ON THE PHYSICAL PROCESSES THAT INFLUENCE THE DEVELOPMENT OF THE MARINE LOW-LEVEL JET

Size: px
Start display at page:

Download "ON THE PHYSICAL PROCESSES THAT INFLUENCE THE DEVELOPMENT OF THE MARINE LOW-LEVEL JET"

Transcription

1 Proceedings of the 13 th International Conference on Environmental Science and Technology Athens, Greece, 5-7 September 2013 ON THE PHYSICAL PROCESSES THAT INFLUENCE THE DEVELOPMENT OF THE MARINE LOW-LEVEL JET HELMIS C. G. and SGOUROS G. Department of Environmental Physics and Meteorology, Faculty of Physics, University of Athens, University Campus, Zografou, 15784, Athens, Greece EXTENDED ABSTRACT The aim of this work is the study of the different physical processes that influence the development, the vertical structure and the characteristics of the marine Low Level Jet (LLJ). According to previous studies several mechanisms are responsible for the development and evolution of LLJs in general, including the local topography and/or the baroclinicity resulting from large scale horizontal temperature gradient in the atmospheric boundary layer, the mid-latitude fronts and synoptic gradients and the inertial oscillation due to the frictional decoupling. This study is based on data analysis from SODAR and insitu instrumentation measurements, conducted in the frame of the Coupled Boundary Layers Air-Sea Transfer Experiment in Low Winds (CBLAST-Low), during August 2003, at Nantucket Island, MA, USA. Measurements of the vertical structure of the marine atmospheric Boundary Layer (MABL) from SODAR and rawinsonde launches frequently indicated the development of a LLJ under steady upstream wind conditions (marine air), with moderate to high wind conditions at the lower 500 to 600 m above the surface. The upwind MABL was characterized by a very surface stable layer followed by slightly stable conditions at higher levels, while wind speed maxima were observed for a few hours during day or night time, above the lower temperature inversion. Most of the observed LLJs cases were characterized by a single-level jet maximum with a few exceptions with double LLJ maxima. Since various mechanisms can lead to LLJ s development and some LLJ s may be a result of multiple mechanisms, in order to reveal the influence of the different physical processes, the Hilbert-Huang Transform (HHT) was applied to the time series of the wind data from ground observations and SODAR data at different heights. The application of the HHT algorithm to the estimated v and u wind components from the SODAR, as well as the in-situ and synoptic data analysis, reveal the temporal characteristics of the variations of the wind at different levels and lead to the understanding of the characteristics of the upwind MABL and the possible causes for the development and evolution of the observed LLJs. The analysis of the wind speed data by using the HHT algorithm showed high amplitudes corresponding to contributions from the inertial motions but also from physical processes characterized with different time-scales. Keywords: CBLAST-Low, marine Atmospheric Boundary Layer, Low-Level Jet, Hilbert- Huang Transform, Turbulence 1. INTRODUCTION Of many coastal meteorological phenomena, Low-Level Jet (LLJ) over the coastal Marine Atmospheric Boundary Layer (MABL) has been the focus of several previous studies. Parish (2000) shown that the large-scale structure of the MABL and its attendant LLJ along the California coast are related with the circulation forced by the horizontal temperature contrast between land and ocean. Kallstrand (1998) found that most of the LLJ profiles measured over the Baltic Sea were the result of the inertial oscillations

