The first demersal trawl survey of benthic fish and invertebrates in the Beaufort Sea since the late 1970s

Size: px
Start display at page:

Download "The first demersal trawl survey of benthic fish and invertebrates in the Beaufort Sea since the late 1970s"

Transcription

1 DOI /s ORIGINAL PAPER The first demersal trawl survey of benthic fish and invertebrates in the Beaufort Sea since the late 1970s Kimberly M. Rand Elizabeth A. Logerwell Received: 21 May 2010 / Revised: 27 September 2010 / Accepted: 28 September 2010 Ó US Government 2010 Abstract This study represents the first demersal trawl survey of marine fishes and invertebrates in offshore waters of the Beaufort Sea since Species composition, distribution, and abundance of demersal fish and benthic invertebrates were assessed with standard methods and demersal trawl gear by the Alaska Fisheries Science Center. Fishes made up 6% of the total catch weight, and invertebrates made up the remaining 94% of the catch weight. A total of 32 species of fish were identified, two taxa were identified to genus and one to family, and 174 taxa of invertebrates were identified. The most abundant demersal fishes were polar cod (Boreogadus saida), eelpouts (Lycodes spp.), Bering flounder (Hippoglossoides robustus), and walleye pollock (Theragra chalcogramma). The most abundant invertebrates were notched brittle stars (Ophiura sarsi), snow crab (Chionoecetes opilio), mussels (Musculus spp.), and the mudstar (Ctenodiscus crispatus). We documented or confirmed extension to the known ranges of four species of fishes: walleye pollock, Pacific cod (Gadus macrocephalus), festive snailfish (Liparis marmoratus), and eyeshade sculpin (Nautichthys pribilovius). We also documented the presence of commercialsized snow crab (Chionoecetes opilio), which has not previously been recorded in the North American Arctic. Keywords Beaufort Sea Marine fishes Snow crab Polar cod Boreogadus saida K. M. Rand (&) E. A. Logerwell Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, 7600 Sand Point Way N.E., Seattle, WA 98115, USA kimberly.rand@noaa.gov Introduction Trends of ocean warming and declines in Arctic sea ice increase the potential for the northward migration of fish and invertebrate species from the North Pacific ecosystem to subarctic and Arctic ecosystems (IASC 2004; Grebmeier et al. 2006a, b; Mueter and Litzow 2008; Mueter et al. 2009). A change from Arctic to subarctic conditions in the northern Bering Sea is taking place, with a shift from benthic communities to communities dominated by pelagic fish species (Grebmeier et al. 2006a, b). Similar changes have already been documented in many Atlantic and North Sea fish communities, which has shown a northward trend in distributions over the last several decades (Beare et al. 2004; Perry et al. 2005). The effects of recent recordbreaking ice recessions in the Arctic (Stroeve et al. 2007, 2008; Greene et al. 2008; Boe et al. 2009) on marine fish communities are unknown because data are limited or nonexistent. In addition to ocean warming, Arctic shelves are likely to be impacted by exploration and development of oil and gas resources (MMS 2008; Gautier et al. 2009). Currently, several million acres have been leased for oil and gas exploration in the Chukchi and Beaufort seas (MMS 2008). There are several potential impacts on marine organisms as a result of oil and gas exploration, such as seismic exploration (Engås et al. 1996; Slotte et al. 2004), and building and operating subsea pipelines or oil spills (Boesch and Rabalais 1987). In the context of climate change and the shifting of marine ecosystems, increases in anthropogenic activities such as oil and gas development, and potential fisheries development, we conducted a survey of the Beaufort Sea shelf in Our aim was to contribute to a baseline for future monitoring of offshore marine fish and invertebrate communities in this Arctic ecosystem.

2 Fig. 1 Demersal trawl locations and transects, Beaufort Sea, August Demersal trawl numbers are also shown The first survey of Beaufort Sea offshore marine fishes was conducted opportunistically from a US Coast Guard cutter during 1977 (Frost and Lowry 1983). The survey focused on fish and benthic invertebrates in the offshore from west of Point Barrow to the Canadian Beaufort Sea border (Frost and Lowry 1983). In 1977, polar cod (Boreogadus saida) was the dominant fish species captured, followed by the Canadian eelpout (Lycodes polaris) and twohorn sculpin (Icelus bicornis). The majority of subsequent fish studies in the Beaufort Sea focused on anadromous fishes in estuaries, inlets, river deltas, or lagoons (Bond and Erickson 1997; Gallaway et al. 1997; Jarvela and Thorsteinson 1997; Underwood et al. 1997; Moulton and Tarbox 1987). A few studies have examined the occurrence of marine fishes in nearshore waters (\20 m deep), often in the transition zone between marine and brackish waters (Craig et al. 1982; Craig 1984; Moulton and Tarbox 1987; Jarvela and Thorsteinson 1999). The 2008 Beaufort Sea survey was the first dedicated survey of offshore marine fishes and invertebrates using demersal trawl gear and standard survey methods as conducted by the National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center (AFSC). This technique allowed the density of demersal fishes and benthic invertebrates to be quantified in a way that is comparable to contemporary standardized surveys of the Bering and Chukchi seas. The 2008 survey was designed to document the distribution and abundance of key ecological species, particularly polar cod (Boreogadus saida). Polar cod are important prey for seabirds and marine mammals and are in turn important consumers of secondary production (Frost and Lowry 1981, 1983; Bradstreet et al. 1986; Jarvela and Thorsteinson 1999). To assess differences and similarities between Arctic and North Pacific ecosystems, we compare this survey s results with the 2008 NMFS-AFSC demersal survey of the Bering Sea (Lauth and Acuna 2009) and the most recent NMFS demersal survey in the Chukchi Sea (Barber et al. 1997). To identify possible changes in the Beaufort Sea over the last 30 years, we compare our results to those of the 1977 Beaufort Sea survey (Frost and Lowry 1983). We also examine our results in the context of known species ranges and document northerly range extensions for some species. Materials and methods Survey area The survey was conducted between August 6 and 22, 2008, aboard the F/V Pacific Explorer. The survey area started at approximately 71 N and 155 W and extended out to 72 N and 152 W in the Beaufort Sea, Alaska (Fig. 1). There were 26 demersal trawls of which 22 were successful (Table 1). Bottom depths of successful trawls ranged from 40 to 470 m. Distance fished for each bottom trawl ranged from 0.4 km to 3.6 km (Table 1). An attempt was made to evenly distribute trawl station locations along transect lines

3 Table 1 Demersal trawls conducted during the 2008 Beaufort Sea survey Trawl no. Start latitude (DD) Start longitude (DD) Bottom depth (m) Distance fished (km) Bottom temperature C Tow time (min) Lined or unlined net Total catch weight (kg) Comments Lined No catch Lost codend Lined Lined Net tore, replaced Lined Lined Lined Lined Lined Lined Lined Lined Lined Lined Unlined No catch Lost whole net Unlined No catch Lost codend Unlined Unlined Unlined Unlined No catch Large net tear Unlined Unlined Unlined Unlined Unlined Unlined Unlined Latitude and longitude in decimal degrees, bottom depth (m), distance fished (km), bottom temperature ( C), tow time (minutes from trawl brake set to haul back), net type (lined or unlined), and total catch weight (kg) for all demersal trawls conducted. No catch in the Total catch weight column indicates the gear was lost or damaged resulting in no catch sample (Fig. 1). However, due to the presence of sea ice during the first 6 days of the survey along with areas of untrawlable habitat (e.g. boulders, high relief), demersal trawls were limited to areas that would minimize gear loss or damage. Survey design To obtain abundance estimates of demersal fishes and benthic invertebrates, all trawls were conducted in concordance with standards set by the AFSC s Resource Assessment and Conservation Engineering (RACE) Division (Stauffer, 2004). The net was an Eastern otter trawl built to standards detailed in Stauffer (2004), with a 25.3-m (83 ft) headrope and a 34.1-m (112 ft) footrope. In addition, a small-mesh liner was used for trawls 1 13 in order to catch relatively small Arctic fishes. The mesh liner was 3.8 cm and covered the entire bottom body of the net, the wings, the top and bottom of the intermediate (i.e., mesh between the trawl doors and codend), and the codend. The original field plan was to conduct the entire survey with the lined nets. However, the nets were irreparably damaged during the first half of the survey, so trawls were conducted with unlined nets. To address the change in gear, we returned to two stations previously sampled with the lined net and repeated the trawl with the unlined net. We refer to these two sets of trawls as paired trawls because they occurred at the same location, but they were sampled 4 days apart. The results from the paired trawls are presented below, but statistical analyses of fish diversity and abundance were not made within each pair of trawls, because only one observation with each gear type was made. A comparison between the paired trawls was not reasonable due to depth differences among the two stations (Table 1).

4 All analyses are presented by lined and unlined net types. With the exception of one station, all the stations between 100 and 500 m bottom depth were sampled with the lined net and tows were 15 min. Twelve stations in the 40- to 100-m depth range were sampled with the unlined net and tows were 5 min. This confounding of net type and depth was not intentional but resulted from the fact that ice covered the shallow depths early in the survey when the lined nets were in use. Tow time was reduced later in the survey to minimize damage to the remaining nets. Net height and width were measured with Netmind acoustic net mensuration equipment during trawling operations (Northstar Technical Inc., St. John s, Newfoundland). Trawl footrope contact with the seafloor was monitored at 1-s intervals using a calibrated bottom contact sensor (BCS). The BCS consisted of a tilt sensor inside a stainless-steel pipe attached at the center of the footrope. Bottom contact data were used to estimate distance fished. Survey sampling The entire catch for each trawl (with the exception of trawl 6, see below) was weighed on a motion-compensated marine Marel scale. When the total catch weight was \200 kg, the entire catch (fish and invertebrates) was sorted to the lowest possible taxonomic level, counted, and weighed (trawls 16, 18, and 20 26). However, due to large catch sizes and the high number of taxa, the most common method of sampling the trawl catch was sub sampling (trawls 2 13 and 17). A random subsample of the entire catch was weighed, and fishes were sorted to the lowest taxonomic level possible. In the case of invertebrates, a sub-subsample (i.e. a sample of the subsample) was taken due to the high taxa diversity and quantity of invertebrates caught. Within the sub-subsample of invertebrates, taxa were sorted to the lowest taxonomic level, counted, and weighed. Trawl 6 was estimated to be between 9 and 10 metric tons, too large to weigh the catch in its entirety. The volume of the codend was estimated using the formula for the frustum of a cone where h is the height of the cone, R is the radius at the lower base of the cone, and r is the radius at the upper base of the cone: V ¼ ph 3 R2 þ Rr þ r 2 : ð1þ Using this formula and a catch density estimate, the weight of the entire catch was calculated. A subsample was then removed and processed as above. Net width and distance fished were used to calculate area swept, which was then used to determine catch per unit effort (CPUE). Mean CPUE was estimated for all fish taxa and the top 24 invertebrate taxa for both lined and unlined net types. Catch per unit effort (CPUE) was calculated as both kilograms and numbers per hectare from the weight or number of each species or taxon divided by the area swept for each trawl. Because the net liner likely increased the catch density of fish, the CPUE (kg/ha or No./ ha) for each trawl was averaged separately for each net type (lined and unlined). Zero catches were included in the CPUE calculations. All fish taxa found in the subsamples were collected for confirmation of field identification in the AFSC s taxonomic laboratory (J. Orr and D. Stevenson, AFSC, pers. comm.). All specimens were photographed with the trawl number for proper assignment when species identification was verified or changed. Specimens were counted, weighed, and preserved in a 10% formaldehyde and seawater solution buffered with sodium bicarbonate. Biological sampling Biological information was collected from polar cod (Boreogadus saida) and walleye pollock (Theragra chalcogramma). For each trawl, up to 150 polar cod were randomly collected from the catch subsample, and the sex and fork length (nearest 1.0 cm) were recorded. In addition, for each trawl, a subset of 25 of the 150 polar cod were weighed to the nearest gram, and the otoliths were excised and preserved in a 95% solution of ethyl alcohol. Also, the stomachs and ovaries were removed for future analysis. All walleye pollock in the trawl subsamples were sexed, the fork length measured, weighed, and the otoliths were removed for aging. Snow crabs (Chionoecetes opilio) were randomly selected from three of the trawls to obtain measurements. Carapace length, width (mm), weight (g), and sex were recorded. Also, average individual crab weight for all trawls was calculated from the total crab catch weight and numbers found in the subsample. Ecosystems comparisons and historical observations To assess the differences and similarities between Arctic ecosystems (e.g., Chukchi and Beaufort seas) and North Pacific ecosystems (e.g., Bering Sea), we compare our results with those from recent surveys of the Chukchi and Bering seas. Demersal trawl surveys of the Bering Sea are conducted annually by the AFSC. The most recent comparable demersal trawl survey of the Chukchi Sea was conducted in 1990 (Barber et al. 1997). All three surveys used the same gear and standardized methods. Only stations that employed the unlined nets are shown for the 2008 Beaufort Sea survey. Sample sizes between the surveys were highly unbalanced (n = 10 in the Beaufort Sea vs. n = 375 in the Bering Sea), so 95% confidence intervals for mean CPUE from the Bering Sea survey are shown for

