Scaling. Vector Addition 5.)

Size: px
Start display at page:

Download "Scaling. Vector Addition 5.)"

Transcription

1 Scaling A statue is to be scaled down, without distorting its shape, by changing its total volume from 1.25 m 3 to 0.37 m 3. Explain your reasoning in each of the following calculations. A. If the height of the original statue is 250 cm, calculate the height of the smaller model. B. If the circular base of the original statue has a circumference of 45 cm, calculate the circumference of the scaled-down base in the smaller model. C. How will the total surface area of the model compare (this means an appropriate ratio) with the total surface area of the original? How will the surface areas of the circular bases compare? D. If both the model and the original are made of the same material, how will the mass of the model compare (again, this means your answer should describe the appropriate ratio) with the mass of the original? E. If the model and the original are not made of the same material, what would you have to know about the materials to be able to compare the masses, and how would you use this information? F. If the original statue and the model turned out to have the same mass, what would you conclude about the materials making up the two objects? (Give a numerical answer comparing relevant properties of the materials.) Vector Addition 5.) cm@ ii) A pet-store supply truck moves at 25m/s north along a highway. Inside, a dog moves at 5.75m/s at an angle of 35 degrees East of North. What is the velocity of the dog relative to the road? 12. ii) Humanoid robots designed to replace us are being produced in a faraway factory. The robots are moved along a conveyor belt which moves at 3m/s at 65 relative to a wall. One robot decides to walk on the conveyor at 45, at 5m/s. What is its resultant velocity? 13. iii) A plane is flying from Boston to New York, 200 miles away, departs at 1:00 and is scheduled to arrive at 1:45. (Pretend NYC is directly south of Boston.) A crosswind blowing to the west with a speed of 20 miles/hour would push the plane off course. The pilot, who had of course taken physics, knows that if he aims at an angle towards the wind, he will still make it to New York. At what velocity and angle should the pilot direct the plane? 14. iii)the current of a 200m wide straight river has a flow rate of 2.5km/h. A motorboat with a speed of 30km/h in still water crosses the river. Aim the boat 45 degrees up river. Where does it land? Static Equilibrium Determine the weight of the ball if the system is in equilibrium. The cable at right exerts a 30. N force.

2 In the system below the pulleys are frictionless and the system hangs at static equilibrium. If w1, the weight of the object on the right, is 200. N, what are the values of w2 and w3? Torque Problem 8, pg Problem 21, pg Big Fred is an artist, and has an idea to make a balancing piece of artwork. He s got a 5m long metal plank, m=100kg, and on the far right end, he will place a 50kg stone statue. Where should the fulcrum be so this thing will balance? COM The earth has a mass of 6 x kg. The moon s mass is 7.36 x kg. The center-center distance between them is about 382,500km (on average). How far from the earth s center is the CoM of the earth-moon system? Is this point inside the earth? a) A meter long rod of uniform density has a mass of 2kg. Where is the center of mass of this rod? b) If an apple with a mass of 1kg, is attached to one end of the meter long rod, where is the new center of mass? There exists a square metal sheet of uniform density and a mass of 10kg. On three corners of this sheet, each 4cm from the center, a mass is placed. The masses in clockwise order from the bottom left are 3kg, 4kg, and 3 kg. Where is the CoM? Find the center of mass of this figure: Materials Science Ch , 45, 49, 55, 58 Kinematics A German stuntman named Martin Blume performed a stunt called the wall of death. To perform it, Blume rode his motorcycle for seven straight hours on the wall of a vertical cylinder Suppose that in a time interval of 30s Blume increases his speed steadily from 30 km hr to 45 km hr while circling inside the cylindrical wall. If the cylinder s diameter is 10m, how many laps does Blume make during the 30s time interval? Peter Rosendahl rode his unicycle a distance of 100m in 12.11s. If he started at rest, what was the magnitude of his acceleration?

3 In 1976, Kitty Hambleton of the United States drove a rocket engine car to a maximum speed of 965 km hr. Suppose Hambleton started at rest and underwent a constant acceleration of 4 m s 2. What distance would she have had to travel in order to reach the maximum speed? With a cruising speed of 2300 km hr, the French supersonic passenger jet Concorde is the fastest commercial airplane. Suppose the landing speed is 20% of the cruising speed. If the brakes can produce a deceleration of 5.8 m s 2, what minimum length of runway is necessary? 18. A helicopter is ascending vertically with a speed of 8 m s. At a height of 120m above the ground, a package is dropped from a window. How much time does it take for the package to reach the ground? 20. Pelicans tuck their wings and free fall straight down when diving for fish. Suppose a pelican starts its dive from a height of 20m and cannot change its path once committed. If it takes a fish 0.10s to perform evasive action, at what minimum height must it spot the pelican to escape? Assume the fish is at the surface of the water. Forces, N2L A box of moldy raisins is tossed angrily across a desktop, and goes from 4m/s to rest as it slides 1.5 meters. Its mass is 25 grams. What is the friction force between it and the table? Grandpa hasn t driven a car in a while, and he s a bit senile, so he uses the gas pedal and the brakes at the same time, thinking they re both gas pedals. So he guns it, and the engine provides 5400N of forward force, while the brakes offer 4400N of friction. For a 2000kg car, how long will it take to get up to highway speed, 27 s m? Friction Part I Horizontal. For each situation, determine if the block moves. If the object does move, give the kinetic friction force and find the acceleration (with direction). Tip: First find N, f s max and f k. If Applied force > f s max, it will move. Find the resulting acceleration. 1. Mass=20kg, µ s =.3, µ k = Mass=10kg, µ s =.22, µ k =.14 50N 60 30N 20 N 10N Part II. Vertical. For each situation, determine if the block moves. If not, give the actual friction force acting. If the object does move, give the actual friction force and find the acceleration (with direction). Tip: Steps to follow: First find N, f s max and f k. If all-the-forces-parallel-to-the-surface > f s max, it will move. Find acceleration

