Aircraft Performance Calculations: Descent Analysis. Dr. Antonio A. Trani Professor

Similar documents
Airbus Series Vol.2 (c) Wilco Publishing feelthere.com

SULAYMANIYAH INTERNATIONAL AIRPORT MATS

Flying The Boeing

Flying The Boeing Advanced

Exploration Series. AIRPLANE Interactive Physics Simulation Page 01

Flying The Embraer Brasilia (EMB-120)

FLIGHT PERFORMANCE AND PLANNING (2) PERFORMANCE

Detailed study 3.4 Topic Test Investigations: Flight

Compiled by Matt Zagoren

Civil Air Patrol Auxiliary of the United States Air Force

Climbs, descents, turns, and stalls These are some of the maneuvers you'll practice, and practice, and practice By David Montoya

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool)

3rd Eurocontrol CDO Workshop

SUBPART C - STRUCTURE

WING PROFILE WITH VARIABLE FLAP

Straight and Level. Basic Concepts. Figure 1

Aviation Merit Badge Knowledge Check

ROSE-HULMAN INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Mini-project 3 Tennis ball launcher

In parallel with steady gains in battery energy and power density, the coming generation of uninhabited aerial vehicles (UAVs) will enjoy increased

JAR-23 Normal, Utility, Aerobatic, and Commuter Category Aeroplanes \ Issued 11 March 1994 \ Section 1- Requirements \ Subpart C - Structure \ General

PRIVATE PILOT MANEUVERS Practical Test Standards FAA-S A

Performance. Saturday, December 22, 2012

Performance/Pilot Math

Takeoff Performance. A 1 C change in temperature from ISA will increase or decrease the takeoff ground roll by 10%.

NORMAL TAKEOFF AND CLIMB

PERFORMANCE MANEUVERS

A Different Approach to Teaching Engine-Out Glides

AIR NAVIGATION. Key Revision. Press F5 to start.

2. At a ground speed of 184 knots, what will be the time required to cover 288 nautical miles? a. 86 minutes b. 90 minutes c. 94 minutes d.

Beechcraft Duchess 76 Maneuver Notes

CIVIL AIR PATROL United States Air Force Auxiliary Cadet Program Directorate. Cessna 172 Maneuvers and Procedures

Commercial Maneuvers for PA28RT-201

POWER-OFF 180 ACCURACY APPROACH AND LANDING

The Fly Higher Tutorial IV

Learning. Goals Speeds. Air speed. the air ASI. figure 1. Page 1 of 6. Document : V1.1

PROCEDURES GUIDE CESSNA 172N SKYHAWK

One of the most important gauges on the panel is

Welcome to Aerospace Engineering

VII.H. Go-Around/Rejected Landing

Jet Propulsion. Lecture-17. Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati

IVAO International Virtual Aviation Organization Training department

CESSNA 172-SP PRIVATE & COMMERCIAL COURSE

SUPPLEMENT SEPTEMBER 2010 HIGH ALTITUDE TAKEOFF AND LANDING (ABOVE 14,000 FEET PRESSURE ALTITUDE) MODEL AND ON 68FM-S28-00 S28-1

A Performanced Based Angle of Attack Display

Cessna 172R Profiles

Cessna 172 Profiles. TRAFFIC PATTERNS (Check Chart Supplement prior to flight) Index

1. You are flying near your favorite VOR. You experience 15 of bearing change in 11 minutes 36 seconds. How far are you from the station?

Student Pilot s Guide

Aerodynamic Terms. Angle of attack is the angle between the relative wind and the wing chord line. [Figure 2-2] Leading edge. Upper camber.

Visualized Flight Maneuvers Handbook

Bonanza/Debonair Pilots

CASE STUDY FOR USE WITH SECTION B

1. Which one of the following is a vector quantity? A. time B. speed C. energy D. displacement

Lab 5: Forces on Submerged Objects

5. With winds aloft of 112 at 34 knots, TAS of 265 km/hr, and a TC of 057, what is the groundspeed and wind correction angle (WCA)?