5 comparison to point estimates of CPUE for both the Beaufort and Chukchi sea surveys in lieu of a formal statistical comparison (i.e., ANOVA). The data necessary to compute confidence intervals for the Chukchi survey CPUE were not presented in Barber et al. (1997). Finally, we compare our results with those of the 1977 Beaufort Sea survey (Frost and Lowry 1983). The 1977 survey extended from 164 W to 141 W. Only seven of the 33 stations visited in August September 1977 occurred in the 2008 Beaufort Sea survey area. However, we compare the 2008 survey results with those reported from all 33 stations sampled in A statistical comparison between the survey in 1977 and 2008 was not possible due to the confounding effects of gear type, and area surveyed, so we examined the differences in fish catch between the two surveys qualitatively. Results Abundance and distribution of marine fishes Fishes were 6% of the total weight captured in the trawls and 34 taxa of fishes were identified (Table 2). Polar cod (Boreogadus saida) was 92% of the total number of fish captured and 80% of the total weight. The second most abundant taxon were eelpouts (Lycodes spp.) that made up 3.5% of the total number of fishes captured and 13% of the total weight (Table 2). Approximately six species of sculpins were identified, but collectively their total CPUE was less than 0.1 kg/ha. Together, Bering flounder (Hippoglossoides robustus) and Greenland halibut (Reinhardtius hippoglossoides) made up only 0.3% of the total numbers of fish captured in the trawls. The leatherfin lumpsucker (Eumicrotremus derjugini) and fish doctor (Gymnelus viridis) each had a CPUE of 0.01 kg/ha or less and only occurred in the 40- to 100-m depth range (Table 2, unlined net). Polar cod was the only fish species that occurred at all trawl stations. The highest CPUE (kg/ha) for polar cod was on the shelf between 100 and 500 m deep, in the westernmost half of the survey area. Polar cod CPUE was consistent from west to east ( kg/ha) along the deepest part of the survey area (between the 300 and 500 m depth contours). Walleye pollock distribution was similar to that of polar cod, but pollock CPUE values were an order of magnitude smaller (0 6.4 kg/ha). The highest pollock CPUE was found in the western part of the survey area, primarily in the 100- to 500-m depth range. The CPUE (No./ha) for fish found in the paired trawls is summarized in Table 3. For all taxa of fishes, the CPUE was generally larger in the lined net catch than the unlined net catch. In addition, 11 of the 15 taxa that were captured in trawl 12 with the lined net were missing in the corresponding paired trawl (trawl 24) using the unlined net. Polar cod and pollock biological characteristics In total, 1,494 polar cod were sexed and lengths measured (701 males and 793 females). In addition, a subset of 730 polar cod were individually weighed and their otoliths were collected (331 males and 399 females). Of these 730 polar cod that were aged, 59% were age-1, 33% were age-2, 7% were age-3, and 1% were age-4. The mean length for polar cod for both sexes and all trawls combined was 113 mm (±28 SD) (Fig. 2). The mean length for males was 108 mm (±23 SD) and for females 120 mm (±31 SD) (Fig. 2). The mean length for polar cod captured in the lined nets was 118 mm (±30 SD). The mean length for polar cod captured in the unlined nets was 104 mm (±20 SD). The mean individual weight for polar cod in all trawls combined was 12 g (both sexes combined; ±10 SD). The mean individual weight for males was 10 g (±6 SD) and for females was 15 g (±11 SD). A length-weight relationship for polar cod (males and females combined) was determined using Ricker s (1973) model: weight (g) = length (mm) Mean weight (and lengths) for polar cod exhibited spatial variation. Larger cod, with a mean weight between 12 and 30 g (mean length of 118 cm), were primarily distributed in the 100- to 500-m depth range. Smaller cod, with a mean weight less than 12 g (mean length of 104 cm), were primarily distributed in the 40- to 100-m depth range (Fig. 3). A total of 99 walleye pollock were collected from the trawl subsamples (51 males, 44 females, 4 unsexed). Mean fork length for walleye pollock was 145 mm (both sexes combined; ±32 SD) (Fig. 4). The mean length for male pollock was 155 mm (±43 SD) and for females, 170 mm (±45 SD) (Fig. 4). There were nine pollock age-1, 71 pollock age-2, 11 pollock age-3, and two pollock age-4 (6 specimens could not be aged) (Fig. 5). Length-at-age is shown in Fig. 5, along with Bering Sea walleye pollock collected in The length for age-2 pollock in the Beaufort Sea survey ranged from 110 to 203 mm, whereas the length for age-2 pollock in the Bering Sea ranged from 160 to 300 mm. Invertebrates Invertebrates made up 94% of the total weight captured and 174 taxa were identified. The top 24 taxa that comprised 99% of the total invertebrate catch weight are summarized in Table 4. Of the invertebrates, the notched brittle star (Ophiura sarsi) made up 41%, and snow crab (Chionoecetes opilio) made up 10% of the total catch weight for all trawls combined. The highest CPUE for snow crab was found in the 100- to 500-m depth range.

6 Table 2 Mean catch per unit effort, CPUE (±1 SD) in numbers and weight of fishes caught in lined versus unlined demersal trawl nets during the 2008 Beaufort Sea survey Scientific name Common name Mean CPUE (No./ha) lined net Mean CPUE (No./ha) unlined net Mean CPUE (kg/ha) lined net Mean CPUE (kg/ha) unlined net Boreogadus saida Polar cod 1,953 (±3,324) 849 (±2,397) (±68.96) 6.11 (±16.63) Lycodes raridens Marbled eelpout 54 (±135) (±10.88) 0 Lycodes polaris Canadian eelpout 26 (±52) \1 (±1) 1.41 (±3.05) 0.01 (±0.02) Hippoglossoides robustus Bering flounder 8 (±11) 1 (±1) 1.26 (±1.66) 0.10 (±0.10) Theragra chalcogramma Walleye pollock 36 (±45) 7 (±12) 1.18 (±1.77) 0.12 (±0.19) Reinhardtius hippoglossoides Greenland halibut 8 (±14) (±0.57) 0 Lycodes mucosus Saddled eelpout \1 (±2) (±1.2) 0 Lycodes sp. Unid. eelpout 3 (±7) (±0.96) 0 Liparis gibbus Variegated snailfish 4 (±12) (±1.09) 0 Lycodes rossi Threespot eelpout 2 (±4) \1 (±1) 0.28 (±0.59) \0.01 (±0.02) Liparis fabricii Gelatinous seasnail 5 (±4) (±0.35) 0 Myoxocephalus verrucosus Warty sculpin 2 (±5) \1 (±1) 0.04 (±0.13) \0.01 (±0.002) Triglops pingeli Ribbed sculpin 8 (±22) \1 (±1) 0.04 (±0.14) \0.01 (±0.01) Gadus macrocephalus Pacific cod \1 (±1) (±0.13) 0 Careproctus sp. cf. rastrinus (Orr et al.) Salmon snailfish 2 (±4) \1 (±1) 0.03 (±0.07) 0.01 (±0.04) Mallotus villosus Capelin \1 (±1) (±0.12) 0 Gymnocanthus tricuspis Arctic staghorn sculpin 3 (±7) \1 (±1) 0.03 (±0.08) \0.01 (±0.006) Artediellus scaber Hamecon 5 (±13) 3 (±4) 0.02 (±0.07) 0.01 (±0.03) Lumpenus medius Stout eelblenny 4 (±12) (±0.05) 0 Liparis sp. Unid. snailfish 1 (±3) \1 (±1) 0.01 (±0.03) \0.01 (±0.0005) Aspidophoroides olriki Arctic alligatorfish 5 (±11) \1 (±1) 0.01 (±0.03) \0.01 (±0.0002) Cottidae Sculpin family 3 (±10) (±0.04) 0 Lumpenus maculatus Daubed shanny 1 (±4) (±0.03) 0 Triglops nybelini Bigeye sculpin 2 (±8) 0 \0.01 (±0.03) 0 Lumpenus fabricii Slender eelblenny 2 (±4) 0 \0.01 (±0.02) 0 Lumpenus sp. Unid. eelblenny \1 (±3) 0 \0.01 (±0.02) 0 Icelus spatula Spatulate sculpin \1 (±2) \1 (±1) \0.01 (±0.01) \0.01 (±0.02) Eumesogrammus praecisus Fourline snakeblenny \1 (±1) \1 (±1) \0.01 (±0.01) \0.01 (±0.006) Eleginus gracilis Saffron cod \1 (±1) 0 \0.01 (±0.01) 0 Liparis marmoratus Festive snailfish \1 (±1) 0 \0.01 (±0.001) 0 Nautichthys pribilovius Eyeshade sculpin \1 (±1) 0 \0.01 (±0.001) 0 Eumicrotremus derjugini Leatherfin lumpsucker 0 \1 (±1) (±0.02) Gymnelus viridis Fish doctor 0 \1 (±1) 0 \0.01 (±0.02) Enophrys diceraus Antlered sculpin \1 (±1) 0 \0.01 (±0.001) 0