4 4. Mass=10kg, µ s =.22, µ k = N 5. P 104, #39 6. P 104, #40 Your mass is 55kg. Riding in an elevator, accelerating upward, the bathroom scale you are standing on reads 700N. What is your acceleration? Once you are moving at constant speed, what will the scale read? As you near the top, the scale s reading drops to 400N. What is the magnitude and direction of your acceleration? You are sitting at the top of a 3m long slide angled at 30 to the ground. If the µ is.11, how fast will you be going at the end of the slide? Extra challenge: can you solve this using work and energy? (it s actually much easier!) MOI, Rotational motion Mammals that depend on being able to run fast have slender lower legs with flesh and muscle concentrated high, close to the body. On the basis of rotational dynamics, explain why this distribution of mass is advantageous. Explain the physics justification for choking up on a baseball bat. If there were a great migration of people toward the equator, how would this affect the length of a day? There are 2 meter sticks with clamps on them. One has the masses at the ends, the other has the masses near the middle. Hold one in each hand and try to twist them back and forth. What do you observe? Explain. 9. On the record player, rotating at 33 rpm, a paperclip sits at the edge of the record (r=15cm). a. What is the angular velocity of the paperclip (rad/s)? b. What is the linear velocity of the paperclip? c. A second paperclip is 7.5cm from the center. What is its angular velocity? d. What is its linear velocity? e. If it takes 1/3 revolution for the record to reach the proper speed from rest, what is its angular acceleration? Circular motion Ch 5, probs 2, 7, 9, 12, 15

5 Energy, Work and Power 1. A spring loaded pea-shooter has a spring with k = 25N/m is compressed 10cm. A 5 gram pea is fired. How fast will it be going when it leaves the barrel? 2. Ricardo the claymation boy (mass = 5kg) is dropped from an airplane 5000 m above the earth. He pulls his chute and lands gracefully on a bed of downy softness with a speed of 5m/s. How much GPE did he have initially? How much KE did he land with? How much energy was dissipated as heat during the descent? 3. A) A roller coaster takes riders up 60 meters above the ground, and releases them. The total mass of the cars and riders is 400kg. Find the speed at points A, B, and C of the coaster. (Assume no friction) 60m A 15m B 30m C B) Suppose the track just ends at point C, and the cars go skidding along the ground. If μ between the cars and the ground is.3, how far will the cars go before stopping? C) Suppose a very large spring was used to launch the cart up to the top of the ramp, where it just barely makes it over the hill (velocity reaches near zero at the top). If the spring has a constant k of 54000N/m, how far must the spring be compressed to get the cart to the top of the hill. 7. A typical AA battery is rated at 1200mW-hr of energy. If you can shoot 400 pictures on one set of batteries, how much energy is the camera using per shot? The net force (in newtons) acting on a puck on an air table (an essentially frictionless system) varies with distance as shown in the following diagram: Magnitude of F (N) Position X (m) The puck has a mass of kg. When the force is applied to the puck at clock reading t = 0.00 the puck has an initial instantaneous velocity of m/s in the positive direction. A. Describe, in terms of work and kinetic energy, what happens to the puck over the space interval between x = 0m and x = 0.6m. Be specific. Do not use Newton s Second Law. The concepts and relationships between quantities that you describe here will guide you calculations in the following parts. B. Calculate the work that must have been done by the net force on the puck. C. Calculate the change in kinetic energy of the puck. D. Calculate the initial and final values of the kinetic energy of the puck E. How fast is the puck moving at 0.6m?

6 Momentum A 13 g bullet traveling at 330m/s penetrates a 2.0 kg block of wood and emerges going 270 m/s. If the block is stationary on a frictionless surface when hit, how fast does it move after the bullet emerges? A 115 kg fullback is running at 4.0 m/s to the east and is stopped in.75s by a head-on tackle by a tackler running due west. Calculate (a) the original momentum of the fullback, (b) the impulse exerted on the fullback, (d) the impulse exerted on the tackler, and (d) the average force exerted on the tackler. Suppose the force acting on a tennis ball (mass kg) as a function of time is given by this graph. Use graphical methods to estimate (a) the total impulse given the ball, and (b) the speed of the ball after being struck. Assuming the ball is being served so it is nearly at rest initially. Use figure 7-27 on p.188 Fluids, static pressure 1. An office window has dimensions 3.0 m by 1.8 m. As a result of the passage of a storm, the outside air pressure drops to 0.97 atm, but inside the pressure is held at 1.0 atm. What net force pushes out on the window? 2. Calculate the hydrostatic difference in blood pressure between the brain and the foot in a person of height 1.73m. The density of blood is 1.06 x 10 3 kg/m 3. Fluids in motion, Bernoulli 1. Your boat weighs 1200N. What volume of water will it displace when floating motionless at the surface of a lake? What is the mass of this water? 2. Your town is installing a fountain in the main square. If the water is to rise 25m above the fountain, how much pressure must the water have as it moves slowly toward the nozzle that sprays it up into the air? 3. Rather than putting a pump in the fountain, the town engineer puts a water storage tank in one of the nearby high rise office buildings. How high up in that building should the tank be for its water to rise to 25m when spraying out of the fountain? 4. Ch 10, #29 (p 291) Poiseuille s Law 1. Ch 10 # 37 (p292) 2. #40 3. #41 4. #44 5. When your friend s house was new, the kitchen faucet could deliver.5 liters per second. But mineral deposits have built up in the pipes over the years and reduced their effective diameters by 20%. How much water can the faucet deliver now? 6. How much higher must your blood pressure get to compensate for a 5% narrowing in your blood vessels? 7. How quickly would you have to move a 1 cm diameter stick through olive oil to reach a Reynolds number of 2000, so that you would begin to see turbulence around the stick? (Olive oil has a density of 918kg/m 3 ) 8. The effective obstacle length of a blimp is its width the distance to which the air is separated as it flows around the blimp. How slowly would a 15m wide blimp have to move in order to keep the airflow around it laminar? (density of air = 1.25kg/m 3 )

