card hand is dealt from a thoroughly-shuffled deck of 52 cards, there are 2,598,960 different elementary events (different hands), each of which has probability 1/2,598,960 of occurring. An event is a collection of elementary events, and its probability is the sum of all of the probabilities of the elementary events in it. For example, the event A = the hand contains precisely one ace has probability 778,320/2,598,960 of occurring; this is written as Pr(A) = 0.299474. The shorthand A B is written to mean at least one of A or B occurs (more concisely, A or B ; more verbosely, the disjunction of A and B ), and A B is written to mean both A and B occur (more concisely, A and B ; more verbosely, the conjunction of A and B ). A sometimes-useful relationship is Pr(A) + Pr(B) = Pr(A B) + Pr(A B). Two events A and B are mutually exclusive (or disjoint) if it is impossible for both to occur, i.e., if A B =. The complement of A, written A c, is the event A does not occur. Obviously, Pr(A)+ Pr(A c ) = 1. More generally, a collection of events A 1,..., A k is mutually exclusive and exhaustive if each is disjoint from the others, and together they cover all possibilities. Whenever Pr(A) > 0, the conditional probability that event B occurs, given that A occurs (or has occurred, or will occur), is Pr(B A) = Pr(A B)/Pr(A). Two events A and B are independent if Pr(A B) = Pr(A) Pr(B). Note that when A and B are independent, Pr(B A) = Pr(B). Three events, A, B, and C, are mutually independent if each pair is independent, and furthermore Pr(A B C) = Pr(A) Pr(B) Pr(C). Similarly, any number of events are mutually independent if the probability of every conjunction of events is simply the product of the event probabilities. [The following example illustrates why we must be careful in our definition of mutual independence: Let our elementary events be the outcomes of two successive flips of a fair coin. Let A = first flip is Heads, B = second flip is Heads, and C = exactly one flip is Heads. Then each pair of events is independent, but the three are not mutually independent.]

If A 1,..., A k are mutually exclusive and exhaustive, then Pr(B) = Pr(B A 1 ) +... + Pr(B A k ) = Pr(B A 1 ) Pr(A 1 ) +... + Pr(B A k ) Pr(A k ). Often, one observes some consequence B of a chance event, and wishes to make inferences about the outcome of the original event A. In such cases, it is typically easier to compute Pr(B A), so the following well-known rule is of use. Bayes' Rule: Pr(A B) = Pr(A B)/Pr(B) = Pr(B A) Pr(A) / Pr(B). The result at the top of this page can be used to compute Pr(B). Example: On the basis of a patient's medical history and current symptoms, a physician feels that there is a 20% chance that the patient is suffering from disease X. There is a standard blood test which can be conducted: The test has a false-positive rate of 25% and a false-negative rate of 10%. What will the physician learn from the result of the blood test? Pr(X present test positive) = Pr(test positive X present) Pr(X present) / Pr(test positive) = 0.9 0.2 / Pr(test positive), and Pr(test positive) = Pr(test positive X present) Pr(X present) + Pr(test positive X not present) Pr(X not present) = 0.9 0.2 + 0.25 0.8 = 0.38, so Similarly, Pr(X present test positive) = 0.18/0.38 = 0.474. Pr(X present test negative) = Pr(test negative X present) Pr(X present) / Pr(test negative) = 0.1 0.2 / Pr(test negative) = 0.02/(1-0.38) = 0.032.

The preceding calculations are much simpler to visualize in probability-tree form: Disease X present 0.2 0.8 Disease X absent test positive 0.9 0.1 test negative test positive 0.25 0.75 test negative 0.2 0.9 = 0.18 0.2 0.1 = 0.02 0.8 0.25 = 0.20 0.8 0.75 = 0.60 From the tree we can immediately write Pr(X present test positive) = 0.18 / (0.18 + 0.20).