7 Table 3 Mean catch per unit effort, CPUE (No./ha) of fish caught in the paired demersal trawls during the 2008 Beaufort Sea survey Scientific name Common name CPUE (No./ha) lined net, 10 CPUE (No./ha) unlined net, 22 CPUE (No./ha) lined net, 12 CPUE (No./ha) unlined net, 24 Boreogadus saida Polar cod Lycodes raridens Marbled eelpout Lycodes polaris Canadian eelpout Hippoglossoides robustus Bering flounder Theragra chalcogramma Walleye pollock Reinhardtius hippoglossoides Greenland halibut Lycodes mucosus Saddled eelpout Lycodes sp. Unid. eelpout Liparis gibbus Variegated snailfish Lycodes rossi Threespot eelpout Liparis fabricii Gelatinous seasnail Myoxocephalus verrucosus Warty sculpin Triglops pingeli Ribbed sculpin Gadus macrocephalus Pacific cod Careproctus sp. cf. rastrinus (Orr et al.) Salmon snailfish Mallotus villosus Capelin Gymnocanthus tricuspis Arctic staghorn sculpin Artediellus scaber Hamecon Lumpenus medius Stout eelblenny Liparis sp. Unid. snailfish Aspidophoroides olriki Arctic alligatorfish Cottidae Sculpin family Lumpenus maculatus Daubed shanny Triglops nybelini Bigeye sculpin Lumpenus fabricii Slender eelblenny Lumpenus sp. Unid. eelblenny Icelus spatula Spatulate sculpin Eumesogrammus praecisus Fourline snakeblenny Eleginus gracilis Saffron cod Liparis marmoratus Festive snailfish Nautichthys pribilovius Eyeshade sculpin Eumicrotremus derjugini Leatherfin lumpsucker Gymnelus viridis Fish doctor Enophrys diceraus Antlered sculpin The two pairs were trawls 10 and 22; and trawls 12 and 24. The trawl number is listed after net type The largest catches ( kg/ha) occurred in the western portion of the study area at those depths. In contrast, CPUE varied little by longitude in the 40- to 100-m depth range ( kg/ha). Eighty-six snow crabs from three random trawls (2, 4, and 7) were weighed, measured, and preserved. Female snow crab carapace width ranged from 58 to 78 mm (n = 16), and male carapace width ranged from 55 to 119 mm (n = 70). The carapace width (mm) versus weight (kg) of snow crab (male and female combined) is shown in Fig. 6. The average weight of an individual crab was estimated for each trawl. Most crabs with a weight above 0.15 kg had a carapace width greater than 78 mm, the legal size limit for male snow crab commercially fished in the Bering Sea (Fig. 6). These crabs were found only in the 100- to 500-m depth range, specifically between 306 and 478 m. In the 40- to 100-m depth range, average crab weight ranged between 0.02 and 0.10 kg.

8 frequency ` t male female length (mm) Beaufort sea pollock 2008 Bering sea pollock fork length (mm) age (years) Fig. 2 Length frequencies for male and female polar cod (Boreogadus saida) captured during the 2008 Beaufort Sea survey. Data from lined and unlined nets are combined frequency Discussion Marine fishes lined net unlined net fork length (mm) Fig. 3 Length frequencies for polar cod (Boreogadus saida) captured during the 2008 Beaufort Sea survey. Data are shown for lined and unlined nets separately frequency male female fork length (mm) Fig. 4 Length frequencies of male and female walleye pollock (Theragra chalcogramma) captured in the 2008 Beaufort Sea survey. Data from lined and unlined nets are combined Polar cod (Boreogadus saida) were the most abundant fish caught during this survey, both numerically and by weight. Polar cod are known to be a major component of the Beaufort Sea fish community and important prey for higher Fig. 5 Length-at-age for walleye pollock (Theragra chalcogramma) captured in the 2008 Beaufort Sea survey and 2008 Bering Sea survey trophic levels such as seabirds (Hobson 1993) and marine mammals (Bradstreet and Cross 1982; Bradstreet et al. 1986; Welch et al. 1992). They are also the dominant consumer of zooplankton (Atkinson and Percy 1992) and are thus an important conduit for secondary production (Welch et al. 1992). One of the earliest documented records of polar cod in the Alaskan Beaufort Sea is from 1951 (unpublished data, University of British Columbia, N. J. Wilimovsky, H. A. Fehlmann). Previous studies in nearshore, often brackish waters, have also documented the distribution of polar cod (Craig et al. 1982; Craig 1984; Moulton and Tarbox 1987; Jarvela and Thorsteinson 1999), but this study is the first to quantify the abundance of polar cod in offshore marine waters of the Beaufort Sea. The polar cod caught in this survey were primarily subadults, ages 1 and 2, although some age-3 and -4 fish were found. Large polar cod were distributed primarily in the deeper depths ( m) while small cod were found primarily in the shallower depths ( m). This difference in size by depth is likely not driven by net type, because the larger cod in the deeper depths were caught with the lined net, and the smaller cod in shallower depths were caught with the unlined net. Frost and Lowry (1983) documented a similar distribution pattern from their 1977 survey. They report that polar cod were larger in water deeper than 100 m, whereas cod in water less than 100 m were on average, smaller. Similarly, in the northeast Chukchi Sea, polar cod greater than age 3 found offshore were significantly larger than the same age fish found inshore (Gillispie et al. 1997). We documented or confirmed extensions to the known ranges of four species of fishes: walleye pollock (Theragra chalcogramma), Pacific cod (Gadus macrocephalus), festive snailfish (Liparis marmoratus), and eyeshade sculpin (Nautichthys pribilovius). The Chukchi Sea survey in 1990 (Barber et al. 1997) reported Pacific cod at three stations located between 68 N and 69 N. Festive snailfish are a relatively rare species; only one specimen has been recorded in the northeast Bering Sea near St. Lawrence Island at

9 Table 4 Mean CPUE by numbers and weight for the top 24 invertebrate taxa caught in lined versus unlined nets during the 2008 Beaufort Sea survey Species name Common name Mean CPUE (No./ha) lined net Mean CPUE (No./ha) unlined net Mean CPUE (kg/ha) lined net Mean CPUE (kg/ha) unlined net Ophiura sarsi Notched brittle star 286, Chionoecetes opilio Snow crab Musculus spp. Mussel 8,718 \ \0.01 Ctenodiscus crispatus Mud star 4, Actiniaria Sea anemones Strongylocentrotus sp. Sea urchin Psolus fabricii Sea cucumber Buccinum polare Polar whelk Pyrulofusus spp. Whelk Neptunea spp. Whelk Gorgonocephalus arcticus Basket starfish 26 \ \0.01 Golfingia margaritacea Worm 3,706 \ \0.01 Gersemia rubiformis Soft coral * * Psolus phantapus Sea cucumber Stomphia sp. Anemone Pagurus rathbuni Hermit crab Naticidae Moon snails Margarites spp. Snails 1,254 \ \0.01 Buccinum glaciale Glacial whelk Buccinum spp. Whelk 241 \ \0.01 Brada spp. Polychaete 699 \ \0.01 Hyas coarctatus Lyre crab Pagurus trigonocheirus Hermit crab Halocynthia aurantium Ascidian * * An asterisk indicates species not enumerated weight (kg) Males Females Legal size carapace width (mm) n = 86 Fig. 6 Snow crab (Chionoecetes opilio) weight (kg) versus carapace width (mm). Legal crab size is 78 mm (solid line) N, W (Busby and Chernova 2001). Previous to this record, the species had only been documented in the Sea of Okhotsk. The northernmost record of the eyeshade sculpin previous to our survey was in the northern Chukchi Sea, west of Point Barrow (Barber et al. 1997). In addition to the range extensions of pollock and Pacific cod, Bering flounder (Hippoglossoides robustus) were caught in the present 2008 survey, but not in the 1977 survey (Frost and Lowry 1983). All three of these species are abundant in the Bering Sea and are commercially valuable. We caught walleye pollock as far north as N ( W). The domestic groundfish fishery off Alaska is the largest US fishery by volume and walleye pollock make up the dominant portion of that catch (Hiatt et al. 2008). Pollock were recorded as far north as N during a 2004 survey of the Chukchi Sea (Mecklenburg et al. 2007), and a specimen was collected at N, during a 1990 survey of the Chukchi Sea on the Ocean Hope III (unpublished data; NMFS-AFSC-Resource Assessment and Conservation Engineering (RACE) Division, cruise 90 2). Two specimens were collected in the Beaufort Sea near the mouth of Elson Lagoon, east of Point Barrow at approximately N, W in 1951 and 1954

10 (unpublished data, University of British Columbia: N. J. Wilimovsky, J. E. Bohlke; D. Wohlschlag, and W. C. Freihofer). However, the specimens are missing and identification as walleye pollock is uncertain (K. Mecklenburg, pers. comm.). We found pollock in moderate densities throughout the survey area, so if the Elson Lagoon samples collected in 1954 were correctly identified as pollock, our results confirm the range extension and document that the species may be widespread in the Beaufort Sea. Analysis of pollock otoliths showed that most of the fish caught in the present 2008 survey were sub-adults (age-2). In 1990, an ichthyoplankton survey in the Chukchi Sea (Echeverria 1995) found juvenile walleye pollock northwest of Point Barrow. During the Russian-American Long- Term Census of the Arctic (RUSALCA) survey of the Chukchi Sea in 2004, Mecklenburg et al. (2007) recorded pollock ranging from 102 to 168 mm total length, indicating that these fish were likely sub-adults. So, although pollock are occurring in Arctic seas, fish of spawning age or size have not yet been documented, and the origins of the juvenile fish are not known. The fact that the pollock we caught in the Beaufort Sea were smaller at age than pollock in the Bering Sea may provide evidence that the fish were spawned in cold Arctic waters or were transported into such waters shortly after spawning. The size difference is manifested first at age-2; age-1 pollock from the Bering and Beaufort seas were similar in size. This lends support to the latter hypothesis that fish were spawned in north Pacific waters and transported into the Arctic sometime during their first year of life. Despite the potential northward shift in the distribution of some species, the fish communities of the Beaufort and Chukchi seas are still distinct from the Bering Sea. Polar cod are a dominant component of the Beaufort and Chukchi Sea fish communities, whereas pollock, Pacific cod, and flatfish dominate the Bering Sea. Although we document the presence of pollock and commercial-sized snow crab in the Beaufort Sea, their densities are far lower than in the Bering Sea and Chukchi seas. Benthic invertebrates Invertebrates dominated the demersal trawl catches both in terms of abundance and species diversity. The notched brittle star (Ophiura sarsi) dominated all of the trawls in the present 2008 survey. The 1977 survey reported that notched brittle stars were also the most abundant invertebrate captured and dominated the catch west of longitude 154 W (Frost and Lowry 1983). Several studies have documented the prevalence of notched brittle stars in the North Pacific and Arctic ecosystems. Dense carpets of notched brittle star were reported off the coast of Japan (Fujita and Ohta 1989) and were also reported as one of the most dominant epibenthic invertebrates in many parts of the Chukchi Sea (Grebmeier et al. 2006a, b). Both the notched brittle star and snow crab (Chionoecetes opilio) were the most abundant epibenthic invertebrates encountered in the Chuckchi sea during the RUSLCA cruises in 2004, 2007, and 2008 (Bluhm et al. 2009). The size and depth distribution of snow crab during the 2008 survey were unexpected based on previous studies in the Bering and Chukchi Seas. In 1990 and 1991, 48 stations were sampled in the northeast Chukchi Sea to examine the distribution and abundance of snow crab (Paul et al. 1997). Snow crabs were found at all stations, with the highest abundance and mean crab weight occurring in the stations directly west of Point Barrow (Paul et al. 1997). However, carapace width of the male crabs ranged from 20 to 74 mm (Paul et al. 1997), compared with the measured snow crab in the present Beaufort survey that ranged from 55 to 119 mm. In the 1977 Beaufort Sea survey, the maximum carapace width for a male snow crab was 75 mm (Frost and Lowry 1983). Recently, snow crab has also been observed in the northeast Atlantic s Barents Sea (Alvsvåg et al. 2008). Evidence of juveniles below 50 mm carapace width confirms that the population is established and reproductive with adult crabs ranging in size from 50 to 136 mm (Alvsvåg et al. 2008). The presence of female crabs with eggs during the 2008 Beaufort Sea survey is further evidence that this population is reproductive. Our survey found the highest CPUE and the largest crabs by carapace width and weight in water depths greater than 300 m and temperatures around 0.6 C. This result was also unexpected, as surveys in the Bering and Chukchi Seas indicate that snow crabs are found predominantly in waters less than 200 m in depth. However, the main population of crab found in the Barents Sea survey was located in depth ranges from 80 to 350 m and in waters less than 2 C (Alvsvåg et al. 2008). Also, the fact that Frost and Lowry (1983) only caught small snow crab (less than 80 mm) may be due to the fact that only one tow was made in water deeper than 200 m. The legal minimum carapace width for the commercial snow crab fishery in the Bering Sea is 78 mm; therefore, the 2008 survey is the first to document snow crab of commercial size in the North American Arctic. Ecosystems comparisons and historical observations The comparisons of the Arctic ecosystems (Chukchi and Beaufort seas) to the North Pacific ecosystem (Bering Sea) show differences in both species presence/absence and overall abundance. In general, the mean CPUE for species caught in the Beaufort Sea and in the Chukchi Sea fell