Flight Profiles are designed as a guideline. Power settings are recommended and subject to change based

Mountain Fury Mountain Search Flying Course Syllabus

Aero Club. Introduction to Flight

Flight Dynamics II (Stability) Prof. Nandan Kumar Sinha Department of Aerospace Engineering Indian Institute of Technology, Madras

THE AIRCRAFT IN FLIGHT Issue /07/12

SCT Trajectory & Separation Optimization

Climb Calculations. Points to note: Climb time, fuel burn, and distance covered will be greater in the following conditions.

Cessna 172S Skyhawk Standardization Manual

V mca (and the conditions that affect it)

VFR Circuit Tutorial. A Hong Kong-based Virtual Airline. VOHK Training Team Version 2.1 Flight Simulation Use Only 9 July 2017

See the diagrams at the end of this manual for judging position locations.

HOW TO FLY AIRPLANES

Project 1 Those amazing Red Sox!

Transportation Engineering II Dr. Rajat Rastogi Department of Civil Engineering Indian Institute of Technology - Roorkee

Implementing Provisions for Art. 411 of the ICR Ski Jumping

TECHNIQUES FOR OFF AIRPORT OPERATIONS

HOW TO FLY AIRPLANES

HOW TO FLY AIRPLANES BASIC AIRCRAFT CONTROL. Robert Reser, Publisher Tempe, Arizona

Uncontrolled copy not subject to amendment. Principles of Flight

Flight Corridor. The speed-altitude band where flight sustained by aerodynamic forces is technically possible is called the flight corridor.

Noise Abatement Takeoff 1 Close In Profile

This IS A DRAG IS IT A LIFT!!!!! Aerodynamics

Pressure and Density Altitude

Investigation on 3-D Wing of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent

6.0 OPERATING CONDITIONS. 6.1 Jet Engine Exhaust Velocities and Temperatures 6.2 Airport and Community Noise

ILS APPROACH WITH A320

LAPL(A)/PPL(A) question bank FCL.215, FCL.120 Rev PRINCIPLES OF FLIGHT 080

Civil Air Patrol Auxiliary of the United States Air Force

MOUNTAIN FLYING TEST

Time-based Spaced Continuous Descent Approaches in busy Terminal Manoeuvring Areas

Advisory Circular (AC)

MANEUVERS GUIDE. Liberty Aerospace 1383 General Aviation Drive Melbourne, FL (800)

Cessna 152 Standardization Manual

Preliminary Design Review (PDR) Aerodynamics #2 AAE-451 Aircraft Design

EF 151 Exam #2 - Spring, 2016 Page 1 of 6

Climbing and Descending

What is stall? How a pilot should react in front of a stall situation

I2102 WORKSHEET. Planned Route: Takeoff: KNSE, RWY 32 Altitude: 12,000 Route: RADAR DEPARTURE. Syllabus Notes None. Special Syllabus Requirements None

LAPL/PPL question bank FCL.215, FCL.120 Rev PRINCIPLES OF FLIGHT 080

Honors Assignment - Vectors

XI.C. Power-Off Stalls

Descent Planning with a Mechanical E6-B Flight Computer

College of Engineering

Mountain Fury Mountain Search Flying Course Syllabus Fourth Sortie : High Altitude Search

The Physics of Flying! Lecture 27.

Transcription:

Aircraft Performance Calculations: Descent Analysis CEE 5614 Analysis of Air Transportation Systems Dr. Antonio A. Trani Professor

Aircraft Descent Performance The top of descent point typically starts 80-120 miles away from the destination airport (depending upon the cruise altitude assigned) A descent on commercial transport aircraft is initiated by setting the engine thrust to a very low power condition (i.e.,idle thrust) The analysis done for climb is now reversed Once in the airport terminal area, thrust adjustments are necessary to compensate for altitude holds or flap configuration changes as needed 2

Sample Descent Profile (LAX Data) Shown are sample descent profiles for Boeing 767-300 flying into LAX International airport Clearly, not all aircraft fly the same descent profiles Altitude holds used by Air Traffic Control to separate traffic 3

Arrival Flight Profiles into the LAX Airport Terminal Area Shortest Path Red dots = entry points into the terminal area LAX Airport Actual Path!" 4

Aircraft Descent Performance Analysis The pilot reduces thrust to near idle conditions If we let the reduced thrust be Td, then the analysis done for the climb procedure applies to the descent The most economical descent would be a continuous descent flown at idle conditions until a point where flaps and landing gear are deployed. At such point adjustments in thrust are required to maintain a safe rate of descent in the final approach 5

