Takeoff Performance. A 1 C change in temperature from ISA will increase or decrease the takeoff ground roll by 10%.

Similar documents
Compiled by Matt Zagoren

Flying The Boeing Advanced

1. You are flying near your favorite VOR. You experience 15 of bearing change in 11 minutes 36 seconds. How far are you from the station?

5. With winds aloft of 112 at 34 knots, TAS of 265 km/hr, and a TC of 057, what is the groundspeed and wind correction angle (WCA)?

Normal T/O Procedure. Short Field T/O Procedure

Bonanza/Debonair Pilots

FLIGHT PERFORMANCE AND PLANNING (2) PERFORMANCE

Cessna 172 Profiles. TRAFFIC PATTERNS (Check Chart Supplement prior to flight) Index

Civil Air Patrol Auxiliary of the United States Air Force

Flying The Boeing

Cessna 172R Profiles

Commercial Maneuvers for PA28RT-201

PPL Exam 3 Working File. Where significant calculation/thinking is required.

FAA-S-ACS-6 June 2016 Private Pilot Airplane Airman Certification Standards. Task ACS Settings

MANEUVERS GUIDE. Liberty Aerospace 1383 General Aviation Drive Melbourne, FL (800)

TECHNIQUES FOR OFF AIRPORT OPERATIONS

Flying The Embraer Brasilia (EMB-120)

Front Cover Picture Mark Rasmussen - Fotolia.com

PPL Exam 1 Working File. Where significant calculation/thinking is required.

DON T TO MATH IN THE COCKPIT

ABS/BPPP Performance Worksheet: Baron/Travel Air Pilots

Learning. Goals Speeds. Air speed. the air ASI. figure 1. Page 1 of 6. Document : V1.1

CESSNA 172-SP PRIVATE & COMMERCIAL COURSE

Mountain Fury Mountain Search Flying Course Syllabus Fourth Sortie : High Altitude Search

See the diagrams at the end of this manual for judging position locations.

THE FLIGHT COMPUTER AND NAVIGATION PLOTTER

NORMAL TAKEOFF PILOT TRAINING MANUAL KING AIR 200 SERIES OF AIRCRAFT

Mountain Fury Mountain Search Flying Course Syllabus

Performance/Pilot Math

NORMAL TAKEOFF AND CLIMB

PROCEDURES GUIDE CESSNA 172N SKYHAWK

Flight Profiles are designed as a guideline. Power settings are recommended and subject to change based

Aircraft Performance

Preliminary Study of Aircraft Dynamics and Performance: High Gust Condition Aspect

Mountain Flying. the Mountains. challenging to do as long as we obey some long taught rules. and not above them?

ILS APPROACH WITH A320

Single Engine Complex Training Supplement PA28R-201 Piper Arrow III (Spring 2016 Revision)

THE FLIGHT COMPUTER AND NAVIGATION PLOTTER

Civil Air Patrol Auxiliary of the United States Air Force

MOUNTAIN FLYING TEST

Bugatti 100P Longitudinal Stick Forces Revision A

Climbs, descents, turns, and stalls These are some of the maneuvers you'll practice, and practice, and practice By David Montoya

STUDY OF LANDING TECHNIQUE DURING VISUAL APPROACH

Accident Prevention Program

Autothrottle Use with Autopilot Off

Pressure and Density Altitude

Tecnam Eaglet Standard Operating Procedures and Maneuvers Supplement

Cessna 172S Skyhawk Standardization Manual

C-182P MANEUVERS GUIDE TABLE OF CONTENTS

Attitude Instrument Flying and Aerodynamics

T A K E O F F A N D C L I M B

OFFICE HOURS Monday through Friday, 7:30 a.m. to 4:30 p.m., Pacific Time. Lunch hour is 11:30 a.m. to 12:30 p.m.

AVIATION SAFETY BULLETIN

CALCULATING IN-FLIGHT WINDS

Cessna 152 Standardization Manual

Performance. Saturday, December 22, 2012

VFR Circuit Tutorial. A Hong Kong-based Virtual Airline. VOHK Training Team Version 2.1 Flight Simulation Use Only 9 July 2017

Aviation Merit Badge Knowledge Check

OFFICE HOURS Monday through Friday, 7:30 a.m. to 4:30 p.m., Pacific Time. Lunch hour is 11:30 a.m. to 12:30 p.m.