11 Table 5 Mean CPUE (kg/ha) of common species found in the Beaufort, Chukchi, and Bering Seas, with 95% confidence intervals shown for the Bering sea (in parenthesis) The CPUE reported for the Beaufort Sea is from unlined demersal trawl nets only. An asterisk indicates that there was no catch of that species a Beaufort Sea 2008 Survey b Barber et al. (1997) c Eastern Bering Sea 2008 survey Species common name Beaufort Sea 2008 a CPUE (kg/ha) Chukchi Sea 1990 b CPUE (kg/ha) Bering Sea 2008 c CPUE (kg/ha) Polar cod (0 2.65) Arrowtooth flounder * * 10.7 ( ) Bering flounder ( ) Cottidae (sculpin family) ( ) Flathead sole * * ( ) Greenland halibut * \ ( ) Rock sole * * ( ) Pacific cod * ( ) Saffron cod * ( ) Walleye pollock ( ) Yellowfin sole * * 42.4 ( ) Zoarcidae (eelpout family) ( ) outside the confidence intervals of CPUE for the same species caught in the Bering Sea (Table 5). Polar cod was the most prevalent fish species in both the present 2008 Beaufort Sea survey and the 1990 Chukchi Sea survey (Table 5). In the Bering Sea, walleye pollock was the most abundant fish species, at 61.2 kg/ha compared with 0.13 kg/ha in the Beaufort Sea and 0.02 kg/ha in the Chukchi Sea (Table 5). In addition, the flatfish species that were dominant in the Bering Sea (arrowtooth flounder (Atheresthes stomias), Bering flounder (Hippoglossoides robustus), flathead sole (Hippoglossoides elassodon), Greenland halibut (Reinhardtius hippoglossoides), rock sole (Lepidopsetta polyxystra and Lepidopsetta bilineata), and yellowfin sole (Limanda aspera)) were absent or found in low densities in the Chukchi and Beaufort seas (Table 5). Saffron cod was more abundant in the Chukchi Sea than the Bering Sea, but was absent from the present 2008 Beaufort Sea survey (Table 5). Of the 34 taxa captured and identified from the present 2008 Beaufort Sea survey, 17 of those had also been documented in the 1977 survey (Table 6). Although CPUE was not calculated during the 1977 survey, the number of fish caught was recorded at each station. Polar cod was the most numerous fish species found in both surveys. Bering flounder and walleye pollock were fairly abundant relative to other species in the 2008 survey but were not observed during the 1977 survey. Also, Pacific cod (Gadus macrocephalus), festive snailfish (Liparis marmoratus), eyeshade sculpin (Nautichthys pribilovius), and bigeye sculpin (Triglops nybelini) were caught during the 2008 survey (albeit in relatively small numbers), but were absent from the 1977 survey. Eelpouts were common during both surveys, but different species were dominant; marbled eelpouts (Lycodes raridens) were the most abundant eelpout in the 2008 survey, whereas Canadian eelpouts (Lycodes polaris) and fish doctors (Gymnelus viridis) were most abundant in the 1977 survey. Snailfish were fairly common during both surveys. Variegated snailfish (Liparis gibbus) and gelatinous seasnail (Liparis fabricii) were the most abundant snailfish species in the 2008 survey, but snailfish were not identified to species in the 1977 survey. Sculpins were caught during both surveys, but they ranked higher in abundance during the 1977 survey. In addition, different species were caught: warty (Myoxocephalus verrucosus) and ribbed sculpin (Triglops pingeli) were most common during the 2008 survey while spatulate (Icelus spatula) and twohorn sculpin (Icelus bicornis) were the dominant species during the 1977 survey. The twohorn sculpin was the third most prevalent species in the 1977 survey and did not occur in the 2008 survey. These differences in the fish species composition between 1977 and 2008 are suggestive of changes in the marine fish community of the Beaufort Sea since the late 1970s. Nonetheless, without more extensive surveys, it is difficult to conclude that changes in species communities have occurred. Future monitoring Assessment of the impacts of climate change, northerly expansion of marine species, future offshore oil and gas exploitation, and potential fisheries development will require monitoring of the distribution and abundance of marine offshore fishes. Net mensuration and gear standardization are recommended for future monitoring studies and would provide quantitative estimates to compare with the present 2008 survey, and with future fishery surveys. Standardized, comparable surveys can serve as an index of change without bias due to changes in gear type and survey methods.

12 Table 6 Fish species from the 2008 Beaufort Sea survey (data from all demersal trawls combined) compared with the previous Beaufort Sea survey in 1977 by Frost and Lowry (1983) Scientific name Common name 2008 survey mean CPUE (No./ha) Boreogadus saida Polar cod 1, Lycodes raridens Marbled eelpout 24 7 Theragra chalcogramma Walleye pollock 23 Lycodes polaris Canadian eelpout Triglops pingeli Ribbed sculpin 8 2 Artediellus scaber Hamecon 6 30 Hippoglossoides robustus Bering flounder 4 Cottidae Sculpin family 3 Gymnocanthus tricuspis Arctic staghorn sculpin 3 2 Reinhardtius hippoglossoides Greenland halibut 3 Aspidophoroides olriki Arctic alligatorfish 2 19 Liparis fabricii Gelatinous seasnail 2 Liparis gibbus Variegated snailfish 2 Lumpenus medius Stout eelblenny 2 1 Lycodes sp. Unid. eelpout 2 Myoxocephalus verrucosus Warty sculpin 2 Careproctus sp. cf. rastrinus (Orr et al.) Salmon snailfish 1 Eleginus gracilis Saffron cod 1 Enophrys diceraus Antlered sculpin 1 Eumesogrammus praecisus Fourline snakeblenny 1 4 Eumicrotremus derjugini Leatherfin lumpsucker 1 29 Gadus macrocephalus PACIFIC cod 1 Gymnelus viridis Fish doctor 1 23 Icelus spatula Spatulate sculpin 1 14 Liparis marmoratus Festive snailfish 1 Liparis sp. Unid. snailfish 1 29 Lumpenus fabricii Slender eelblenny 1 11 Lumpenus maculatus Daubed shanny 1 1 Lumpenus sp. Unid. eelblenny 1 Lycodes mucosus Saddled eelpout 1 2 Lycodes rossi Threespot eelpout 1 2 Mallotus villosus Capelin 1 Nautichthys pribilovius Eyeshade sculpin 1 Icelus bicornis Twohorn sculpin 74 Arctogadus glacialis Polar cod 1 Triglops nybelini Bigeye sculpin survey no. individuals Acknowledgments Funding for this study was provided by the US Department of the Interior s Mineral Management Service (MMS), Alaska Region (Interagency Agreement M07PG13152 and AKC-058). We would like to thank National Marine Fisheries Service (NMFS), Alaska Fisheries Science Center s (AFSC) Resource Assessment and Conservation Engineering Division (RACE) for providing survey gear, support and expertise. We would like to especially thank Héloïse Chenelot of the University of Alaska Fairbanks for providing species identification on the invertebrates and Erika Acuna (RACE) for providing expertise on fish species identification in the field. James Orr and Duane Stevenson (RACE) provided taxonomic verification and identification of all fish species. The AFSC s Age and Growth Program analyzed otoliths for fish ages. Thanks to Sandra Parker-Stetter and Jennifer Nomura who were part of the scientific crew. We would like to thank the captain and crew of the F/V Ocean Explorer (Captain Darin Vanderpol and Raphael Guiterrez, Tom Giacalone, Joao DoMar, Ben Boyok and Jessica Heaven) for a productive and safe research cruise. Finally, we thank the 3 reviewers for their thoroughness, time, and constructive input. References Alvsvåg J, Agnalt AL, Jørstad KE (2008) Evidence for a permanent establishment of the snow crab (Chionoecetes opilio) in the Barents Sea. Biol Invasions 11:

13 Atkinson EG, Percy JE (1992) Diet comparison among demersal marine fish from the Canadian Arctic. Polar Biol 11: Barber WE, Smith RL, Vallarino M, Meyer RM (1997) Demersal fish assemblages of the northeastern Chukchi Sea, Alaska. Fish Bull 95: Beare DJ, Burns F, Greig A, Jones EG, Peach K, Kienzle M, McKenzie E, Reid DG (2004) Long-term increases in prevalence of North Sea fishes having southern biogeographic affinities. Mar Ecol Progr Ser 284: Bluhm BA, Iken K, Mincks Hardy S, Sirenko BI, Holladay BA (2009) Community structure of epibenthic megafauna in the Chukchi Sea. Aquat Biol 7: Boe J, Hall A, Qu X (2009) September sea-ice cover in the Arctic Ocean projected to vanish by Nature Geosci Lett doi: /ngeo467 Boesch DF, Rabalais NN (1987) Long-term environmental effects of offshore oil and gas development. Elsevier Applied Science, London Bond WA, Erickson RN (1997) Coastal migration of Arctic ciscoes in the eastern Beaufort Sea. In: Reynolds JB (ed) Fish ecology in Arctic North America. American Fisheries Society, Bethesda, MD, pp Bradstreet MSW, Cross WE (1982) Trophic relationships at high Arctic ice edges. Arctic 35:1 12 Bradstreet MSW, Finley KJ, Sekerak AD, Griffiths WB, Evans CR, Fabijan FF, Stallard HE (1986) Aspects of the biology of Arctic cod (Boreogadus saida) and its importance in Arctic marine food chains. Can Tech Rep Fish Aquat Sci 1491:193 Busby MS, Chernova NV (2001) Redescription of the festive snailfish, Liparis marmoratus (Scorpaeniformes: Liparidae), with a new record from the northern Bering Sea. Ichthyol Res 48: Craig PC (1984) Fish use of coastal waters of the Alaska Beaufort Sea: a review. T Am Fish Soc 113: Craig PC, Griffiths WB, Haldorson L, McElderry H (1982) Ecological studies of Arctic cod (Boreogadus saida) in Beaufort Sea coastal waters, Alaska. Can J Fish Aquat Sci 39: Echeverria TW (1995) Sea-ice conditions and the distribution of walleye pollock (Theragra chalcogramma) on the Bering and Chukchi Shelf. In: Beamish RV (ed) Climate change and northern fish populations. Canadian Special Publication Fish Aquatic Science, Nanaimo, pp Engås A, Løkkeborg S, Ona E, Soldal AV (1996) Effects of seismic shooting on local abundance and catch rates of cod (Gadus morhua) and haddock (Melanogrammus aeglefinus). Can J Fish Aquat Sci 53: Frost KJ, Lowry LF (1981) Distribution, growth, and foods of Arctic cod (Boreogadus saida) in the Bering, Chukchi and Beaufort seas. Can Field Nat 95: Frost KJ, Lowry LF (1983) Demersal fishes and invertebrates trawled in the northeastern Chukchi and western Beaufort seas U.S. Department of Commerce NOAA Tech Rep NMFS-SSRF-764 Fujita T, Ohta S (1989) Spatial structure within a dense bed of the brittle star Ophiura sarsi (Ophiuroidea: Echinodermata) in the bathyal zone off Otsuchi, northeastern Japan. J Oceanogr Soc Japan 45: Gallaway BJ, Felchhelm RG, Griffiths WB, Cole JG (1997) Population dynamics of broad whitefish in the Prudhoe Bay region, Alaska. In: Reynolds JB (ed) Fish ecology in Arctic North America. American Fisheries Society Symposium 19, Bethesda, MD, pp Gautier DL, Bird KJ, Charpentier RR, Grantz A, Houseknecht DW, Klett TR, Moore TR, Pitman JK, Schenk CJ, Schuenemeyer JH, Sorenson K, Tennyson ME, Valin ZC, Wandrey CJ (2009) Assessment of undiscovered oil and gas in the Arctic. Science 324: Gillispie JG, Smith RL, Barbour E, Barber WE (1997) Distribution, abundance, and growth of Arctic cod in the northeastern Chukchi Sea. In: Reynolds JB (ed) Fish ecology in Arctic North America. American Fisheries Society Symposium 19, Bethesda, MD, pp Grebmeier JM, Overland JE, Moore SE, Farley EV, Carmack EC, Cooper LW, Frey KE, Helle JH, McLaughlin FA, McNutt SL (2006a) A major ecosystem shift in the northern Bering Sea. Science 311: Grebmeier JM, Cooper LW, Feder HM, Sirenko BI (2006b) Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Ameriasian Arctic. Prog Oceanogr 71: Greene CH, Pershing AJ, Cronin TM, Ceci N (2008) Arctic climate change and its impacts on the ecology of the north Atlantic. Ecology 89:S24 S38 Hiatt T, Felthoven R, Dalton M, Gaber-Yonts B, Haynie A, Lew D, Sepez J, Seung C, Staff of Northern Economics, I (2008) Stock assessment and fishery evaluation report for the groundfish fisheries of the Gulf of Alaska and Bering Sea/Aleutian Islands area: economic status of the groundfish fisheries off Alaska, North Pacific Fishery Management Council, Anchorage, AK Hobson KA (1993) Trophic relationships among high Arctic seabirds: insights from tissue-dependent stable-isotope models. Mar Ecol Progr Ser 95:7 18 IASC (2004) Arctic climate impact assessment. Cambridge University Press, Cambridge, UK Jarvela LE, Thorsteinson LK (1997) Movements and temperature occupancy of sonically tracked Dolly Varden and Arctic ciscoes in Camden Bay, Alaska. In: Reynolds JB (ed) Fish ecology in Arctic North America. American Fisheries Society Symposium 19, Bethesda, MD, pp Jarvela LE, Thorsteinson LK (1999) The epipelagic fish community of Beaufort Sea coastal waters, Alaska. Arctic 52:80 94 Lauth RR, Acuna E (2009) Results of the 2008 eastern Bering Sea continental shelf bottom trawl survey of groundfish and invertebrate resources, p 229. U.S. Department of Commerce NOAA Tech Memo NMFS-AFSC-195 Mecklenburg CW, Stein DL, Sheiko BA, Chernova NV, Mecklenburg TA, Holladay BA (2007) Russian-American long term census of the Arctic: benthic fishes trawled in the Chukchi Sea and Bering Strait, August Northwestern Nat 88: MMS (2008) Beaufort Sea and Chukchi Sea planning areas, oil and gas lease sales 209, 212, 217, and 221, draft environmental impact statement. U.S. Department of Inter Miner Management Serv OCS EIS/EA MMS Moulton LL, Tarbox KE (1987) Analysis of Arctic cod movements in the Beaufort Sea nearshore region, Arctic 40:43 49 Mueter FJ, Litzow MA (2008) Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecol Appl 18: Mueter FJ, Broms C, Drinkwater KF, Friedland KD, Hare JA, Hunt GL Jr, Melle W, Taylor M (2009) Ecosystem responses to recent oceanographic variability in high-latitude Northern Hemisphere ecosystems. Prog Oceanogr 81: Paul JM, Paul AJ, Barber WE (1997) Reproductive biology and distribution of the snow crab from the northeastern Chukchi Sea. In: Reynolds JB (ed) Fish Ecology in Arctic North America. American Fisheries Society Symposium 19, Bethesda, MD, pp Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308: Ricker WE (1973) Linear regressions in fishery research. J Fish Res Board Can 30: Slotte A, Hansen K, Dalen J, Ona E (2004) Acoustic mapping of pelagic fish distribution and abundance in relation to a seismic

Elizabeth Logerwell and Kimberly Rand Alaska Fisheries Science Center

Elizabeth Logerwell and Kimberly Rand Alaska Fisheries Science Center Beaufort Sea: Perspectives on Climate Change and Fisheries Elizabeth Logerwell and Kimberly Rand Alaska Fisheries Science Center John Horne and Sandra Parker-Stetter University of Washington Tom Weingartner

More information

Beaufort Sea Marine Fish Surveys

Beaufort Sea Marine Fish Surveys Beaufort Sea Marine Fish Surveys Brenda L. Norcross and Lorena E. Edenfield School of Fisheries and Ocean Sciences University of Alaska Fairbanks 28th Lowell Wakefield Fisheries Symposium Anchorage, AK

More information

Oceanographic characteristics of the habitat of benthic fish and invertebrates in the Beaufort Sea

Oceanographic characteristics of the habitat of benthic fish and invertebrates in the Beaufort Sea AFSC Oceanographic characteristics of the habitat of benthic fish and invertebrates in the Beaufort Sea Elizabeth Logerwell, Kimberly Rand Alaska Fisheries Science Center, National Marine Fisheries Service

More information

Effect of Ocean Conditions on the Cross-shelf Distribution of Walleye Pollock (Theragra chalcogramma) and Capelin (Mallotus villosus)

Effect of Ocean Conditions on the Cross-shelf Distribution of Walleye Pollock (Theragra chalcogramma) and Capelin (Mallotus villosus) Effect of Ocean Conditions on the Cross-shelf Distribution of Walleye Pollock (Theragra chalcogramma) and Capelin (Mallotus villosus) Anne Hollowed, Chris Wilson, Phyllis Stabeno, and Libby Logerwell National

More information

Wild flatfish (Alaska Sole and Flounder), living in the clear remote waters of Alaska, are managed to provide a sustainable food source while

Wild flatfish (Alaska Sole and Flounder), living in the clear remote waters of Alaska, are managed to provide a sustainable food source while Wild flatfish (Alaska Sole and Flounder), living in the clear remote waters of Alaska, are managed to provide a sustainable food source while protecting against habitat damage. Flatfish fishermen are dedicated

More information

SEA FISHERIES INSTITUTE IN GDYNIA Gdynia, Poland

SEA FISHERIES INSTITUTE IN GDYNIA Gdynia, Poland SEA FISHERIES INSTITUTE IN GDYNIA Gdynia, Poland Results of the Polish fishing survey of Greenland halibut (Reinhardtius hippoglossoides) in the Svalbard Protection Zone (ICES IIb) in April 2008 Jerzy

More information

SEA FISHERIES INSTITUTE IN GDYNIA Gdynia, Poland

SEA FISHERIES INSTITUTE IN GDYNIA Gdynia, Poland SEA FISHERIES INSTITUTE IN GDYNIA Gdynia, Poland Results of the Polish fishing survey of Greenland halibut (Reinhardtius hippoglossoides) in the Svalbard Protection Zone (ICES IIb) in April 2007 Jerzy

More information

Arctic Fisheries: Present and future perspectives

Arctic Fisheries: Present and future perspectives Challenges of the Changing Arctic: Continental Shelf, Navigation and Fisheries Arctic Fisheries: Present and future perspectives Harald Loeng Outline of the talk Some basic background what do we know Climate

More information

Co-Principal Investigators Stephen C. Jewett, Ph.D. Paul C. Rusanowski, Ph.D.

Co-Principal Investigators Stephen C. Jewett, Ph.D. Paul C. Rusanowski, Ph.D. PROGRESS REPORT FACTORS AFFECTING NEARSHORE SURVIVAL AND PRODUCTION OF JUVENILE SOCKEYE SALMON FROM KVICHAK BAY Phase I: Important habitat, migration routes and food resources CoPrincipal Investigators

More information

Map Showing NAFO Management Units

Map Showing NAFO Management Units Map Showing NAFO Management Units Biology Are 6 species of seals in Atlantic Canadian waters, all of which occur in Newfoundland Two Arctic Species (Ringed, Bearded) Two temperate (Grey, Harbour) Two migratory

More information

Preliminary Results of the 2014 Underwater Camera Survey of the Eastern Bering Sea Outer Shelf and Slope

Preliminary Results of the 2014 Underwater Camera Survey of the Eastern Bering Sea Outer Shelf and Slope Preliminary Results of the 2014 Underwater Camera Survey of the Eastern Bering Sea Outer Shelf and Slope Chris Rooper, Mike Sigler, Pam Goddard and Pat Malecha Alaska Fisheries Science Center RACE Seminar

More information

Potential movement of fish and shellfish stocks from the Subarctic to the Arctic

Potential movement of fish and shellfish stocks from the Subarctic to the Arctic Potential movement of fish and shellfish stocks from the Subarctic to the Arctic Anne Hollowed 1, Benjamin Planque 2, Harald Loeng 2 1. Alaska Fisheries Science Center, USA 2. Institute of Marine Research,

More information

Ecosystem-based Science for Management of Alaskan Fisheries. Patricia A. Livingston NOAA-Fisheries Alaska Fisheries Science Center Seattle, WA, USA

Ecosystem-based Science for Management of Alaskan Fisheries. Patricia A. Livingston NOAA-Fisheries Alaska Fisheries Science Center Seattle, WA, USA Ecosystem-based Science for Management of Alaskan Fisheries Patricia A. Livingston NOAA-Fisheries Alaska Fisheries Science Center Seattle, WA, USA Overview Background on ecosystem research and ecosystem

More information

North Labrador Arctic Charr

North Labrador Arctic Charr Fisheries and Oceans Pêches et Océans Canada Canada DFO Science Newfoundland Region Stock Status Report D2-07(2001) substantive in some years. The north Labrador area is composed of various stock complexes

More information

Marine Mammals. James M. Price. Division of Environmental Sciences. from NOAA photograph library

Marine Mammals. James M. Price. Division of Environmental Sciences. from NOAA photograph library Marine Mammals from NOAA photograph library James M. Price James.Price@boem.gov Division of Environmental Sciences Environmental Studies Program R/V Pisces (from NOAA Web site) Develops and oversees applied

More information

HADDOCK ON THE SOUTHERN SCOTIAN SHELF AND IN THE BAY OF FUNDY (DIV. 4X/5Y)

HADDOCK ON THE SOUTHERN SCOTIAN SHELF AND IN THE BAY OF FUNDY (DIV. 4X/5Y) Canadian Science Advisory Secretariat Science Advisory Report 26/47 HADDOCK ON THE SOUTHERN SCOTIAN SHELF AND IN THE BAY OF FUNDY (DIV. 4X/5Y) Context Haddock (Melanogrammus aeglefinus) are found on both