Example - Aircraft Descent Performance Controlling the Speed Profile Very large capacity transport aircraft (http://128.173.204.63/ courses/cee5614/cee5614_pub/airbusa380_class.m) The aircraft descent speed is controlled by the last two lines of data in the aircraft data file Vdescent is the vector of descent speed for altitudes (altc) altc is a vector of altitudes to complete the table function of speed vs altitude For example: The aircraft below descends at 300 knots indicated at the top of descent. However below 3000 meters, the aircraft slows down to 250 knots or below. 6

Example - Very Large Capacity Aircraft Data File An aircraft similar in size and performance as the Airbus A380 Four turbofan engines each developing 34,400 kg (338,000 N) at sea level. Assume idle thrust produces 1/10 of the full continuous thrust Top of descent mass is 400,000 kg. Airbus A380 taxies to the gate at LAX (A.A. Trani) 7

Descent Analysis Calculation Procedure Step 1: Estimate true airspeed using the atmospheric model Step 2: Estimate the lift coefficient needed to sustain flight using the basic lift equation Step 3: Estimate drag coefficient Step 4: Estimate total drag (D) Step 5: Estimate the reduced thrust produced by the engines at altitude (Td) Step 6: Find the rate of descent (dh/dt) 8

Sample Calculations for Two Aircraft States h = 33,000 feet v = 300 knots IAS h = 5,000 feet v = 240 knots IAS 9

Aircraft Descent Performance 33,000 feet (10,061 m) and 300 knots IAS Using the standard expression to estimate the true mach number of the aircraft at altitude, M true = 5 ρ 0 ρ 1+ 0.2 V IAS 661.5 2 3.5 1 +1 0.286 1 The true mach number is 0.751, the speed of sound at 10,061 meters is 299.2 m/s and the density of air is 0.41 kg/cu. m. The true airspeed (TAS) is 224.65 m/s or 437 knots Use the fundamental lift equation to estimate the lift coefficient under the known flight condition L = mg = 1 2 ρv 2 SC l C l = 2mg ρv 2 S 10

Aircraft Descent Performance 33,000 feet and 300 knots IAS The lift coefficient needed to maintain steady descent is, C l = 2mg ρv 2 S = 2 * (400,000)(9.81) (0.41)(224.65) 2 (858) The lift coefficient is non-dimensional The drag coefficient can be calculated using the standard parabolic drag polar model C d = C do + C di = C do + (kg)(m / s 2 ) (kg / m 3 )(m / s)(m 2 ) = 0.4421 C 2 l π ARe = 0.020 + 0.4421 2 π(9.0)(0.84) = 0.0282 Note that the value of Cdo is found by interpolation in the table function relating Cdo and Mach number (Cd is non-dimensional) 11

The total drag is, Aircraft Climb Performance 33,000 feet and 300 knots IAS D = 1 2 ρv 2 SC d = 1 2 (0.410)(224.65)2 (858)(0.0282) = 255,660N The residual thrust developed is assumed to be 1/10 of the thrust produced at altitude for the given Mach number and altitude The calculation of thrust is done in the same way as before. However, the solution is multiplied by 1/10 (assumed idle residual thrust) as shown in the next page 12

Aircraft Descent Performance 35,000 feet and 300 knots IAS T 0,M = T 0,M =0 λm true T 0,M = 338,000 175,560M true T 0,M = 338,000 175,560(0.751) T 0,M = 206,150 Newtons T h,m = T 0,M ρ h ρ 0 T h,m = 206,150 0.410 1.225 T h,m = 72,087 Newtons m 0.96 But thrust is just 1/10 of that produced by the engine, therefore, T produced = 1 10 T h,m = 7,209 Newtons For four engines, T total = nt produced = (4)(7,209) = 28,835 Newtons 13

Aircraft Descent Performance 33,000 feet and 300 knots IAS The rate of descent of the aircraft can be calculated, dh dt = (T d D)V mg dh dt = = (28,835 255,660)(224.65) 400, 000(9.81) dh dt = 12.98 m / s (N N) kg(m / s 2 ) This is equivalent to 779 meters per minute or 2,556 feet per minute This descent rate is typical of transport aircraft at the TOD point The process is now repeated for state 2 14