LAPL(A)/PPL(A) question bank FCL.215, FCL.120 Rev PRINCIPLES OF FLIGHT 080

XI.C. Power-Off Stalls

PRIVATE PILOT MANEUVERS Practical Test Standards FAA-S A

Noise Abatement Takeoff 1 Close In Profile

Aircraft Performance. Chapter 11. Introduction. Importance of Performance Data

LEVEL FOUR AVIATION EVALUATION PRACTICE TEST

CIVIL AIR PATROL United States Air Force Auxiliary Cadet Program Directorate. Cessna 172 Maneuvers and Procedures

Aircraft Performance. Chapter 10. Introduction. Importance of Performance Data. Gold Seal Online Ground School

2. At a ground speed of 184 knots, what will be the time required to cover 288 nautical miles? a. 86 minutes b. 90 minutes c. 94 minutes d.

FLYING SCHOLARSHIP PIP QUESTIONS 1-40 TO BE ANSWERED BY BOTH GLIDER AND POWER APPLICANTS

VI.B. Traffic Patterns

Engine Performance reciprocating engine, turboprop engine, turbofan engine turbojet engine Manifold pressure (MAP) waste gate critical altitude

SULAYMANIYAH INTERNATIONAL AIRPORT MATS

XII.A-D. Basic Attitude Instrument Flight

XI.B. Power-On Stalls

Stability and Flight Controls

C-182P MANEUVERS GUIDE TABLE OF CONTENTS

VI.A-E. Basic Attitude Instrument Flight

C-130 Reduction in Directional Stability at Low Dynamic Pressure and High Power Settings

COCKPIT STRAIGHT AND LEVEL FLIGHT, CLIMBS AND GLIDES. By Harold Holmes (EAA ), CPI 1038 Inverrary Lane Deerfleld, IL 60015

Beechcraft Duchess 76 Maneuver Notes

SUBPART C - STRUCTURE

PERFORMANCE MANEUVERS

Guidance Notes PRIVATE AND COMMERCIAL PILOT TRAINING

A PAPER ABOUT AIRCRAFT FLIGHT CONTROL

Answer Key. Page 1 of 5. 1) What is the maximum flaps-extended speed? A. 100 MPH. B. 65 MPH. C. 165 MPH. 2) Altimeter 1 indicates

FALCON SERVICE ADVISORY

Visualized Flight Maneuvers Handbook

IVAO International Virtual Aviation Organization Training department

FFI Formation Guidelines and Standard Procedures Mooney Supplement (28 Dec, 2018; Rev 12)

Detailed study 3.4 Topic Test Investigations: Flight

PROCEDURES AND PROFILES TABLE OF CONTENTS

6.0 OPERATING CONDITIONS. 6.1 Jet Engine Exhaust Velocities and Temperatures 6.2 Airport and Community Noise

Descent Planning with a Mechanical E6-B Flight Computer

Discuss: 1. Instrument Flight Checklist

AEROCET MODEL 3500L/3500 FLOATS

POWER-OFF 180 ACCURACY APPROACH AND LANDING

Front Cover Picture Mark Rasmussen - Fotolia.com

AIR NAVIGATION. Key Revision. Press F5 to start.

Mastering the Mechanical E6B in 20 minutes!

CSA 2018 ANNUAL QUIZ. 1. List the following speeds for each ship you fly. Assume single person. Solitaire Grob103 SGS 232 LS-4.

Transcription:

The precise pilot does not fly by rules of thumb, axioms, or formulas. But there are times when knowledge of an approximate way to calculate things or knowledge of a simple rule can pay big dividends. Takeoff Performance A 1 C change in temperature from ISA will increase or decrease the takeoff ground roll by 10%. Takeoff distance increases by 15% for each 1000 DA (Density Altitude) above sea level Rotation speed Vr is equal to approximately 1.15 times Vs A headwind of 10% takeoff speed will reduce ground roll by 20% A 10% change in aircraft weight will result in a 20% change in takeoff distance. The maximum crosswind component is approximately equal to 0.2 x Vs1 Abort the takeoff if 70% of takeoff speed is not reached within 50% of the available runway. Available engine horsepower decreases 3% for each 1000 of altitude above sea level. Fixed Pitch, Non turbo aircraft - Climb performance decreases 8% for each 1000 DA above sea level.