More information

Serial No. N4859 NAFO SCR Doc. 03/41 SCIENTIFIC COUNCIL MEETING JUNE 2003

Serial No. N4859 NAFO SCR Doc. 03/41 SCIENTIFIC COUNCIL MEETING JUNE 2003 NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S) Northwest Atlantic Fisheries Organization Serial No. N4859 NAFO SCR Doc. 03/41 SCIENTIFIC COUNCIL MEETING JUNE 2003 Results of a Greenland Halibut

More information

Fish Distributions & Dynamics

Fish Distributions & Dynamics Fish Distributions & Dynamics LO: systematize relative importance of physical forces on vertical and horizontal distributions of commercially important fish life history stages NE Pacific Followup What

More information

Zooplankton community structure in the northern Gulf of Mexico: Implications for ecosystem management

Zooplankton community structure in the northern Gulf of Mexico: Implications for ecosystem management Zooplankton community structure in the northern Gulf of Mexico: Implications for ecosystem management By Andrew F. Millett Dauphin Island Sea Lab University of South Alabama W. Monty Graham, Glenn A. Zapfe,

More information

Size and spatial distribution of the blue shark, Prionace glauca, caught by Taiwanese large-scale. longline fishery in the North Pacific Ocean

Size and spatial distribution of the blue shark, Prionace glauca, caught by Taiwanese large-scale. longline fishery in the North Pacific Ocean 1 ISC/16/SHARKWG-1/21 Size and spatial distribution of the blue shark, Prionace glauca, caught by Taiwanese large-scale longline fishery in the North Pacific Ocean Kwang-Ming Liu 1,2, Kuang-Yu Su 1,2,

More information

HOW BENTHIC HABITATS AND BOTTOM TRAWLING AFFECT TRAIT COMPOSITION IN THE DIET OF EUROPEAN PLAICE (PLEURONECTES PLATESSA) IN THE NORTH SEA

HOW BENTHIC HABITATS AND BOTTOM TRAWLING AFFECT TRAIT COMPOSITION IN THE DIET OF EUROPEAN PLAICE (PLEURONECTES PLATESSA) IN THE NORTH SEA HOW BENTHIC HABITATS AND BOTTOM TRAWLING AFFECT TRAIT COMPOSITION IN THE DIET OF EUROPEAN PLAICE (PLEURONECTES PLATESSA) IN THE NORTH SEA Jacqueline Eggleton, Kenny A.J., Bolam S.G., Depestele J., Garcia

More information

2016 ANNUAL FISH TRAWL SURVEY REPORT

2016 ANNUAL FISH TRAWL SURVEY REPORT 216 ANNUAL FISH TRAWL SURVEY REPORT The University of Rhode Island Graduate School of Oceanography The Graduate School of Oceanography (GSO) Fish trawl survey began weekly sampling two stations in Narragansett

More information

Exploration of ecosystem factors responsible for coherent recruitment patterns of Pacific cod and walleye pollock in the eastern Bering Sea

Exploration of ecosystem factors responsible for coherent recruitment patterns of Pacific cod and walleye pollock in the eastern Bering Sea Exploration of ecosystem factors responsible for coherent recruitment patterns of Pacific cod and walleye pollock in the eastern Bering Sea Patricia A. Livingston, James Ianelli, Grant Thompson, and Ed

More information

SHRIMP OF THE ESTUARY AND GULF OF ST. LAWRENCE IN 2004

SHRIMP OF THE ESTUARY AND GULF OF ST. LAWRENCE IN 2004 Canadian Science Advisory Secretariat Science Advisory Report 25/35 SHRIMP OF THE ESTUARY AND GULF OF ST. LAWRENCE IN 24 Figure 1: Shrimp fishing areas in the Estuary and the Gulf of St. Lawrence. Context

More information

The Oscillating Control Hypothesis Reassessment in view of New Information from the Eastern Bering Sea

The Oscillating Control Hypothesis Reassessment in view of New Information from the Eastern Bering Sea The Oscillating Control Hypothesis Reassessment in view of New Information from the Eastern Bering Sea George L. Hunt, Jr. School of Aquatic and Fishery Sciences University of Washington With help from:

More information

STOCK ASSESSMENT AND FISHERY EVALUATION REPORT FOR THE GROUNDFISH FISHERIES OF THE GULF OF ALASKA AND BERING SEA/ALEUTIAN ISLAND AREA:

STOCK ASSESSMENT AND FISHERY EVALUATION REPORT FOR THE GROUNDFISH FISHERIES OF THE GULF OF ALASKA AND BERING SEA/ALEUTIAN ISLAND AREA: STOCK ASSESSMENT AND FISHERY EVALUATION REPORT FOR THE GROUNDFISH FISHERIES OF THE GULF OF ALASKA AND BERING SEA/ALEUTIAN ISLAND AREA: ECONOMIC STATUS OF THE GROUNDFISH FISHERIES OFF ALASKA, 1998 by Terry

More information

Salmon bycatch patterns in the Bering Sea pollock fishery

Salmon bycatch patterns in the Bering Sea pollock fishery Salmon bycatch patterns in the Bering Sea pollock fishery James Ianelli Seattle, WA Data from the North Pacific Observer Program (Fisheries Monitoring and Assessment) were analyzed for seasonal, temporal,

More information

Fishery management responses to climate change in the North Pacific

Fishery management responses to climate change in the North Pacific Fishery management responses to climate change in the North Pacific Diana Stram and Chris Oliver North Pacific Fishery Management Council Anchorage, AK Effects of Climate Change on the World s s Oceans

More information

NOAA Marine Fisheries and Research

NOAA Marine Fisheries and Research NOAA Marine Fisheries and Research Alaska Fisheries Science Center Auke Bay Laboratories Jim Murphy, Alaska Fisheries Science Center Fall 2018 Yukon River Panel Anchorage, AK Dec 12, 2018 Salmon Bycatch

More information

First Ever Estimate of Cod Fishery in 1850s Reveals 96% Decline on Scotian Shelf

First Ever Estimate of Cod Fishery in 1850s Reveals 96% Decline on Scotian Shelf Tuesday, March 1, 2005 www.coml.org Contacts: Terry Collins, +1-416-538-8712 Darlene Trew Crist, +1-401-295-1356, Sara Hickox, +1-401-874-6277 First Ever Estimate of Cod Fishery in 1850s Reveals 96% Decline

More information

2.3.1 Advice May Capelin in Subareas V and XIV and Division IIa west of 5 W (Iceland East Greenland Jan Mayen area).

2.3.1 Advice May Capelin in Subareas V and XIV and Division IIa west of 5 W (Iceland East Greenland Jan Mayen area). 2.3.1 Advice May 2014 ECOREGION Iceland and East Greenland STOCK Capelin in Subareas V and XIV and Division IIa west of 5 W (Iceland East Greenland Jan Mayen area) Advice for 2014/2015 ICES advises on

More information

Welcome to PolarConnect

Welcome to PolarConnect Welcome to PolarConnect with Lisa Seff and the Oceanographic Conditions of Bowhead Whale Habitat 2012 PolarTREC Expedition Friday 7 September 2012 7:15 a.m. AKDT (8:15 am PDT, 9:15 am MDT, 10:15 am CDT,

More information

A Combined Recruitment Index for Demersal Juvenile Cod in NAFO Divisions 3K and 3L

A Combined Recruitment Index for Demersal Juvenile Cod in NAFO Divisions 3K and 3L NAFO Sci. Coun. Studies, 29: 23 29 A Combined Recruitment Index for Demersal Juvenile Cod in NAFO Divisions 3K and 3L David C. Schneider Ocean Sciences Centre, Memorial University St. John's, Newfoundland,

More information

Impact of climate variability and change on winter survival of Bristol Bay sockeye salmon

Impact of climate variability and change on winter survival of Bristol Bay sockeye salmon Impact of climate variability and change on winter survival of Bristol Bay sockeye salmon Alaska Fisheries Science Center Ed Farley (NOAA), Greg Ruggerone (NRC) Phil Mundy (NOAA), Ellen Yasumiishi (NOAA)

More information

Zooplankton community changes on the Canadian northwest Atlantic continental shelves during recent warm years

Zooplankton community changes on the Canadian northwest Atlantic continental shelves during recent warm years Zooplankton community changes on the Canadian northwest Atlantic continental shelves during recent warm years Catherine L. Johnson 1, Stéphane Plourde 2, Pierre Pepin 3, Emmanuel Devred 1, David Brickman

More information

Gulf of St. Lawrence (4RST) Greenland Halibut

Gulf of St. Lawrence (4RST) Greenland Halibut Fisheries and Oceans Science Pêches et Océans Sciences DFO Science Stock Status Report A4-3 () 52 5 48 46 Québec Nouveau-Brunswick Québec 4T 4S 4R 3Pn 4Vn Terre-Neuve 3Ps 3K 3L Gulf of St. Lawrence (4RST)

More information

Map Showing NAFO Management Units

Map Showing NAFO Management Units Map Showing NAFO Management Units Unique biological characteristics dark coloration on both sides compared to almost all other flatfish species left eye not fully migrated giving it an unusually wide

More information

Introduction. Materials and Methods

Introduction. Materials and Methods 3 Introduction Large scale comprehensive surveys of the marine pelagic environment off Newfoundland and Labrador (NAFO Divisions 2J3KLNO) have been carried out during late summer since 1994 (Anderson and

More information

Distribution and recruitment of demersal cod (ages 0+, 1+ and 2+) in the coastal zone, NAFO Divisions 3K and 3L

Distribution and recruitment of demersal cod (ages 0+, 1+ and 2+) in the coastal zone, NAFO Divisions 3K and 3L Citation with Citation par permission of the authors 1 autorisation des auteurs 1 DFO Atlantic Fisheries MPO Peches de l'atlantique Research Document 95/68 Document de recherche 95/68 Distribution and

More information

A century of change in a marine fish assemblage. Martin Genner

A century of change in a marine fish assemblage. Martin Genner A century of change in a marine fish assemblage Martin Genner School of Biological Sciences, University of Bristol Marine Biological Association, Citadel Hill, Plymouth Demersal fishes of the English Channel

More information

7 GULF OF ALASKA POLLOCK

7 GULF OF ALASKA POLLOCK 7 GULF OF ALASKA POLLOCK 7.1 Introduction For the Gulf of Alaska (GOA) pollock fishery, the Principle 1 and 2 PIs were mapped against the following indicators within the stated reports: FAM PI: Assessment

More information

Advances in king crab juvenile biology: Growth, life history, habitat, and predation

Advances in king crab juvenile biology: Growth, life history, habitat, and predation Advances in king crab juvenile biology: Growth, life history, habitat, and predation Ginny L. Eckert University of Alaska Fairbanks, Juneau Center School of Fisheries and Ocean Sciences 1 Graduate Students

More information

Ecological Interactions in Coastal Marine Ecosystems: Rock Lobster

Ecological Interactions in Coastal Marine Ecosystems: Rock Lobster Ecological Interactions in Coastal Marine Ecosystems: Rock Lobster Progress Report to 3 November Lachlan MacArthur and Glenn A. Hyndes Centre for Ecosystem Management, Edith Cowan University, 1 Joondalup

More information

NEWFOUNDLAND REGION GROUNDFISH OVERVIEW

NEWFOUNDLAND REGION GROUNDFISH OVERVIEW DFO Science Stock Status Report A2-19 (1998) NEWFOUNDLAND REGION GROUNDFISH OVERVIEW Background In Newfoundland, Science Branch of the Department of Fisheries and Oceans is responsible, either directly