2 developed due to frictional decoupling of the atmospheric boundary layer over the sea surface. Smedman et al. (1993 and 1995) found from an observational study of a marine LLJ that the mechanical shear production of TKE is large on both sides of the LLJ jet core but asymmetrical. Above the jet core TKE production decreased rather rapidly while it increased below the jet core, suggesting downward transport of TKE from the jet core region to layers near the surface. Also they found that the measured shearing stress and sensible heat flux were strongly suppressed due to the presence of the LLJ by suppressing the low-frequency fluctuations (Smedman et al. 1997). They suggested, based on the shear-sheltering mechanism, that the large eddies are suppressed since a LLJ is present above the water surface in slightly stable thermal stratifications (Smedman et al. 2004). Several mechanisms have been suggested for the development and evolution of LLJs in general. These mechanisms include the local topography and/or baroclinicity, the midlatitude fronts, the deformation frontal-genesis and the inertial oscillation due to the frictional decoupling. The last mechanism is a result of the Coriolis force when the turbulent mixing decreases due to the presence of a stable layer near the surface and leads to an inertial oscillation with super-geostrophic speeds (Blackadar, 1957). It is worth to mention that the period of the oscillation is 2πf c -1, where f c is the Coriolis parameter and at mid-latitudes the estimated inertial period is about 17 hours. The magnitude of the oscillation depends on the amount of the geostrophic departure of the wind at the start of the frictional cease (Kraus et al 1985). The aim of this work is to study the various mechanisms that can lead to LLJ s development and to reveal the influence of the different physical processes. The Hilbert- Huang Transform (HHT) which was applied to the time series of the wind data from ground observations and SODAR data at different heights, reveal the temporal characteristics of the variations of the wind at different levels and lead to understand the characteristics of the upwind MABL and the possible causes for the development and evolution of the observed LLJs. The measurements which were used for the analysis were conducted as part of the Coupled Boundary Layers and Air-Sea Transfer Low (CBLAST-Low) project, aimed at the understanding of the air-sea interaction and the coupled atmospheric and oceanic boundary layer dynamics at low wind speeds (Edson et al, 2007). 2. INSTRUMENTATION AND DATA ANALYSIS The campaign was carried out during the summer 2003 at Nantucket Island, MA, USA and the experimental site was located on the southwest coast of the island within the complex of the island Waste Water Treatment Facility, at a distance of 94 m from the waterfront. Instrumentation includes a SODAR (Remtech PA2), fast and slow response sensors on a 20 m tower at different levels and a radiosonde system. The SODAR measurements yielded mean vertical velocity (w), horizontal wind speed and direction and the standard deviations of wind direction and vertical velocity at 30 minute intervals, with vertical resolution of 40 m, lowest level 50 m and a range of 500 to 700 m depending on the acoustic noise and the atmospheric conditions. Measurements of the mean wind, temperature and relative humidity and the corresponding standard deviations at 5, 10, and 20 m height, with a sampling frequency of 1Hz and 10 minute averaged output were carried out, as well as measurements of the 3-D wind components and water vapour concentration at a sampling rate of 20 Hz at two levels (10 and 20 m) with sonic anemometers and fast hygrometers to calculate TKE, fluxes of momentum, sensible and latent heat using the eddy correlation method while radiosondes were launched at the experimental site every four to six hours.

3 Figure 1: The location of the CBLAST-low Nantucket experimental site, denoted by the red star. Predominant wind in the area is south and south-westerly. The presence of LLJ is identified using the wind measurements from SODAR and rawinsondes, following Banta et al. (2002) suggestions. The vertical profiles of the mean horizontal wind speed and direction and their East-West (u) and North-South (v) components were estimated by the SODAR at 30 min interval as well as the profiles of potential temperature (θ), relative humidity (RH), horizontal wind speed (U), direction (D), static stability (Δθ Δz -1 ) and bulk Richardson number [Ri = (g θ-1) (Δθ Δz -1 ) (ΔU Δz -1 ) -2 ] from rawinsonde launches. Since the presence of in internal boundary layer (IBL) of about 10 m at our site was revealed, the data below the 10 m height was excluded from analysis and a detailed examination of the measured momentum and heat fluxes and the stability parameter (z L -1 ) time series from the 20 m measurement level was performed, in order to ensure that we study the pure MABL (upwind of the island). This examination clarified that the wind sector from 200 to 250 degrees corresponded to pure MABL (Katsouvas et al. 2007). All data have gone through extensive data quality checking and calibrations and the dataset at 20 m was corrected for errors imposed due to the axis tilt of the sonic anemometer (Mahrt et al. 1996). The Hilbert Huang Transform (HHT) algorithm was applied to the estimated v and u components from the SODAR and the in-situ instrumentation to reveal the temporal characteristics of the variations of the wind vector at different levels. The HHT algorithm is a method which has proved to be well-suited for studies of the stable ABL (Lundquist, 2003, Sgouros and Helmis 2009) and consists of two steps; the Empirical Mode Decomposition (EMD) that breaks the original time series into a finite number of Intrinsic Mode Function (IMF) components and the application of the Hilbert transform to the time series of each IMF component (Huang et al. 1999, 2000). The frequency-time distribution of the amplitude is the complete Hilbert amplitude spectrum and represents the distribution of energy in time scales corresponding to different physical processes. Compared with the traditional Fourier analysis, the HHT method preserves the time localities of events and is well-suited for non-stationary signal analysis (Li et al. 2005). It is worth to mention that the period of the inertial oscillation for the Nantucket area (41 N, 70W) is hours or a frequency of cycles per hour (cph). A window of (+/ cph), centred on the inertial frequency, was used to estimate spectra and time-height mapping of the amplitudes with inertial motions.