Variable Pitch, Non turbo aircraft Climb performance decreases 7% for each 1000 DA above sea level. Expect to lose 1 of manifold pressure every 1000 in a climb. TAS increase 2% for each 1000 in a climb. Standard temperature decreases 2 for each 1000 Flight Manoeuvres Use ½ the bank angle for the lead rollout heading. i.e 30 of bank angle Start rollout 15 before desired heading. at gross weight. To calculate speeds for lighter weights, decrease the speed by half the percentage of the weight decrease. For example, flying a 3,000-pound-gross airplane at 2,400 pounds, a 20-percent reduction in weight, reduce the applicable speeds by 10 percent to hold the margins the same as at gross. Much more to follow soon... What are the 2 most important things in flying?? The NEXT 2 things you are going to do... To make a 6 change in heading, use a standard rate turn then immediately level the wings. To make a 3 change in heading use ½ standard rate turn. The diameter of the cone of confusion while passing over a VOR or NDB in NM is ½ the altitude in thousands. Eg Altitude = 6000 6000 2 = 3 NM Maneuvering speed Va = 1.7 x Vs1 Va decreases 1% for each 2% reduction in weight Vy decreases ½ to 1kt for each 1000 DA Vy Vx and Vg (best glide) decrease ½ kt for each 100lbs under MGW

forecast, it means that the weather may become worse than forecast especially if the temperature aloft is warmer than forecast. Higher temperature means the atmosphere can hold more moisture. More southerly and stronger winds mean there is a stronger than forecast low or front or trough to the west, heading your way (Northern Hemisphere only). 70 knots is 118 feet per second, and 60 is 101 fps. So if the approach speed should have been 60 knots and is 70, and if it takes five seconds to dissipate the extra speed, the airplane will have traveled about 550 feet in the float. No firm rule of thumb, but 10 knots extra on the approach speed usually uses about 500 extra feet of runway. The air is conditionally unstable if the temperature drops more than 2 per 1,000 feet on ascent. When the surface wind shifts to the north or northeast after passage of a cold front, that front may well be back as a warm front in a day or so. To descend 500 feet per minute to the destination, start the descent 5 miles out for each 1,000 feet to be lost if the groundspeed is 150 knots. For each 30 knots in either direction, add or subtract 100 fpm. At 180 knots, you'd need 600 fpm; at 450 knots, 1,500 fpm. A VOR course deviation indicator reflects 10 off course when full scale in either direction. One degree equals 1 mile when the aircraft is 60 miles from the station, so if you are 60 miles out with a full scale, you are 10 miles off course. If 30 miles out and a half scale (5 ), you would be 2.5 miles off course. Vr = 1.15 x Vs TAS = IAS (kts) + FL 2 FL 300, IAS = 240 TAS = 240 + 150 = 390 Flight Planning / Navigation Best Cruise climb speed is the difference between Vx and Vy and add this to Vy. Eg Vx = 65, Vy 75 Difference is 10kts 10kts + Vy 75 =85 Enroute Wind Correction Angle first find the Max Wind Correction Angle (WCA max) as if the wind were a direct 90 crosswind. For practical purposes assume max drift is at 60 to track WCA (max) = Wind Velocity NM per minute Wind = 20 Airplane Speed = 120 WCA(max) = 20 2 WCA(max) = 10 Performance speeds such as maneuvering, approach, and climb speeds are often given in the POH only for operations

Now find the Wind Correction Angle WCA for the actual forecast wind direction. WCA = WCA(max) x sine of the wind angle E.g.Wind 330 at 20 kts Course 360 Wind Angle = 10 x 0.5 (sine 30 ) WCA = 5 Heading = 355 Estimation of Wind Drift and Groundspeed To estimate drift for each 10 of windspeed that you are flying. Maximum drift is when the wind is 90 to the track. For practical purposes assume max drift is at 60 to track To estimate max drift assess the wind angle as a proportion of 60. Airspeed 60 70 80 90 100 110 120 Max Drift for each 10kt of 10 9 7 6 6 5 5 4 Wind Examples: Air Speed 100kts 100kts Heading 360 360 Wind 300 / 20kts 330 / 10 Wind Angle = More than 60 Wind Angle 30 (½ of Max Drift) Max Drift = 12 3 150 OAT = 13 C ISA = 3 C DA = 6000 + 120 (13-3) DA = 6000 + 120 * 10 DA = 6000 + 1200 DA = 7200 Weight has no effect on max glide range or ratio. Weight has an effect on max glidespeed. Reduce glide speed by 5% for each 10% decrease in gross weight. Tailwinds increase glide range, Headwinds decrease glide range. 10-25 of flaps add more lift than drag; 25-40 flaps add more drag than lift. Maximum glidespeed = Minimum Drag = Maximum endurance, remember this if low on fuel. The radius of a standard rate turn in metres = TAS x 10 Most structural icing occurs between 0 to -10 Dew point of 10 = Enough moisture for a severe thunderstorm. The ability of the atmosphere to hold moisture doubles with each 11 Celsius temperature rise. Difference in Dew point and temperature x 400ft is where you will find visible moisture. i.e. cloud base. When the wind aloft is more southerly and stronger than