More information

Advice June 2014

Advice June 2014 5.3.23 Advice June 2014 ECOREGION STOCK Celtic Sea and West of Scotland Plaice in Division VIIa (Irish Sea) Advice for 2015 Based on ICES approach to data-limited stocks, ICES advises that catches should

More information

TAC Reported Landings * - By-catch only

TAC Reported Landings * - By-catch only DFO Atlantic Fisheries Stock Status Report 96/68E 4Vn 3Ps 4W 4Vs EASTERN SCOTIAN SHELF HADDOCK Background Haddock on the eastern Scotian Shelf and southern Gulf of St. Lawrence are considered as a single

More information

Gulf of Maine Northern Shrimp Survey

Gulf of Maine Northern Shrimp Survey November 21, 2003 CRUISE RESULTS Gulf of Maine Northern Shrimp Survey July 27 - August 8, 2003 Introduction This report summarizes results of the 2003 survey cruise for northern shrimp, Pandalus borealis,

More information

Nancy E. Kohler, Danielle Bailey, Patricia A. Turner, and Camilla McCandless SEDAR34-WP-25. Submitted: 10 June 2013

Nancy E. Kohler, Danielle Bailey, Patricia A. Turner, and Camilla McCandless SEDAR34-WP-25. Submitted: 10 June 2013 Mark/Recapture Data for the Atlantic Sharpnose Shark (Rhizoprionodon terranovae), in the Western North Atlantic from the NEFSC Cooperative Shark Tagging Program Nancy E. Kohler, Danielle Bailey, Patricia

More information

Cod in the Northern Gulf of St. Lawrence

Cod in the Northern Gulf of St. Lawrence DFO Sciences Stock Status Report A4-1 (1998) 52. 51. 5. Latitude 49. 48. 47. 4S 4R 3Pn Background Cod in the northern Gulf of (Divisions 3Pn, 4RS) undertake distant annual migrations. In winter, the fish

More information

Tanner crab Chinoecetes bairdi Popula.on in the Kodiak District of the Westward Region. Kally Spalinger

Tanner crab Chinoecetes bairdi Popula.on in the Kodiak District of the Westward Region. Kally Spalinger Tanner crab Chinoecetes bairdi Popula.on in the Kodiak District of the Westward Region Kally Spalinger 2 Methods R/V Resolu.on, 92 feet 4-Eastern oler trawl is towed for 1. nmi A subsample is taken to

More information

Cedar Lake Comprehensive Survey Report Steve Hogler and Steve Surendonk WDNR-Mishicot

Cedar Lake Comprehensive Survey Report Steve Hogler and Steve Surendonk WDNR-Mishicot Cedar Lake- 2006 Comprehensive Survey Report Steve Hogler and Steve Surendonk WDNR-Mishicot ABSTRACT Cedar Lake is a 142 acre lake located in the southwest corner of Manitowoc County. It is a seepage lake

More information

RELEASES AND RECOVERIES OF U.S. SALMONID DATA STORAGE TAGS, AND RECOVERIES OF HIGH SEAS TAGS IN NORTH AMERICA, 2001

RELEASES AND RECOVERIES OF U.S. SALMONID DATA STORAGE TAGS, AND RECOVERIES OF HIGH SEAS TAGS IN NORTH AMERICA, 2001 NPAFC Doc. 556 Rev. RELEASES AND RECOVERIES OF U.S. SALMONID DATA STORAGE TAGS, AND RECOVERIES OF HIGH SEAS TAGS IN NORTH AMERICA, 2001 Robert V. Walker, Nancy D. Davis, and Katherine W. Myers University

More information

Impacts of climate change on marine fisheries

Impacts of climate change on marine fisheries Impacts of climate change on marine fisheries Dr Jim Salinger Principal Scientist, NIWA, Auckland j.salinger@niwa.co.nz Outline Observed changes in ocean climate Observed changes in fisheries Future ocean

More information

Stock characteristics, fisheries and management of Greenland halibut (Reinhardtius hippoglossoides (Walbaum)) in the Northeast Arctic

Stock characteristics, fisheries and management of Greenland halibut (Reinhardtius hippoglossoides (Walbaum)) in the Northeast Arctic The 10 th Norwegian Russian Symposium Stock characteristics, fisheries and management of Greenland halibut (Reinhardtius hippoglossoides (Walbaum)) in the Northeast Arctic by Kjell H. Nedreaas (IMR) &

More information

ASMFC Stock Assessment Overview: Red Drum

ASMFC Stock Assessment Overview: Red Drum Purpose The purpose of this document is to improve the understanding and transparency of the Commission s stock assessment process and results. It is the first of several that will be developed throughout

More information

Summary of Research within Lamlash Bay No-Take Zone - Science report for COAST July

Summary of Research within Lamlash Bay No-Take Zone - Science report for COAST July Summary of Research within Lamlash Bay No-Take Zone - Science report for COAST July 2013 - *Picture of a spider crab (Macropodia spp) inside a plumose anemone. Taken within Lamlash Bay No-Take Zone by

More information

Challenges in communicating uncertainty of production and timing forecasts to salmon fishery managers and the public

Challenges in communicating uncertainty of production and timing forecasts to salmon fishery managers and the public Challenges in communicating uncertainty of production and timing forecasts to salmon fishery managers and the public Alaska Fisheries Science Center Joseph A. Orsi and Phillip R. Mundy Auke Bay Laboratories

More information

3.4.3 Advice June Barents Sea and Norwegian Sea Cod in Subareas I and II (Norwegian coastal waters cod)

3.4.3 Advice June Barents Sea and Norwegian Sea Cod in Subareas I and II (Norwegian coastal waters cod) 3.4.3 Advice June 2013 ECOREGION STOCK Barents Sea and Norwegian Sea Cod in Subareas I and II (Norwegian coastal waters cod) Advice for 2014 ICES advises on the basis of the Norwegian rebuilding plan,

More information

Bycatch accounting and management in the Ross Sea toothfish fishery

Bycatch accounting and management in the Ross Sea toothfish fishery Bycatch accounting and management in the Ross Sea toothfish fishery Steve Parker Sophie Mormede Stuart Hanchet New Zealand Ross Sea Region 4.5 million km 2 of ocean High seas fishery Managed by CCAMLR

More information

Rockfish Bycatch: Spatial Analysis Using Observer Data in the Aleutian Islands and Bering Sea

Rockfish Bycatch: Spatial Analysis Using Observer Data in the Aleutian Islands and Bering Sea Rockfish Bycatch: Spatial Analysis Using Observer Data in the Aleutian Islands and Bering Sea Prepared for Alaska Marine Conservation Council Prepared by Ecotrust Charles Steinback Sarah Klain DRAFT REPORT

More information

Fish Conservation and Management

Fish Conservation and Management Fish Conservation and Management CONS 486 Ocean ecosystems Ross Chapter 2 Topics Physical/temperature zones Magnitude/types of currents Major theme: Linking science to conservation & management Physiology

More information

Spatial/Seasonal overlap between the midwater trawl herring fishery and predator focused user groups

Spatial/Seasonal overlap between the midwater trawl herring fishery and predator focused user groups Spatial/Seasonal overlap between the midwater trawl herring fishery and predator focused user groups A working paper submitted to the Herring PDT Micah Dean July 26, 2017 Introduction A goal of Amendment

More information

ESTONIAN SVALBARD EXPLORATORY SURVEY 2002

ESTONIAN SVALBARD EXPLORATORY SURVEY 2002 UNIVERSITY OF TARTU ESTONIAN MARINE INSTITUTE ESTONIAN SVALBARD EXPLORATORY SURVEY 2002 SCIENTIFIC REPORT TALLINN 2003 Introduction Considering the obligations resulted from international law, including

More information

Influence of the Labrador Current on Predation by Cod on Capelin and Sand Lance off Eastern Newfoundland

Influence of the Labrador Current on Predation by Cod on Capelin and Sand Lance off Eastern Newfoundland NAFO Sci. Coun. Studies, 3: 77-82 Influence of the Labrador Current on Predation by Cod on Capelin and Sand Lance off Eastern Newfoundland G. R. Lilly Department of Fisheries and Oceans, Northwest Atlantic

More information

< Ocean Conditions and Salmon Forecasting

<  Ocean Conditions and Salmon Forecasting Variations in source waters which feed the California Current may be the mechanism which links the PDO and climate change with ecosystem response Bill Peterson, Senior Scientist Northwest Fisheries Science

More information

ASMFC Stock Assessment Overview: Red Drum

ASMFC Stock Assessment Overview: Red Drum Introduction This document presents a summary of the 217 stock assessments for red drum. These assessments were initially conducted through the Southeast Data, Assessment and Review (SEDAR) process using

More information

Essential Fish Habitat Description Atlantic cod (Gadus morhua)

Essential Fish Habitat Description Atlantic cod (Gadus morhua) Description Atlantic cod (Gadus morhua) In its Report to Congress: Status of the Fisheries of the United States (September 1997), NMFS determined the Gulf of Maine stock of cod is considered overfished,

More information

SA2 + Div. 3K Redfish

SA2 + Div. 3K Redfish Fisheries and Oceans Pêches et Océans Canada Canada DFO Science Stock Status Report A2-15(21) entered the fishery in 1975 and averaged about 16,5 t from 1978-1986. The steady reduction in catches from

More information

Advice October 2013

Advice October 2013 5.4.21.3 Advice October 213 ECOREGION Celtic Sea and West of Scotland STOCK Nephrops on Porcupine Bank (FU 16) Advice for 214 ICES advises on the basis of the MSY approach that catches from FU 16 in 214

More information

Serial No. N4083 NAFO SCR Doc. 99/27 SCIENTIFIC COUNCIL MEETING JUNE 1999

Serial No. N4083 NAFO SCR Doc. 99/27 SCIENTIFIC COUNCIL MEETING JUNE 1999 NOT TO CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S) Northwest Atlantic Fisheries Organization Serial No. N483 NAFO SCR Doc. 99/27 SCIENTIFIC COUNCIL MEETING JUNE 1999 Biomass and Abundance of Demersal

More information

Hydroacoustic survey of Otsego Lake, 2004

Hydroacoustic survey of Otsego Lake, 2004 Hydroacoustic survey of Otsego Lake, 2004 Thomas E. Brooking 1 Mark D. Cornwell 2 INTRODUCTION Fishery managers must often rely on uncertain information regarding abundance and distribution of offshore

More information

Application of a New Method for Monitoring Lake Trout Abundance in Yukon: Summer Profundal Index Netting (SPIN)

Application of a New Method for Monitoring Lake Trout Abundance in Yukon: Summer Profundal Index Netting (SPIN) Application of a New Method for Monitoring Lake Trout Abundance in Yukon: Summer Profundal Index Netting (SPIN) Prepared by: Lars Jessup Nathan Millar November 2011 Application of a New Method for Monitoring

More information

Fast Tracking the Development of Environmental- Friendly Fishing Methods

Fast Tracking the Development of Environmental- Friendly Fishing Methods Irish Presidency of the Council of Fisheries Ministers of the European Union Ministerial & Stakeholders Conference Fast Tracking the Development of Environmental- Friendly Fishing Methods Norwegian efforts

More information

Wakefield Fisheries Symposium, May University of Alaska, Fairbanks School of Fisheries and Ocean Sciences, Fisheries Division Juneau, AK

Wakefield Fisheries Symposium, May University of Alaska, Fairbanks School of Fisheries and Ocean Sciences, Fisheries Division Juneau, AK Wakefield Fisheries Symposium, May 2014 Daniel B. Michrowski Terrance J. Quinn, II University of Alaska, Fairbanks School of Fisheries and Ocean Sciences, Fisheries Division Juneau, AK Background: 5 W