7 Projectiles 5. A hunter lying on the ground fires his gun at an angle of 2.2 at a final exam in a tree. The tree is 1500m away, and the test is 57.6m up in the tree. The bullet leaves the gun at 1250 m s. a) If the test lets go at the same moment of the gunfire, how far off the ground will it be when the bullet gets that far? b) How high up will the bullet be? Will the test be ok? (brainteaser: what subject is the test on?) 6. Sam S. hits a baseball 110 meters from home plate, which hits Mr. Anderson s front bumper, leaving a little paint there. a) If the ball was in the air for 3.5 seconds, with what speed did the ball leave his bat? b) How high did it go? (Assume the original and final heights are the same). 7. A football is kicked at ground level with a speed of 20 m/s at an angle of 37 degrees to the horizontal. How much later does it hit the ground? 8. Mr. A launches off a big table top (a type of jump) while snowboarding. The jump is angled at 30. The lip of the jump is 1 meter above the landing level. The distance cleared is 8 meters. How fast was he going? 30 1m 8m

REVIEW : KINEMATICS

REVIEW : KINEMATICS 1 REVIEW 5-4-16: KINEMATICS Kinematics-Defining Motion 1 A student on her way to school walks four blocks east, three blocks north, and another four blocks east, as shown in the diagram. Compared to the

More information

5. A bead slides on a curved wire, starting from rest at point A in the figure below. If the wire is frictionless, find each of the following.

5. A bead slides on a curved wire, starting from rest at point A in the figure below. If the wire is frictionless, find each of the following. Name: Work and Energy Problems Date: 1. A 2150 kg car moves down a level highway under the actions of two forces: a 1010 N forward force exerted on the drive wheels by the road and a 960 N resistive force.

More information

Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM

Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM 1. Which quantity and unit are correctly paired? 2. Which is a derived unit? meter second kilogram Newton 3. The fundamental unit

More information

PHYSICS 12 NAME: Kinematics and Projectiles Review

PHYSICS 12 NAME: Kinematics and Projectiles Review NAME: Kinematics and Projectiles Review (1-3) A ball is thrown into the air, following the path shown in the diagram. At 1, the ball has just left the thrower s hand. At 5, the ball is at its original

More information

PHYSICS 20 Vectors and Dynamics

PHYSICS 20 Vectors and Dynamics NEWTONS 1st LAW 1. A 10.00 kg mass is tied to a string with a maximum strength of 100 N. A second string of equal strength is tied to the bottom of the mass. a) If the bottom string is pulled with a jerk

More information

1. Which one of the following is a vector quantity? A. time B. speed C. energy D. displacement

1. Which one of the following is a vector quantity? A. time B. speed C. energy D. displacement 1. Which one of the following is a vector quantity? A. time B. speed C. energy D. displacement 2. A car is travelling at a constant speed of 26.0 m/s down a slope which is 12.0 to the horizontal. What

More information

Physics 2204 Review for test 3 Vectors and The first four sections of Unit 2

Physics 2204 Review for test 3 Vectors and The first four sections of Unit 2 Physics 2204 Review for test 3 Vectors and The first four sections of Unit 2 1 You set out in a canoe from the east shore of a south-flowing river. To maximize your velocity relative to the shore you should

More information

PHYS 101 Previous Exam Problems

PHYS 101 Previous Exam Problems PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep

More information

Cutnell/Johnson Physics

Cutnell/Johnson Physics Cutnell/Johnson Physics Classroom Response System Questions Chapter 3 Kinematics in Two Dimensions Interactive Lecture Questions 3.1.1. A truck drives due south for 1.2 km in 1.5 minutes. Then, the truck

More information

Review Problems for Physics A Final

Review Problems for Physics A Final Review Problems for Physics A Final 1. The fastest helicopter, the Westland Lynx, can travel 3.33 km in the forward direction in just 30.0 s.what is the average velocity of this helicopter? Express your

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Hang from a pair of gym rings and the upward support forces of the rings will always

More information

Appendix : Categorization Task. Instructions

Appendix : Categorization Task. Instructions Appendix : Categorization Task Instructions Your task is to group the 25 problems below based upon similarity of solution into various groups on the sheet of paper provided. Problems that you consider

More information

6. What net external force is required to give a 25 kg suitcase an acceleration of 2.2 m/s2 to the right? Draw a free-body diagram of the suitcase.

6. What net external force is required to give a 25 kg suitcase an acceleration of 2.2 m/s2 to the right? Draw a free-body diagram of the suitcase. HONORS PHYSICS PROBLEM SET NEWTON S LAWS & FORCES ONE DIMENSIONAL FORCES 1. The net external force on the propeller of a 0.75 kg model airplane is 17 N forward. What is the acceleration of the airplane?