4 3. RESULTS AND DISCUSSION The North America, during the summer period, is dominated by the anticyclones of the Pacific and the Bermuda-Azores in the North Atlantic (see Figure 2). The Icelandic low appears weaker than in winter, while a thermal low appears in the desert regions of south-western USA. Along the eastern coast of USA, southerly winds carrying moist air, which is lifted, cooled and condensed, produce showers and thunderstorms in the eastern coast. During the cold intrusions in the north-eastern regions of USA, there are transported either continental polar air masses, very cold, dry and stable from Canada or maritime polar, cold, moist and unstable from the northwest Atlantic. Figure 2: Synoptic circulation during the summer period over North America The synoptic conditions over Nantucket area during the first two weeks of August 2003 were characterized by the presence of a large scale trough located over the Northeastern States and a large scale anticyclone over the greater North-western Atlantic Ocean. This trough moved slowly to the east producing a relatively strong SSW flow, which was confirmed from the rawinsonde measurements above the lower 500 m. The satellite images (every 6 hours) and the 12 hour surface analyses showed no presence of a front over a large area near Nantucket. During this period measurements of the vertical structure of the MABL from SODAR and rawinsonde launches frequently indicated the development of a LLJ under steady south-westerly (SW) wind conditions (upstream marine air) with moderate to high wind conditions at the lower 500 to 600 m above the surface. The upwind MABL was characterized by a very stable surface layer at the first 100 to 150 m followed by slightly stable conditions at higher levels. The wind speed maxima and the LLJs observed during day or night time above the intense temperature inversion and lasted for a few hours. More details can be found at Helmis at al. (2005). The data from August 7 represents a well defined case of LLJ s generation and evolution.

5 Figure 3: Vertical profiles of the horizontal wind speed and direction (a), potential temperature and relative humidity (b), static stability (c) and bulk Ri number (d) from five successive rawinsonde launches at 6 and 7 August The exact launching time is indicated on the upper left part of the figure. Five rawinsonde launches were made during the period between 1846 UTC 6 August and 0004 UTC 8 August, Figure 3a gives the wind speed and direction profiles from these successive rawinsonde launches. It is seen that the wind was constantly from the SSW sector above 400 m while below 400 m the wind veered at different levels within the S to SW sectors. During the first launch wind speed increased steadily with height while a wind speed maximum (not a LLJ) developed at 230 m 5 hours later (second launch). The presence of LLJ s between 180 and 270 m above the surface are identified from the next three launches throughout August 7. Figure 3b gives the θ and RH profiles from the same soundings. A very stable layer close to the surface persisted during the entire period. Below the stable layer, a shallow (20 m) unstable IBL layer was observed during the daytime launches. The depth of the stable layer varied from 55 m (first launching) to 75 m (second launch) and finally reached the height of 120 m during the third launch. During the last two launches the very stable layer was decreased in depth while the identified LLJ developed above the top of this stable layer. Stable thermal stratification continues at higher levels with weaker gradient in all five soundings. The RH profiles show high humidity of more than 95% in the lower layer up to 100 m followed by a gradual decrease at higher levels. Figures 3c and 3d give the profiles of the potential temperature gradient (Δθ Δz -1 ) or static stability and the Richardson number (Ri) or dynamic stability, respectively, which were