Aircraft Descent Performance 5,000 feet and 240 knots IAS The true mach number is 0.390, the speed of sound is 334.3 m/s and the density of air is 1.056 kg/cu. m. The true airspeed (TAS) is 130.4 m/s or 253.4 knots The lift coefficient needed to maintain flight at 130.4 m/s is, C l = 2mg ρv 2 S = 2 * (400,000)(9.81) (1.056)(130.4) 2 (858) The drag coefficient at 5,000 feet and 240 knots (IAS) can be calculated using the standard parabolic drag polar model C d = C do + C di = C do + (kg)(m / s 2 ) (kg / m 3 )(m / s)(m 2 ) = 0.5094 C 2 l π ARe = 0.020 + 0.5094 2 π(9.0)(0.84) = 0.0309 Note that the value of C do at Mach 0.390 is 0.020 15

The total drag is, Aircraft Descent Performance 5,000 feet and 240 knots IAS D = 1 2 ρv 2 SC d = 1 2 (1.056)(130.4)2 (858)(0.0309) = 238,230N The rest of the process can be easily computed Repeating the same steps outlined here we can derive a rate of descent equation for various altitudes The analysis presented in the following pages includes variations in aircraft weight as the the aircraft descents from teh Top of Descent (TOD) point to the airport elevation 16

Rate Of Descent Analysis 180 knots Indicated Airspeeds (IAS) used in the descent profile 210 knots 220 knots 240 knots 250 knots 260 knots 300 knots 17

Descent Profile for Very Large Capacity Aircraft Top of Descent 18

Descent Profile for Very Large Capacity Top of Descent Aircraft 19

Observations Rate of descent is controlled by the speed profile and the assumed residual thrust Typical rates of descent vary from 2600 (at TOD) to 700 feet per minute (at lower altitudes) The final approach phase is not well represented in this analysis because flaps and landing gear are usually deployed below 5,000 feet and change the character of the drag coefficient The aircraft mass changes by 1,526 kg in the descent. This a relatively small amount of fuel for a vehicle that could carry 182,000 kg of fuel at takeoff The aircraft performs a continuous descent from TOD to the airport elevation and travels 112 nautical miles 20

Implications for Real-world Aviation Operations The performance of the aircraft has profound effects in real-world flight planning applications Obstacle accountability analysis Obstacle clearance procedures in the terminal area (before landing) Current terminal operations do not support continuous descent approaches but for a few, isolated flights Continuous descent profiles are expected to save fuel and time once NextGen technologies are implemented 21

Use of Matlab Code The previous analysis has been done using the UnrestrictedDescentAnalysis.m program This main file integrates numerically the equations of motion of the aircraft Four state variables: Altitude (y(1)) Aircraft weight (y(2)) Distance traveled along path (y(3)) Distance traveled along the plane of the earth (y(4)) The initial conditions of the states are specified in the file under line 54 yn = [h_tod Mass_init 0 0]; % Vector of initial values of state variables 22

UnrestrictedDescentAnalysis.m Main program to execute the descent analysis Employs Matlab Ordinary Differential Equation solver (ODE15s) Function Calls: fdescent_06.m - function that contains the equations of motion of the aircraft in the descent phase densityaltitudeoffisa.m - function to estimate the atmospheric conditions for both ISA and non-isa conditions drag03.m - function to estimate the aircraft drag at any altitude (h) and Mach number (M) thrust_calculation.m - fundtion to estimate the thrust produced by the engine for any Mach number and altitude (h) condition 23

UnrestrictedDescentAnalysis.m Inputs to the Program Aircraft file to be used in analysis (line 36) Speed profile. Descent speed profile specified as a table function in the aircraft file (lines 30 and 31 in aircraft file) Initial aircraft states (lines 38-41 in main program) altitude, mass, distance traveled along path and distance traveled along a flat earth 24

UnrestrictedDescentAnalysis.m Outputs of the Program Results of the four aircraft state variables in the climb profile (altitude, mass, distance traveled along path and distance along flat earth) Plots of state variables vs. time Plot of state variables vs. distance flown 25