Quick Tips On a multi engine aircraft a 50% loss of thrust results in a loss of 80% of climb performance. On an ILS approach One dot on the Localiser is approximately 300ft at the outer marker. 100ft at the middle marker. One dot on the glide slope is approximately 50ft at outer marker and 8ft at the middle marker. ADF Flying 1 deviation of the ADF needle is equal to 100ft per NM Compass Flying Overshoot North Undershoot South UNOS Compass Flying - Accelerate North Decelerate South ANDS Weight & Balance An airplane will be more stable and stall at a higher airspeed with a forward CG location. Weight & Balance An airplane will be less stable and stall at a lower airspeed with an aft CG location. Density Altitude increases or decreases 120ft for each 1 C that varies from ISA DA = PA + 120 (OAT ISA) DA = Density Altitude PA = Pressure Altitude OAT = Outside Air Temperature ISA = international Standard Temperature E.g. PA = 6000 To estimate Ground Speed Angle of Wind Up to 30 45 60 75 90 Proportion of total wind on Nose or Max ¾ ½ ¼ Nil Tail Examples Windspeed 20kts 10kts 20 Wind angle 60 60 75 Groundspeed ±10kts ± 5 ± 5kts Timing = ±10 Secs ± 5 Secs ± Secs Increase speed by 10% when flying into a headwind and decrease by 5% with a tailwind For maximum TAS and Range, Load the airplane as close to the aft Centre of Gravity limit as allowable Descent Planning One in Sixty Vertical Navigation. One degree climb or descent angle closely equals 100 / Nm. This is because 1 Nm in 60 Nm is also 6076 / 60 Nm = 100 / Nm Glide Angle = 3 Distance to Runway = 1 Nm 3 x 100 = 300ft Height above runway

To determine the NM distance to start a 3 enroute descent. Divide the altitude to lose ( in Flight Levels) by 3 NM = Flight Level 3 e.g. Altitude to lose = 6,000 (FL 60) 60 / 3 = 20 nm to start descent OR To determine the NM distance to start a 3 enroute descent. Multiply to altitude to descend (in 1000 s) by 3 and add 10% 6 x 3 = 18 add 10% = 1.8 (2) 18 + 2 = 20 nm For a 3 Rate of Descent (ROD) multiply your groundspeed by 5. Descent Groundspeed = 120 120 x 5 = 600 fpm ROD OR For a 3 Rate of Descent (ROD) take half your groundspeed and add a zero. Descent Groundspeed 120 x ½ = 60 600 fpm ROD Climb Planning Add 1 minute to your flight plan for every 1000 climb to cruise altitude. Cruise altitude = 8000 Time to add = 8 mins to ETE To find the Rate of Climb required (ROC) multiply the % gradient by the groundspeed. % Gradient = 3.3% Groundspeed = 120 3.3 x 120 = 400fpm To find the Feet per Minute (FPM), multiply the gradient % by 60 3.3 % Gradient x 60 = 200 fpm Approach & Landing A 10% change in airspeed will cause a 20% change in stopping distance. A narrow runway may give the appearance of being longer, a wide runway may give the appearance of being short. A slippery or wet runway may increase your landing distance by 50%. Use Vso x 1.3 (Vref) for approach speed over the threshold. Plan to touchdown in the first ⅓ of the runway or go around. For each knot of airspeed above Vref over the numbers, the touchdown point will be 100ft further down the runway. For each 1000 increase in field elevation above Sea Level, stopping distance increases by 4%.