More information

Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors. Conceptual Questions

Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors. Conceptual Questions Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors Conceptual Questions 1) Which one of the following is an example of a vector quantity? A) distance B) velocity

More information

Chapter 6. You lift a 10 N physics book up in the air a distance of 1 meter at a constant velocity of 0.5 m/s. The work done by gravity is

Chapter 6. You lift a 10 N physics book up in the air a distance of 1 meter at a constant velocity of 0.5 m/s. The work done by gravity is I lift a barbell with a mass of 50 kg up a distance of 0.70 m. Then I let the barbell come back down to where I started. How much net work did I do on the barbell? A) - 340 J B) 0 J C) + 35 J D) + 340

More information

Physics Final Exam Review Fall 2013

Physics Final Exam Review Fall 2013 Physics Final Exam Review Fall 2013 The lines on the graph represent displacement vectors for the route along which a person moves. Use the figure to answer problems 1 2. 1. What is the total distance

More information

Unit Conversion Worksheet

Unit Conversion Worksheet Name: Period Date: Unit Conversion Worksheet Conversions 1 hour = 3600 seconds 1 mile = 5280 feet 1 yard = 3 feet 1 meter = 3.28 feet 1 km = 0.62 miles 1 light second = 300,000,000 meters 1 kg = 2.2 lbs

More information

Honors Physics Semester 2 Final Exam Review

Honors Physics Semester 2 Final Exam Review Honors Physics Semester 2 Final Exam Review 1600 kg 800 kg 9 m/s A truck with mass 1600 kg collides with a car with mass 800 kg at rest. They stick together and continue to move to the right. 1. What is

More information

3) A horse gallops a distance of 10 kilometers in a time of 30 minutes. Its average speed is A) 15 km/h. B) 20 km/h. C) 30 km/h. D) 40 km/h.

3) A horse gallops a distance of 10 kilometers in a time of 30 minutes. Its average speed is A) 15 km/h. B) 20 km/h. C) 30 km/h. D) 40 km/h. Physics Keller Midterm exam review The midterm exam will be seventy questions selected from the following. The questions will be changed slightly, but will remain essentially the same. 1) A truck is moving

More information

Old-Exam.Questions-Ch-14 T072 T071

Old-Exam.Questions-Ch-14 T072 T071 Old-Exam.Questions-Ch-14 T072 Q23. Water is pumped out of a swimming pool at a speed of 5.0 m/s through a uniform hose of radius 1.0 cm. Find the mass of water pumped out of the pool in one minute. (Density

More information

Unit conversions: 9. An defensive lineman weighs 330 pounds. What is his mass in kg (given 2.2 pounds = 1 kg)? 330 lb 1 kg. 2.2 lb 10.

Unit conversions: 9. An defensive lineman weighs 330 pounds. What is his mass in kg (given 2.2 pounds = 1 kg)? 330 lb 1 kg. 2.2 lb 10. Practice exam semester 1 physics Walk this Way Activity, Graph Sketching and Recognition, Sonic Ranger Lab: Use the graph to the right for q s 1-3 1. Which object(s) is (are) not moving? 2. Which change

More information

Physics P201 D. Baxter/R. Heinz

Physics P201 D. Baxter/R. Heinz Seat # Physics P201 D. Baxter/R. Heinz EXAM #1 September 20, 2001 7:00 9:00 PM INSTRUCTIONS 1. Sit in SEAT # given above. 2. DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO. 3. Print your name (last name

More information

CHAPTER 1. Knowledge. (a) 8 m/s (b) 10 m/s (c) 12 m/s (d) 14 m/s

CHAPTER 1. Knowledge. (a) 8 m/s (b) 10 m/s (c) 12 m/s (d) 14 m/s CHAPTER 1 Review K/U Knowledge/Understanding T/I Thinking/Investigation C Communication A Application Knowledge For each question, select the best answer from the four alternatives. 1. Which is true for

More information

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid IIT JEE Achiever 2014 Ist Year Physics-2: Worksheet-1 Date: 2014-06-26 Hydrostatics 1. A liquid can easily change its shape but a solid cannot because (A) the density of a liquid is smaller than that of

More information

Unit 2: Kinematics in 1-D Exam Preparation

Unit 2: Kinematics in 1-D Exam Preparation Unit 2: Kinematics in 1-D Exam Preparation 1. 1. A bike first accelerates from 0.0 m/s to 5.0 m/s in 4.5 s, then continues at this constant speed for another 4.5 s. What is the total distance traveled

More information

PHYSICS REVIEW SHEET 2010 MID-TERM EXAM

PHYSICS REVIEW SHEET 2010 MID-TERM EXAM PHYSICS REVIEW SHEET 2010 MID-TERM EXAM Concepts And Definitions Definitions of fact, hypothesis, law, theory Explain the scientific method Difference between average and instantaneous speed and speed

More information

1) What is the magnitude of the momentum of a kg baseball traveling at 45.0 m/s?

1) What is the magnitude of the momentum of a kg baseball traveling at 45.0 m/s? Momentum review 6) Two friends are standing on opposite ends of a canoe that is initially at rest with respect to a frictionless lake. The person in the front throws a very massive ball toward the back,

More information

Kinematics Review. What distance did the object travel in moving from point A to point B? A) 2.5 m B) 10. m C) 20. m D) 100 m

Kinematics Review. What distance did the object travel in moving from point A to point B? A) 2.5 m B) 10. m C) 20. m D) 100 m Kinematics Review 1. Base your answer to the following question on the diagram below which represents a 10-kilogram object at rest at point A. The object accelerates uniformly from point A to point B in

More information

Unit 2: Kinematics in 1-D Exam Preparation

Unit 2: Kinematics in 1-D Exam Preparation Unit 2: Kinematics in 1-D Exam Preparation 1. 1. A bike first accelerates from 0.0 m/s to 5.0 m/s in 4.5 s, then continues at this constant speed for another 4.5 s. What is the total distance traveled

More information

Static Fluids. **All simulations and videos required for this package can be found on my website, here:

Static Fluids. **All simulations and videos required for this package can be found on my website, here: DP Physics HL Static Fluids **All simulations and videos required for this package can be found on my website, here: http://ismackinsey.weebly.com/fluids-hl.html Fluids are substances that can flow, so