6 derived from the soundings of temperature and wind. A dynamically unstable layer can be identified if the Ri exceed the critical Richardson number with a theoretical value of 0.25 (Stull 1988). The first sounding revealed a surface-based unstable layer followed by a statically very stable layer up to 70 m height. On the other hand, the flow up to 250 m was turbulent (Ri values in the range 0.05 to 0.2). At higher levels, shallow layers of large Ri values are seen in Figure 3d, suggesting the presence of local non-turbulent layers. The depth and the intensity of the very stable surface layer increased during the next two soundings, reaching its maximum depth of 120 m during the third launch. At the same time, the dynamic stability of the MABL at lower levels exhibited major changes. During the second sounding, a surface-based non-turbulent layer (Ri value 2.9) appeared, while the depth of the turbulent layer above the surface decreased to 150 m (Ri values less than 0.5) and another layer of high Ri (Ri ~ 3.16) is seen just below the wind maximum. Apparently, the high stable static stability contributes to the large Ri and hence the suppression of turbulence in the lowest layer. During the third launch the non-turbulent surface layer increased in depth to 120 m as well as in the magnitude of Ri (Ri ~ 12.9 at 90 m). This non-turbulent surface layer decoupled the upper layers from the surface and hence the layers above were free of the effects of surface drag, which is resulted in the LLJ development at 180 m (Fig. 3a), which is consistent with the frictional decoupling mechanism of LLJ development. Above the LLJ core and up to 250 m, low Ri values (around 0.01) were calculated, indicating a turbulent layer as a results of intense wind shear above the jet core in moderate stable stratification. During the fourth launch, the presence of the very stable surface layer and the persistence of the non turbulent layer between 130 and 190 m (Ri ~ 2.44 at 170 m) also supports the frictional decoupling mechanism. The depth of the stable non- turbulent surface layer decreased below 100 m during the last launch while the strong mixing due to the LLJ produced a turbulent layer between 130 and 260 m. The strong wind shear below the LLJ core generated turbulence that extends down gradually to the non-turbulent surface layer. By the time the LLJ disappeared, the surface layer becomes turbulent again (not shown). Based on the above discussions, the plausible triggering mechanism for the LLJ development is related with the very stable statically surface layer that was strengthening in depth and intensity, which suppressed the turbulence and supported the frictional decoupling mechanism. This led to the LLJ development above the dynamically stable layer while the developed LLJ and the subsequent strong mixing due to the wind shear, led to turbulent layers below and above the LLJ core. The LLJ was preserved until the destruction of the nonturbulent surface layer even though a stable surface layer still existed. The HHT algorithm was applied to the u (E-W) and v (N-S) wind components calculated from the SODAR between 1800 UTC 3 August and 1800 UTC 6 August 6, where persistent LLJ events were observed. Figures 4a and 4b give the complete Hilbert spectra (frequencies and amplitude as a function of time) for the u and v component respectively at 190 m including all the IMFs for frequencies up to 0.2 cph. In this figure frequencies are plotted as a function of time and coloured to indicate amplitude variations. The frequency window (+/ cph) centered on the inertial frequency (0.054 cph) is indicated. Figure 4a shows that IMF7 exhibits rather stationary variations with strong amplitudes during the entire time period. The IMF5 gives intense wind variations with frequencies within the frequency window during the period from 0000 UTC 5 August to 0800 UTC 6 August. The IMF6 also contributes to the wind variations with frequencies within the inertial window during the period 1100 to 2130 UTC 4 August.