(Probabilistic) Learning I walk into the room carrying two small bags. I open both bags, and let you examine the contents. You see that one of the bags (call it Bag R ) contains 70 red marbles and 30 blue marbles. The other (Bag B) contains 70 blue marbles and 30 red. I reseal the bags, and quickly slide them back and forth past each other on the table. (The old shell game - you completely lose track of which bag is which.) I then throw one of the bags out the door, leaving the other in front of you on the table. At this point, you figure it's 50:50 whether Bag R or Bag B is sitting on the table. I loosen the tie at the top of the bag, reach in, pull out a dozen marbles (chosen from the bag at random), and reseal the bag again. We look at the marbles, and see that eight are red, and four are blue. What are the odds that this bag is bag R? number probability of reds probability probability of R, given out of 12 if R if B number of reds 0 0.000% 1.013% 0.001% 1 0.000% 6.180% 0.006% 2 0.007% 16.428% 0.042% 3 0.075% 25.136% 0.296% 4 0.511% 24.629% 2.032% 5 2.346% 16.263% 12.605% 6 7.412% 7.412% 50.000% 7 16.263% 2.346% 87.395% 8 24.629% 0.511% 97.968% (48-to-1!) 9 25.136% 0.075% 99.704% 10 16.428% 0.007% 99.958% 11 6.180% 0.000% 99.994% 12 1.013% 0.000% 99.999% Lesson: Given new information, we should revise our beliefs in accordance with Bayes' Rule. This does not come naturally to most people. Prob(mostly- red bag (8R,4 B)) = 70 30 8 4. 1 100 2 12 70 30 30 70 8 4. 1 2 + 8 4. 1 100 100 2 12 12

Let's Make a Deal Perhaps you remember an old TV game show called Let's Make a Deal, hosted by Monty Hall. Each show ended the same way: One member of the studio audience was given a shot at a fabulous prize (a new car, exotic cruise, or the like). On the stage were three closed curtains. One concealed the prize; the other two concealed garbage (joke prizes, such as a pig in a poke, not worth very much money). The contestant selected a curtain, and could have whatever it concealed. But, before the curtain was opened, Monty Hall would step in and complicate matters: No matter which curtain was selected (the prize or garbage), there was always at least one of the other two which concealed garbage. The stage crew would signal to Monty, and he'd open an unselected garbage-hiding curtain. Everyone would see the joke prize, and laugh. Then, the moment of truth arrived. Monty Hall would turn to the contestant, and point at the remaining two closed curtains. One of these hides the prize; the other hides garbage. You've already selected this one. (He points.) You can have what it conceals, or, if you're having second thoughts, you can switch your choice, and have what the other conceals instead. What would you do? Stay with your original choice, or switch? Or does it not really matter? --------------------------------------------------------------------------- Imagine facing this situation on many consecutive days. Pick-and-stick wins the prize only on those days when your initial guess is correct, i.e., on 1/3 of all days. So pick-and-switch must win on the other 2/3 of all days: Your odds are twice as good from switching as they are from sticking! For another perspective, assume that you plan to pick Door A. Then the situation will unfold according to the diagram below: prize behind A (1/3) prize behind B (1/3) open B (1/2) open C (1/2) open C (1) 1/6 stick wins 1/6 stick wins 1/3 switch wins prize behind C (1/3) open B (1) 1/3 switch wins So, for example, given that B has been opened, your chance of winning by switching is (1/3) / (1/6 + 1/3 ) = 2/3. For those of you who play the card game of bridge, a similar phenomenon that arises there is known as the Principle of Restricted Choice.