More information

AP Physics B Fall Final Exam Review

AP Physics B Fall Final Exam Review Name: Date: AP Physics B Fall Final Exam Review 1. The first 10 meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The

More information

PYP 001 First Major Exam Code: Term: 161 Thursday, October 27, 2016 Page: 1

PYP 001 First Major Exam Code: Term: 161 Thursday, October 27, 2016 Page: 1 Term: 161 Thursday, October 27, 2016 Page: 1 *Read the following (20) questions and choose the best answer: 1 The motion of a swimmer during 30.0 minutes workout is represented by the graph below. What

More information

DATA EQUATIONS MATH ANSWER

DATA EQUATIONS MATH ANSWER HCP PHYSICS REVIEW SHEET MID TERM EXAM Concepts And Definitions 1. Definitions of fact, hypothesis, law, theory 2. Explain the scientific method 3. Difference between average and instantaneous speed and

More information

POTENTIAL ENERGY AND ENERGY CONSERVATION

POTENTIAL ENERGY AND ENERGY CONSERVATION POTENTIAL ENERGY AND ENERGY CONSERVATION 1. Sky Jump: You have landed a summer job with a company that has been given the contract to design the ski jump for the next Winter Olympics. The track is coated

More information

+ t1 t2 moment-time curves

+ t1 t2 moment-time curves Part 6 - Angular Kinematics / Angular Impulse 1. While jumping over a hurdle, an athlete s hip angle was measured to be 2.41 radians. Within 0.15 seconds, the hurdler s hip angle changed to be 3.29 radians.

More information

TWO DIMENSIONAL KINEMATICS

TWO DIMENSIONAL KINEMATICS PHYSICS HOMEWORK #11 TWO DIMENSIONAL [Remember that ALL vectors must be described by BOTH magnitude and direction!] 1. You walk 250. steps North and then 400. steps East. What is your displacement? (Distance

More information

Physics 117A Exam #1 Fall 2006

Physics 117A Exam #1 Fall 2006 Physics 117A Exam #1 Fall 2006 Only calculators and pens/pencils are allowed on your desk. No cell phones or additional scrap paper. You have 1.5 hours to complete the exam. Name Section (Circle): Hutson

More information

1. All fluids are: A. gases B. liquids C. gases or liquids D. non-metallic E. transparent ans: C

1. All fluids are: A. gases B. liquids C. gases or liquids D. non-metallic E. transparent ans: C Chapter 14: FLUIDS 1 All fluids are: A gases B liquids C gases or liquids D non-metallic E transparent 2 Gases may be distinguished from other forms of matter by their: A lack of color B small atomic weights

More information

Biomechanics Sample Problems

Biomechanics Sample Problems Biomechanics Sample Problems Forces 1) A 90 kg ice hockey player collides head on with an 80 kg ice hockey player. If the first person exerts a force of 450 N on the second player, how much force does

More information

1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that:

1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that: University Physics (Prof. David Flory) Chapt_15 Thursday, November 15, 2007 Page 1 Name: Date: 1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that: A) pressure is the same

More information

Circular Motion - Horizontal

Circular Motion - Horizontal Circular Motion - Horizontal Outcome(s): explain and apply the concepts of centripetal acceleration and centripetal force, as applied to uniform horizontal circular motion. A bucket being swung around

More information

Kinematics in Two Dimensions; Vectors

Kinematics in Two Dimensions; Vectors CHAPTER 3: Kinematics in Two Dimensions; Vectors Questions 1. One car travels due east at 40 km h, and a second car travels north at 40 km h. Are their velocities equal? Explain. 2. Can you give several

More information

Worksheet 1.1 Kinematics in 1D

Worksheet 1.1 Kinematics in 1D Worksheet 1.1 Kinematics in 1D Solve all problems on your own paper showing all work! 1. A tourist averaged 82 km/h for a 6.5 h trip in her Volkswagen. How far did she go? 2. Change these speeds so that

More information

DYNAMICS PROBLEM SOLVING

DYNAMICS PROBLEM SOLVING DYNAMICS PROBLEM SOLVING 1. An elevator of mass 800 kg accelerates at 3.0 m/s 2 [down]. What force does the cable exert on the elevator? (5400 N) 2. The engine of a train has a mass of 5.0 x 10 4 kg. It

More information

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Class: Date: Chapter 3 Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.. Which of the following is a physical quantity that has a magnitude

More information

2. A car, starting from rest, accelerates in a straight-line path at a constant rate of 2.0 m/s 2. How far will the car travel in 12 seconds?

2. A car, starting from rest, accelerates in a straight-line path at a constant rate of 2.0 m/s 2. How far will the car travel in 12 seconds? Name: Date: 1. Carl Lewis set a world record for the 100.0-m run with a time of 9.86 s. If, after reaching the finish line, Mr. Lewis walked directly back to his starting point in 90.9 s, what is the magnitude

More information

Honors/AP Physics 1 Homework Packet #2

Honors/AP Physics 1 Homework Packet #2 Section 3: Falling Objects Honors/AP Physics 1 Homework Packet #2 1. A ball is dropped from a window 10 m above the sidewalk. Determine the time it takes for the ball to fall to the sidewalk. 2. A camera

More information

Name: SOLUTIONS MIDTERM 2, Spring 2019

Name: SOLUTIONS MIDTERM 2, Spring 2019 Name: SOLUTIONS MIDTERM 2, Spring 2019 Solutions in bold. Print your name clearly above, and write and bubble in your student 800 number on the provided scantron. There are 20 equally-weighted problems

More information

HONORS PHYSICS One Dimensional Kinematics

HONORS PHYSICS One Dimensional Kinematics HONORS PHYSICS One Dimensional Kinematics LESSON OBJECTIVES Be able to... 1. use appropriate metric units and significant figures for given measurements 2. identify aspects of motion such as position,

More information

Irrigation &Hydraulics Department lb / ft to kg/lit.