7 Figure 4: The complete Hilbert spectra (frequency and amplitude as a function of time) for the u (a) and v (b) components estimated from the SODAR at 190 m height for the period 1800 UTC 3 August to 1800 UTC 6 August 2003 By combining both time periods it is possible to identify the time period during which the u component of the wind was characterized by inertial motions. From Figure 4b it is evident that only IMF4 lies within the frequency window from 1400 UTC 4 August to 1200 UTC 6 August where the v component exhibited inertial motions with moderate amplitude variations. The same method was applied to all levels of the SODAR measurements and the time periods when wind variations with inertial frequencies (within the frequency window) were identified. 4. CONCLUSIONS The analysis of measurements gave an in-depth view for the understanding of the marine ABL vertical structure and the characteristics of the marine LLJ. Very stable stratification characterized the lower part of the marine ABL while slightly stable conditions observed at higher levels. On top of the intense ground based inversion layer a LLJ was frequently developed and persisted. A plausible triggering mechanism for the LLJ development is the frictional decoupling and the subsequent inertial oscillation. Our observations revealed that prior to the LLJ development a high dynamically stable surface layer associated with increased static stability was capable to suppress the turbulence and provide a favorable environment for frictional decoupling. The increase in depth and intensity of the not turbulent stable surface layer decoupled the higher layers from the effect of surface drag leading to LLJ development. Above and below the LLJ core,

8 turbulent layers were formed indicating strong mixing due to the intense wind shear. The LLJ was preserved until the destruction of the not turbulent surface stable layer from turbulence events generated by the increased wind shear above the surface. This leads to frictional coupling even though a statically stable surface layer was present. The application of the HHT algorithm on the u and v wind components from the SODAR confirmed the inertial oscillation of the wind vector and the complete Hilbert spectra provided intense wind variations associated with frequencies (periods) close to the expected inertial oscillation over the Nantucket area. ACKNOWLEDGEMENTS This work was supported by the Special Account for Research Grants of the University of Athens (grant 10812) and the Office of Naval Research (ONR). REFERENCES 1. Banta R. M., Newsom R. K., Lundquist J. K., Pichugina Y. L., Coulter R. L. and Mahrt L., (2002), Nocturnal Low-Level Jet Characteristics over Kansas during CASES-99. Bound. Layer Meteor., 105, Blackadar, A. K., (1957), Boundary Layer Wind Maxima and Their Significance for the Growth of Nocturnal Inversions. Bull. Amer. Meteor. Soc., 38, Edson J. and co-authors, (2007), The Coupled Boundary Layers and Air-Sea Transfer Experiment in Low Winds (CBLAST-LOW). Bull. Amer. Meteor. Soc., 88, Helmis C.G., C.H. Halios, G. Sgouros, G. Katsouvas and Q. Wang, (2005), On the mean vertical structure of the marine Atmospheric Boundary Layer, WSEAS Trans. on Environment and Development, Issue 2, Vol. 1, pp Katsouvas G.D., C.G. Helmis and Q. Wang, (2007), Quadrant analysis of the Scalar and Momentum Fluxes in the stable marine Atmospheric Surface Layer, Bound.-Layer Meteor., 124, Kallstrand B., (1998), Low level jets in a marine boundary layer during spring, Contrib. Atmos. Phys., 71, Kraus, H., J. Malcher and E. Schaller, (1985), Nocturnal Low Level Jet during PUKK. Bound.- Layer Meteor., 31, Li, H., Yang, L., Huang, D., (2005), The study of the intermittency test filtering character of Hilbert-Huang transform. Mathem. Computers Simul., 70, Lundquist J. K., (2003), Intermittent and Elliptical Inertial Oscillations in the Atmospheric Boundary Layer. J. Atmos. Sci., 60, Mahrt, L., Vickers, D., Howell, J., Hojstrup, J., Wilczak, J., Edson, J. and Hare J., (1996), Sea surface drag coefficients in the Riso Air Sea Experiment, J. Geophys. Res., 101, Parish T.R., (2000), Forcing of the summertime low-level jet along the California coast, J. Appl. Meteor., 39, Sgouros G. and Helmis C.G. (2009) Low-level jet development and the interaction of different scale physical processes, Meteorol Atmos Phys 104(3), Smedman AS, Tjernstrom M., and Hogstrom U., (1993), Analysis of the turbulence structure of a marine low level jet. Bound.Layer Meteorol., 66, Smedman, A.S., Bergstrom, H. and Horstrom, U., 1995: Spectra, variances and length scales in a marine stable boundary layer dominated by a low level jet. Bound.Layer Meteorol., 76, Smedman, A.S., Horstrom, U. and Bergstrom, H., (1997), The turbulence regime of a very stable marine airflow with quasi-frictional decoupling. J. of Geoph. Res.-Oceans, 102, Smedman, A.S., Horstrom, U. and Hunt J.C.R., 2004: Effects of shear sheltering in a stable atmospheric boundary layer with strong shear, Quart. J. Roy. Meteor. Soc., 130, Stull, R. B.,1988, An introduction to Boundary Layer Meteorology, Kluwer Academic Publ., 666 pp