What Are The Odds? In both gambling and gaming settings, you ll often hear probabilities referred to indirectly through a reporting of the odds associated with a wager or the outcome of a game. The traditional method for stating the so-called odds against is to compare the chance that one might lose, if things work out unfavorably, to the chance that one might win: If p is your probability of winning, then the odds you are facing are 1-p:p. Odds are scalable, and are frequently scaled to whole numbers. For example, if your probability of winning a gamble is 1/3, then the odds can be reported as 2/3:1/3, but are usually reported as 2:1 (and read as the odds are 2 to 1 against you ) instead. The original probability can be easily recaptured from an odds against statement: Odds of a:b correspond to a probability (of winning) of b/(a+b). Game Odds A common marketing technique is to offer consumers participation in a collection game. McDonald s, for example, runs an annual Monopoly game in conjunction with Hasbro (the publisher of the board game). Stickers representing Monopoly properties are attached to foodproduct containers, and a customer who collects some particular combination of properties over the duration of the game can claim a prize (usually a free McDonald s or Hasbro product). McDonald s benefits directly from heightened consumer interest, and Hasbro indirectly by building name recognition for its product line. A legal requirement (in most states) of such games is that the odds of winning the various prizes must be posted. The standard language states, If you collect k stamps, the odds of winning prize P are 1 in x. This translates directly to the odds against winning are x-1:1. Parimutuel Wagering When you gamble at a casino, you are playing against the house. However, when you bet at a racetrack, be it on thoroughbreds, trotters, or greyhounds I ll assume horses, for purposes of discussion you are betting against the other bettors. The amounts of money bet on the various horses determine the track odds, which are stated in terms of monetary outcomes: If a horse goes off at 4:1 odds, this means that a $1 bet will bring you either a $1 loss, or a $5 payback (for a $4 profit). Win betting, under a parimutuel system, is simple to understand. The track collects all the bets, takes out a fixed percentage (as its earnings and tax obligations on the race), and returns all the residual money to those who bet on the winning horse (in proportion to their bets). For example, assume you bet $20 on Raging Bob to win, and he does indeed win the race. Also assume that the track takes 20% of the total of all win bets. (Actual track percentages in the U.S. are typically fixed by local law, at somewhere between 15% and 20% of the total betting pool. The track percentage on exotic bets, such as exactas and quinellas, might be even higher.) If a total of $20,000 was wagered, of which $2000 was bet on Raging Bob, then the track keeps $4000, and the remaining $16,000 goes to the winning bettors, who get back $8 for each dollar bet: You receive $160, for a profit of $140 on your bet. Before the race begins, if the current bets are as stated above, the track will announce the odds on your pick as 7:1 (i.e., 140:20, scaled down). If you believe that the actual probability that your

pick will win the race is greater than 1/(7+1) = 12.5%, then you will have a positive expected return from placing a small wager on this horse. Before you race out to the track, note that the final odds determine the payoff, and that empirical research has shown that much of the smart money gets bet in the last minute before the betting windows close. Since the posted odds change as more money is bet on the race, and tend to lag the actual odds by about a minute, you can never be sure, when placing a bet, on the actual payoff you ll receive if your bet wins. Also note that your bet will itself shift the odds. This effect is greatest when the odds on a horse are long, e.g., 50:1. A large bet at the last minute could substantially reduce the prospective payoff if your long-shot wins the race. A place bet is a bet that your horse will finish either first or second. The track collects all the place bets into a pool, takes its percentage, pays back the winning bettors (on either of the top two finishers) the amount they bet, and then splits the remaining money into two equal shares. The bettors on the horse that won proportionately split one share, and the bettors on the horse that finished second proportionately split the other share. Show bets that your horse will finish in the top three are handled similarly. Can you make money at the track? Of course you can, IF you are much better able to predict outcomes than most of the other bettors. (It s not enough to be just a bit better, since you must overcome the track s takeout.) Much statistical analysis has gone into the development of horserace betting systems. A good system must combine the ability to (probabilistically) predict race outcomes with the ability to determine when the posted odds differ enough from the prediction to offer a profit. A common feature of any sensible system is that it will often recommend not betting at all (when, for example, the posted odds are in line with the predictions of the system). One business application of parimutuel betting is to forecasting: If you wish to derive a consensus forecast of the likelihood of one or the other of several events occurring, you could endow each of your forecasters with a budget, and require that they all place bets on the outcome. The resulting odds could then be taken as their actual (combined) forecast. Goldman Sachs and Deutsche Bank have recently opened an online enterprise where bettors can wager on such economic derivatives as the inflation rate, housing starts, or new unemployment claims. The odds that result can be used as a composite (across the bettors) estimate of the economic future