Irrigation &Hydraulics Department lb / ft to kg/lit. CAIRO UNIVERSITY FLUID MECHANICS Faculty of Engineering nd Year CIVIL ENG. Irrigation &Hydraulics Department 010-011 1. FLUID PROPERTIES 1. Identify the dimensions and units for the following engineering

More information

- a set of known masses, - four weight hangers, - tape - a fulcrum upon which the meter stick can be mounted and pivoted - string - stopwatch

- a set of known masses, - four weight hangers, - tape - a fulcrum upon which the meter stick can be mounted and pivoted - string - stopwatch 1. In the laboratory, you are asked to determine the mass of a meter stick without using a scale of any kind. In addition to the meter stick, you may use any or all of the following equipment: - a set

More information

Quiz name: Chapter 13 Test Review - Fluids

Quiz name: Chapter 13 Test Review - Fluids Name: Quiz name: Chapter 13 Test Review - Fluids Date: 1. All fluids are A gases B liquids C gasses or liquids D non-metallic E transparent 2. 1 Pa is A 1 N/m B 1 m/n C 1 kg/(m s) D 1 kg/(m s 2 ) E 1 N/m

More information

Kinematics-Projectiles

Kinematics-Projectiles 1. A volleyball hit into the air has an initial speed of 10 meters per second. Which vector best represents the angle above the horizontal that the ball should be hit to remain in the air for the greatest

More information

EF 151 Final Exam - Spring, 2017 Page 3 Copy 223

EF 151 Final Exam - Spring, 2017 Page 3 Copy 223 EF 151 Final Exam - Spring, 2017 Page 3 Copy 223 Name: Section: 1. Enter your EXAM ID from your seating label. If you don t know your exam ID, enter 000. 0 1 2 3 4 5 6 7 8 9 Digit #1 Digit #2 Digit #3

More information

The diagram below represents the path of a stunt car that is driven off a cliff, neglecting friction.

The diagram below represents the path of a stunt car that is driven off a cliff, neglecting friction. 1. A baseball is thrown at an angle of 40.0 above the horizontal. The horizontal component of the baseball s initial velocity is 12.0 meters per second. What is the magnitude of the ball s initial velocity?

More information

Unit 2 Review: Projectile Motion

Unit 2 Review: Projectile Motion Name: Unit 2 Review: Projectile Motion Date: 1. A projectile is fired from a gun near the surface of Earth. The initial velocity of the projectile has a vertical component of 98 meters per second and a

More information

and its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2.

and its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2. 1.26. A certain object weighs 300 N at the earth's surface. Determine the mass of the object (in kilograms) and its weight (in newtons) when located on a planet with an acceleration of gravity equal to

More information

1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach?

1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? Physics R Date: 1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched

More information

(a) Calculate the speed of the sphere as it passes through the lowest point of its path.

(a) Calculate the speed of the sphere as it passes through the lowest point of its path. 1991 Q33 A sphere of mass 3 kg on the end of a wire is released from rest and swings through a vertical distance of 0.4 m. (Neglect air friction.) (a) Calculate the speed of the sphere as it passes through

More information

Physics P201 D. Baxter/R. Heinz

Physics P201 D. Baxter/R. Heinz Seat # Physics P201 D. Baxter/R. Heinz EXAM #1 September 26, 2002 7:00 9:00 PM INSTRUCTIONS 1. Sit in SEAT # given above. 2. DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO. 3. Print your name (last name

More information

Chapter 3: Two-Dimensional Motion and Vectors

Chapter 3: Two-Dimensional Motion and Vectors Assumption College English Program Mr. Stephen Dobosh s EP- M 4 P h y s i c s C l a s s w o r k / H o m e w o r k P a c k e t Chapter 3: Two-Dimensional Motion and Vectors Section 1: Introduction to Vectors

More information

Kinematics 1. A. coefficient of friction between the cart and the surface. B. mass of the cart. C. net force acting on the cart

Kinematics 1. A. coefficient of friction between the cart and the surface. B. mass of the cart. C. net force acting on the cart Kinematics 1 Name: Date: 1. 4. A cart moving across a level surface accelerates uniformly at 1.0 meter per second 2 for 2.0 seconds. What additional information is required to determine the distance traveled

More information

SF016: PAST YEAR UPS QUESTIONS

SF016: PAST YEAR UPS QUESTIONS CHAPTER 2: KINEMATICS OF LINEAR MOTION Session 205/206. (a)(i) If the object has zero acceleration, what happen to its velocity? Explain your answer. (ii) A car is initially at rest at =0. It then accelerates

More information

Physics Acceleration and Projectile Review Guide

Physics Acceleration and Projectile Review Guide Physics Acceleration and Projectile Review Guide Name: Major Concepts 1-D motion on the horizontal 1-D motion on the vertical Relationship between velocity and acceleration https://www.khanacademy.org/science/physics/one-dimensional-motion/acceleration-tutorial/a/acceleratio

More information

C) miles per hour. D) all of the above. 2) When you look at the speedometer in a moving car, you can see the car's

C) miles per hour. D) all of the above. 2) When you look at the speedometer in a moving car, you can see the car's Practice Kinematics Questions (Answers are at the end ) 1) One possible unit of speed is. A) light years per century. B) kilometers per hour. C) miles per hour. D) all of the above.. 2) When you look at

More information

1. Determine his speed when he reaches the photo radar car.

1. Determine his speed when he reaches the photo radar car. Physics Unit Review 5 Use the following information to answer the next two questions. Mr. Buffi is cruising at 18.9 m/s when he sees a suspicious car (perhaps a photo radar car?) parked on the side of