On the temporal evolution of the vertical momentum fluxes within the Marine Atmospheric Boundary Layer

On the temporal evolution of the vertical momentum fluxes within the Marine Atmospheric Boundary Layer On the temporal evolution of the vertical momentum fluxes within the Marine Atmospheric Boundary Layer COSTAS G. HELMIS Department of Environmental Physics and Meteorology Faculty of Physics, University

More information

Spectral characteristics of the wind components in the surface Atmospheric Boundary Layer

Spectral characteristics of the wind components in the surface Atmospheric Boundary Layer Spectral characteristics of the wind components in the surface Atmospheric Boundary Layer COSTAS HELMIS AND DIMOSTHENIS ASIMAKOPOULOS Department of Environmental Physics and Meteorology Faculty of Physics,

More information

ASSESSMENT OF SEA BREEZE CHARACTERISTICS FROM SODAR ECHOGRAMS

ASSESSMENT OF SEA BREEZE CHARACTERISTICS FROM SODAR ECHOGRAMS ASSESSMENT OF SEA BREEZE CHARACTERISTICS FROM SODAR ECHOGRAMS SUNEETHA RANI. JUPUDI Prof. M. PURNACHANDRA RAO Department of Physics, Andhra University, Visakhapatnam, India. ABSTRACT The SODAR echograms

More information

Chapter 2. Turbulence and the Planetary Boundary Layer

Chapter 2. Turbulence and the Planetary Boundary Layer Chapter 2. Turbulence and the Planetary Boundary Layer In the chapter we will first have a qualitative overview of the PBL then learn the concept of Reynolds averaging and derive the Reynolds averaged

More information

EXPERIMENTAL STUDY OF THE SURFACE MARINE ATMOSPHERIC BOUNDARY LAYER OVER AEGEAN SEA, GREECE

EXPERIMENTAL STUDY OF THE SURFACE MARINE ATMOSPHERIC BOUNDARY LAYER OVER AEGEAN SEA, GREECE CEST213 Athens, Greece Ref no: XXX EXPERIMENTAL STUDY OF THE SURFACE MARINE ATMOSPHERIC BOUNDARY LAYER OVER AEGEAN SEA, GREECE KOSTOPOULOS* V. E. and HELMIS* C. G. *Department of Environmental Physics

More information

10.6 The Dynamics of Drainage Flows Developed on a Low Angle Slope in a Large Valley Sharon Zhong 1 and C. David Whiteman 2

10.6 The Dynamics of Drainage Flows Developed on a Low Angle Slope in a Large Valley Sharon Zhong 1 and C. David Whiteman 2 10.6 The Dynamics of Drainage Flows Developed on a Low Angle Slope in a Large Valley Sharon Zhong 1 and C. David Whiteman 2 1Department of Geosciences, University of Houston, Houston, TX 2Pacific Northwest