More information

Juvenile Steelhead Distribution, Migration, Growth and Feeding in the Columbia River Estuary, Plume and Ocean Waters

Juvenile Steelhead Distribution, Migration, Growth and Feeding in the Columbia River Estuary, Plume and Ocean Waters Juvenile Steelhead Distribution, Migration, Growth and Feeding in the Columbia River Estuary, Plume and Ocean Waters Elizabeth Daly (OSU) Richard Brodeur (NWFSC) Julie Scheurer (ARO) Laurie Weitkamp (NWFSC)

More information

Interactions in a multispecies age-structured assessment model for the Gulf of Alaska

Interactions in a multispecies age-structured assessment model for the Gulf of Alaska Interactions in a multispecies age-structured assessment model for the Gulf of Alaska Kray F. Van Kirk SFOS UAF Juneau, Alaska Terrance J. Quinn II SFOS UAF Juneau, Alaska Jeremy S. Collie GSO URI Narragansett,

More information

NAFO/ICES PANDALUS ASSESSMENT GROUP MEETING OCTOBER An overview of Norwegian investigations of the shrimp stock off East Greenland in

NAFO/ICES PANDALUS ASSESSMENT GROUP MEETING OCTOBER An overview of Norwegian investigations of the shrimp stock off East Greenland in NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S) Northwest Atlantic Fisheries Organization Serial No. N5595 NAFO SCR Doc. 08/063 NAFO/ICES PANDALUS ASSESSMENT GROUP MEETING OCTOBER 2008 An overview

More information

Pierre Meke, Biological Data Length Frequency Sampling

Pierre Meke, Biological Data Length Frequency Sampling Pierre Meke, 2009 http://www.cnr.vt.edu/ Biological Data Length Frequency Sampling Introduction Biological data Sex Length Weight Age structure Stock assessment needs: Age composition of population Length

More information

2/11/2013. Introduction. Objectives. Selecting individuals to measure. Biological Data Length Frequency Sampling

2/11/2013. Introduction. Objectives. Selecting individuals to measure. Biological Data Length Frequency Sampling Pierre Meke, 2009 http://www.cnr.vt.edu/ Biological Data Length Frequency Sampling Introduction Biological data Sex Length Weight Age structure Stock assessment needs: Age composition of population Length

More information

Serial No. N5900 NAFO SCR Doc. 11/017 REVISED SCIENTIFIC COUNCIL MEETING JUNE 2010

Serial No. N5900 NAFO SCR Doc. 11/017 REVISED SCIENTIFIC COUNCIL MEETING JUNE 2010 NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR() Northwest Atlantic Fisheries Organization erial No. N5900 NAFO CR Doc. 11/017 REVIED CIENTIFIC COUNCIL MEETING JUNE 2010 Report on Greenland Halibut

More information

Climate and Fish Population Dynamics: A Case Study of Atlantic Croaker

Climate and Fish Population Dynamics: A Case Study of Atlantic Croaker Climate and Fish Population Dynamics: A Case Study of Atlantic Croaker Kenneth W. Able Marine Field Station Institute of Marine and Coastal Sciences Hare and Able (in press, Fisheries Oceanography) Climate

More information

6 th Meeting of the Scientific Committee Puerto Varas, Chile, 9-14 September SC6-Doc15 The Russian Federation s Annual Report

6 th Meeting of the Scientific Committee Puerto Varas, Chile, 9-14 September SC6-Doc15 The Russian Federation s Annual Report 6 th Meeting of the Scientific Committee Puerto Varas, Chile, 9-14 September 2018 SC6-Doc15 The Russian Federation s Annual Report National report of the Russian Federation to the SPRFMO Science Working

More information

Catch efficiency of a small-sized Danish seine

Catch efficiency of a small-sized Danish seine Background Catch efficiency of a small-sized Danish seine Orio Yamamura (Hokkaido National Fisheries Research Institute, FRA) DoCoFis: Comprehensive projects to understand population dynamics of commercially

More information

Highly Migratory Species SWFSC/NMFS Report

Highly Migratory Species SWFSC/NMFS Report Agenda Item D..b Supplemental SWFSC PowerPoint June 206 Highly Migratory Species SWFSC/NMFS Report Gerard DiNardo Cisco Werner SWFSC PFMC Item D..b Tacoma, June 206 SWFSC HMS Research Activities Cooperative

More information

Catch per unit effort of coastal prawn trammel net fishery in Izmir Bay, Aegean Sea

Catch per unit effort of coastal prawn trammel net fishery in Izmir Bay, Aegean Sea Research Article Mediterranean Marine Science Volume 10/1, 2009, 19-23 Catch per unit effort of coastal prawn trammel net fishery in Izmir Bay, Aegean Sea O. AKYOL and T. CEYHAN Faculty of Fisheries, Ege

More information

Linking Abundance, Distribution, and Size of Juvenile Yukon River Chinook Salmon to Survival in the Northern Bering Sea

Linking Abundance, Distribution, and Size of Juvenile Yukon River Chinook Salmon to Survival in the Northern Bering Sea North Pacific Anadromous Fish Commission Technical Report No. 9: 25-30, 2013 Linking Abundance, Distribution, and Size of Juvenile Yukon River Chinook Salmon to Survival in the Northern Bering Sea James

More information

REGIONAL AND LOCAL VARIATION OF BOTTOM FISH AND INVERTEBRATE POPULATIONS

REGIONAL AND LOCAL VARIATION OF BOTTOM FISH AND INVERTEBRATE POPULATIONS M. James Allen and Robert Voglin REGIONAL AND LOCAL VARIATION OF BOTTOM FISH AND INVERTEBRATE POPULATIONS One of the projects included in our recently completed research for the EPA was an assessment of

More information

LAKE WASHINGTON SOCKEYE SALMON STUDIES. Richard E. Thorne and James J. Dawson

LAKE WASHINGTON SOCKEYE SALMON STUDIES. Richard E. Thorne and James J. Dawson FRI-UW-7613 October 1976 LAKE WASHINGTON SOCKEYE SALMON STUDIES 1975 1976 by Richard E. Thorne and James J. Dawson Final Report Service Contract No. 648 Washington State Department of Fisheries For the

More information

> >Welcome to the second issue of Fish Briefs! > > > >Articles in Issue Two: > > > >Robert S. Gregory, John T. Anderson. "Substrate selection and use

> >Welcome to the second issue of Fish Briefs! > > > >Articles in Issue Two: > > > >Robert S. Gregory, John T. Anderson. Substrate selection and use Welcome to the second issue of Fish Briefs! Articles in Issue Two: Robert S. Gregory, John T. Anderson. "Substrate selection and use of protective cover by juvenile Atlantic cod Gadus morhua in inshore

More information

Distribution and abundance of demersal fish and invertebrate fauna around the

Distribution and abundance of demersal fish and invertebrate fauna around the Ecology of the Antarctic Sea Ice Zone Symposium Session: Benthic communities and diversity Distribution and abundance of demersal fish and invertebrate fauna around the South Orkneys Islands Instituto

More information

SCIENTIFIC COUNCIL MEETING - JUNE Denmark/Greenland Research Report for 1989

SCIENTIFIC COUNCIL MEETING - JUNE Denmark/Greenland Research Report for 1989 Northwest Atlantic a NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S) Fisheries Organization Serial No. N1770 NAFO SCS Doc. 90/14 SCIENTIFIC COUNCIL MEETING - JUNE 1990 Denmark/Greenland Research

More information

Kodiak and Alaska Peninsula Commercial Dungeness Crab Fisheries, Report to the Alaska Board of Fisheries. Michael P. Ruccio.

Kodiak and Alaska Peninsula Commercial Dungeness Crab Fisheries, Report to the Alaska Board of Fisheries. Michael P. Ruccio. Kodiak and Alaska Peninsula Commercial Dungeness Crab Fisheries, 1999 Report to the Alaska Board of Fisheries By Michael P. Ruccio and David R. Jackson Regional Information Report 1 No. 4K00-3 Alaska Department

More information

Sustainable Seas - Marine Fisheries Fisheries and Fishing

Sustainable Seas - Marine Fisheries Fisheries and Fishing Sustainable Seas - Marine Fisheries Fisheries and Fishing Maximum Sustainable Yield and Fishery Management Mariculture Reading: Ch 9: 9.12 Ch 14: 14.7-14.9 Ch 17: 17.1, 17.17-17.21,17.25 Graphic: Chub

More information

DISCUSSION PAPER: GEAR SPECIFIC ALLOCATIONS FOR BSAI GREENLAND TURBOT TOTAL ALLOWABLE CATCH

DISCUSSION PAPER: GEAR SPECIFIC ALLOCATIONS FOR BSAI GREENLAND TURBOT TOTAL ALLOWABLE CATCH DISCUSSION PAPER: GEAR SPECIFIC ALLOCATIONS FOR BSAI GREENLAND TURBOT TOTAL ALLOWABLE CATCH Introduction In October 211, the North Pacific Fishery Management Council (Council) received testimony during

More information

ATLANTIC STATES MARINE FISHERIES COMMISSION. Winter Flounder Abundance and Biomass Indices from State Fishery-Independent Surveys

ATLANTIC STATES MARINE FISHERIES COMMISSION. Winter Flounder Abundance and Biomass Indices from State Fishery-Independent Surveys ATLANTIC STATES MARINE FISHERIES COMMISSION Winter Flounder Abundance and Biomass Indices from State Fishery-Independent Surveys Technical Committee Report to the Winter Flounder Management Board February

More information

ASSESSMENT OF THE WEST COAST OF NEWFOUNDLAND (DIVISION 4R) HERRING STOCKS IN 2011

ASSESSMENT OF THE WEST COAST OF NEWFOUNDLAND (DIVISION 4R) HERRING STOCKS IN 2011 Canadian Science Advisory Secretariat Science Advisory Report 212/24 ASSESSMENT OF THE WEST COAST OF NEWFOUNDLAND (DIVISION 4R) HERRING STOCKS IN 211 Context Figure 1. Map of unit areas of NAFO Division

More information

Year Avg. TAC Can Others Totals

Year Avg. TAC Can Others Totals SKATE IN DIVISIONS 3L, 3N, 3O AND SUBDIVISION 3Ps Background There are 8 to 1 species of skate in the waters around Newfoundland. Of these, thorny skate (Raja radiata) is by far the most common, comprising

More information

Fine-Scale Survey of Right and Humpback Whale Prey Abundance and Distribution

Fine-Scale Survey of Right and Humpback Whale Prey Abundance and Distribution DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Fine-Scale Survey of Right and Humpback Whale Prey Abundance and Distribution Joseph D. Warren School of Marine and Atmospheric

More information

STUDY PERFORMANCE REPORT

STUDY PERFORMANCE REPORT STUDY PERFORMANCE REPORT State: Michigan Project No.: F-53-R-14 Study No.: 486 Title: Assessment of lake trout populations in Michigan s waters of Lake Michigan. Period Covered: April 1, 1997 to March

More information

MARINE ECOLOGY PROGRESS SERIES Vol. 202: , 2000 Published August 28 Mar Ecol Prog Ser

MARINE ECOLOGY PROGRESS SERIES Vol. 202: , 2000 Published August 28 Mar Ecol Prog Ser MARINE ECOLOGY PROGRESS SERIES Vol. 0: 93 7, 000 Published August Mar Ecol Prog Ser Spawning origins of pelagic juvenile cod Gadus morhua inferred from spatially explicit age distributions: potential influences

More information