More information

BROCK UNIVERSITY. Name: Student #: Page 1 of 12

BROCK UNIVERSITY. Name: Student #: Page 1 of 12 Name: Student #: BROCK UNIVERSITY Page 1 of 12 Final Exam: July 2016 Number of pages: 12 (+ formula sheet) Course: PHYS 1P21/1P91 Number of students: 104 Examination date: 9 July 2016 Number of hours:

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A mosquito flying at 3 m/s that encounters a breeze blowing at 3 m/s in the same direction

More information

CHAPTER 3 TEST REVIEW

CHAPTER 3 TEST REVIEW AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST

More information

AP Physics 1 - Test 04 - Projectile Motion

AP Physics 1 - Test 04 - Projectile Motion P Physics 1 - Test 04 - Projectile Motion Score: 1. stone thrown from the top of a tall building follows a path that is circular made of two straight line segments hyperbolic parabolic a straight line

More information

at home plate at 1st base at 2nd base at 3rd base back at home distance displacement

at home plate at 1st base at 2nd base at 3rd base back at home distance displacement You might need a calculator: The typical baseball diamond is a square 90 ft long on each side. Suppose a player hits a homerun and makes one complete trip from home plate, around the bases, and back to

More information

Honors Assignment - Vectors

Honors Assignment - Vectors Honors Assignment - Vectors Reading Chapter 3 Homework Assignment #1: Read Chap 3 Sections 1-3 M: #2, 3, 5 (a, c, f), 6-9 Homework Assignment #2: M: #14, 15, 16, 18, 19 Homework Assignment #3: Read Chap

More information

5. The magnitude of a vector cannot be smaller than the magnitude of any of its components. TRUE FALSE

5. The magnitude of a vector cannot be smaller than the magnitude of any of its components. TRUE FALSE Physics 1 Exam 2 Practice S14 Name: Show work for ANY credit. Box answers. Assume 3 significant figures! Ignore air resistance. NEATNESS COUNTS. Conceptual Questions. (2 points each) 1. A 100 g ball rolls

More information

Vectors. Wind is blowing 15 m/s East. What is the magnitude of the wind s velocity? What is the direction?

Vectors. Wind is blowing 15 m/s East. What is the magnitude of the wind s velocity? What is the direction? Physics R Scalar: Vector: Vectors Date: Examples of scalars and vectors: Scalars Vectors Wind is blowing 15 m/s East. What is the magnitude of the wind s velocity? What is the direction? Magnitude: Direction:

More information

j~/ ... FIGURE 3-31 Problem 9.

j~/ ... FIGURE 3-31 Problem 9. 9. () An airplane is traveling 735 kmlh in a direction 41S west of north (Fig. 3-31). (a) Find the components of the velocity vector in the northerly and westerly directions. (b) How far north and how

More information

1. downward 3. westward 2. upward 4. eastward

1. downward 3. westward 2. upward 4. eastward projectile review 1 Name 11-DEC-03 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] 1. Its vertical

More information

TEACHER ANSWER KEY December 10, Projectile Review 1

TEACHER ANSWER KEY December 10, Projectile Review 1 Projectile Review 1 TEACHER ANSWER KEY December 10, 2004 4 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.]

More information

Midterm Exam: Making a Study Guide

Midterm Exam: Making a Study Guide Name: Class: Physics Teacher: Mr. Szopiak Date: Midterm Exam: Making a Study Guide This worksheet will help you and your classmates put together a pretty comprehensive guide to your midterm studying. Your

More information

Homework #10 Due Monday, May Compute the moment of inertia of the objects below.

Homework #10 Due Monday, May Compute the moment of inertia of the objects below. Homework #10 Due Monday, May 1. Compute the moment of inertia of the objects below. θ (a) Compute the moment of inertia of a thin rod of mass M and length R for rotations about its end. Explain why your

More information

AP Physics 1 Lesson 4 Homework Outcomes Quiz 4 Preparation. Name. Date. Period

AP Physics 1 Lesson 4 Homework Outcomes Quiz 4 Preparation. Name. Date. Period Physics 1 Lesson 4 Homework Outcomes Quiz 4 Preparation Name Date Period Practice Problems I. A continuous force of 2.0 N is exerted on a 2.0 kg block to the right. The block moves with a constant horizontal

More information

Chapter 2 Two Dimensional Kinematics Homework # 09

Chapter 2 Two Dimensional Kinematics Homework # 09 Homework # 09 Pthagorean Theorem Projectile Motion Equations a 2 +b 2 =c 2 Trigonometric Definitions cos = sin = tan = a h o h o a v =v o v =v o + gt =v o t = o + v o t +½gt 2 v 2 = v 2 o + 2g( - o ) v

More information

A tennis player hits a ball at a height of 2.4 m. The ball has an initial horizontal velocity.

A tennis player hits a ball at a height of 2.4 m. The ball has an initial horizontal velocity. 1991 Q31 A tennis player hits a ball at a height of 2.4 m. The ball has an initial horizontal velocity. The ball just passes over the net which is 0.6 m high and 6 m away from her. (Neglect air friction.)

More information

Unit 3 ~ Learning Guide Name:

Unit 3 ~ Learning Guide Name: Unit 3 ~ Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have

More information

Chapter 7. A) The ball B) The putty C) Both experience the same momentum change D) Cannot be determined from the information given

Chapter 7. A) The ball B) The putty C) Both experience the same momentum change D) Cannot be determined from the information given A rubber ball and a lump of putty have equal mass. They are thrown with equal speed against a wall. The ball bounces back with nearly the same speed with which it hit. The putty sticks to the wall. Which

More information

SPEED, VELOCITY, ACCELERATION, & NEWTON STUDY GUIDE - Answer Sheet 1) The acceleration of an object would increase if there was an increase in the

SPEED, VELOCITY, ACCELERATION, & NEWTON STUDY GUIDE - Answer Sheet 1) The acceleration of an object would increase if there was an increase in the SPEED, VELOCITY, ACCELERATION, & NEWTON STUDY GUIDE - Answer Sheet 1) The acceleration of an object would increase if there was an increase in the A) mass of the object. B) force on the object. C) inertia

More information

LINEAR MOTION. General Review

LINEAR MOTION. General Review LINEAR MOTION General Review 1. Velocity is to speed as displacement is to A. acceleration B. momentum C. time D. distance 1. Velocity is to speed as displacement is to A. acceleration B. momentum C. time

More information

2 Available: 1390/08/02 Date of returning: 1390/08/17 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditio

2 Available: 1390/08/02 Date of returning: 1390/08/17 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditio 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditions shown, determine. 2. A tanker truck carries water, and the cross section of the truck s tank is shown

More information

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc.

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc. Chapter 13 Fluids Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal s Principle Units of Chapter 13 Measurement of Pressure; Gauges and the

More information

Vector Practice Problems

Vector Practice Problems Vector Practice Problems Name: Use the diagram below to answer Questions #1-3. Each square on the diagram represents a 20-meter x 20- meter area. 1. If a person walks from D to H to G to C, then the direction

More information

3. Approximately how far will an object near Earth's surface fall in 3.0 seconds? m m m m

3. Approximately how far will an object near Earth's surface fall in 3.0 seconds? m m m m Page 1 of 5 Sub work 10-10-02 Name 12-OCT-03 1. A car travels a distance of 98 meters in 10. seconds. What is the average speed of the car during this 10.-second interval? 1. 4.9 m/s 3. 49 m/s/ 2. 9.8

More information

D) 83 m D) Acceleration remains the same and speed increases. C) 216 m B) 6.0 m shorter A) 4.5 s A) 15 km/hr C) 47 m C) 20 m/sec B) 20 m/sec

D) 83 m D) Acceleration remains the same and speed increases. C) 216 m B) 6.0 m shorter A) 4.5 s A) 15 km/hr C) 47 m C) 20 m/sec B) 20 m/sec 1. A truck, initially traveling at a speed of 22 meters per second, increases speed at a constant rate of 2.4 meters per second 2 for 3.2 seconds. What is the total distance traveled by the truck during

More information

Calculate the average acceleration during the 4.6 s time interval. Give your answer to an appropriate number of significant figures.

Calculate the average acceleration during the 4.6 s time interval. Give your answer to an appropriate number of significant figures. Q1.The diagram below shows an electric two-wheeled vehicle and driver. (a) The vehicle accelerates horizontally from rest to 27.8 m s 1 in a time of 4.6 s. The mass of the vehicle is 360 kg and the rider

More information

Instructor: Biswas/Ihas/Whiting PHYSICS DEPARTMENT PHY 2053 Exam 1, 120 minutes October 14, 2009

Instructor: Biswas/Ihas/Whiting PHYSICS DEPARTMENT PHY 2053 Exam 1, 120 minutes October 14, 2009 Instructor: Biswas/Ihas/Whiting PHYSICS DEPARTMENT PHY 2053 Exam 1, 120 minutes October 14, 2009 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on

More information

(1) In the following diagram, which vectors are the components, and which vector is the resultant?

(1) In the following diagram, which vectors are the components, and which vector is the resultant? Homework 2.1 Vectors & Vector Addition (1) In the following diagram, which vectors are the components, and which vector is the resultant? C A B (2) Give the magnitude and direction (angle) of all three

More information

Physics 23 Exam 1 Spring 2009 Dr. Alward Page 1

Physics 23 Exam 1 Spring 2009 Dr. Alward Page 1 Physics 23 Exam 1 Spring 2009 Dr. Alward Page 1 1. An arrow is fired upward at a speed of 100 m/s. What will be its height (in meters) one second before it reaches its maximum height? A) 505 B) 496 C)

More information

Pressure is defined as force per unit area. Any fluid can exert a force

Pressure is defined as force per unit area. Any fluid can exert a force Physics Notes Chapter 9 Fluid Mechanics Fluids Fluids are materials that flow, which include both liquids and gases. Liquids have a definite volume but gases do not. In our analysis of fluids it is necessary

More information

Projectile Motion applications

Projectile Motion applications Projectile Motion applications 1. A stone is thrown horizontally at a speed of 10.0 m/s from the top of a cliff 78.4 m high. a. How long does it take the stone to reach the bottom of the cliff? b. How

More information

Physics for Scientist and Engineers third edition Kinematics 2-D

Physics for Scientist and Engineers third edition Kinematics 2-D Kinematics 2-D A rural mail carrier leaves the post office and drives 22.0 km in a northerly direction to the next town. She then drives in a direction sixty degrees south of east for 47.0 km to another

More information

Physics for Scientist and Engineers third edition Kinematics 2-D

Physics for Scientist and Engineers third edition Kinematics 2-D Kinematics 2-D A rural mail carrier leaves the post office and drives 22.0 km in a northerly direction to the next town. She then drives in a direction sixty degrees south of east for 47.0 km to another

More information

Section 1 Projectile Motion: Practice Problems 1. You throw a stone horizontally at a speed of 5.0 m/s from the top of a cliff that is 78.4 m high.

Section 1 Projectile Motion: Practice Problems 1. You throw a stone horizontally at a speed of 5.0 m/s from the top of a cliff that is 78.4 m high. Section 1 Projectile Motion: Practice Problems 1. You throw a stone horizontally at a speed of 5.0 m/s from the top of a cliff that is 78.4 m high. How long does it take the stone to reach the bottom of

More information