More information

A study of three well-defined temporal intervals in a stably stratified night

A study of three well-defined temporal intervals in a stably stratified night Tethys, 4, 33 43, 2007 www.tethys.cat ISSN-1697-1523 eissn-1139-3394 DOI:10.3369/tethys.2007.4.05 Journal edited by ACAM (Associació Catalana de Meteorologia) A study of three well-defined temporal intervals

More information

Yelena L. Pichugina 1,2, R. M. Banta 2, N. D. Kelley 3, W. A. Brewer 2, S. P. Sandberg 2, J. L. Machol 1, 2, and B. J. Jonkman 3

Yelena L. Pichugina 1,2, R. M. Banta 2, N. D. Kelley 3, W. A. Brewer 2, S. P. Sandberg 2, J. L. Machol 1, 2, and B. J. Jonkman 3 4 th Symposium on Lidar Atmos. Applic, AMS, Phoenix, Arizona, January 2009 5.5 LIDAR MEASUREMENTS OF EXTREME INFLOW EVENTS FOR WIND ENERGY OPERATIONS Yelena L. Pichugina 1,2, R. M. Banta 2, N. D. Kelley

More information

Surface Fluxes and Wind-Wave Interactions in Weak Wind Conditions

Surface Fluxes and Wind-Wave Interactions in Weak Wind Conditions Surface Fluxes and Wind-Wave Interactions in Weak Wind Conditions Jielun Sun Microscale and Mesoscale Meteorology National Center for Atmospheric Research phone: (303) 497-8994 fax: (303) 497-8171 email:

More information

Conditions for Offshore Wind Energy Use

Conditions for Offshore Wind Energy Use Carl von Ossietzky Universität Oldenburg Institute of Physics Energy Meteorology Group Detlev Heinemann Conditions for Offshore Wind Energy Use Detlev Heinemann ForWind Carl von Ossietzky Universität Oldenburg

More information

Determination of the Spatial Variation of the Atmosphere and Ocean Wave Fields in Extremely Light Wind Regimes

Determination of the Spatial Variation of the Atmosphere and Ocean Wave Fields in Extremely Light Wind Regimes Determination of the Spatial Variation of the Atmosphere and Ocean Wave Fields in Extremely Light Wind Regimes Gennaro H. Crescenti U.S. Dept. Commerce / NOAA Air Resources Laboratory Field Research Division

More information

J7.6 LIDAR MEASUREMENTS AS AN ALTERNATIVE TO TRADITIONAL ANEMOMETRY IN WIND ENERGY RESEARCH. Golden, CO, U.S.A.

J7.6 LIDAR MEASUREMENTS AS AN ALTERNATIVE TO TRADITIONAL ANEMOMETRY IN WIND ENERGY RESEARCH. Golden, CO, U.S.A. J7.6 LIDAR MEASUREMENTS AS AN ALTERNATIVE TO TRADITIONAL ANEMOMETRY IN WIND ENERGY RESEARCH Pichugina Y. L. 1,2, R. M. Hardesty 2, R. M. Banta 2, W. A. Brewer 2, S. P. Sandberg 2, and 3 N. D. Kelley 3

More information

8.4 COASTAL WIND ANOMALIES AND THEIR IMPACT ON SURFACE FLUXES AND PROCESSES OVER THE EASTERN PACIFIC DURING SUMMER

8.4 COASTAL WIND ANOMALIES AND THEIR IMPACT ON SURFACE FLUXES AND PROCESSES OVER THE EASTERN PACIFIC DURING SUMMER 8.4 COASTAL WIND ANOMALIES AND THEIR IMPACT ON SURFACE FLUXES AND PROCESSES OVER THE EASTERN PACIFIC DURING SUMMER Ragoth Sundararajan * and Darko Koraĉin Desert Research Institute, Reno, NV, USA Michael

More information

2.4. Applications of Boundary Layer Meteorology

2.4. Applications of Boundary Layer Meteorology 2.4. Applications of Boundary Layer Meteorology 2.4.1. Temporal Evolution & Prediction of the PBL Earlier, we saw the following figure showing the diurnal evolution of PBL. With a typical diurnal cycle,

More information

2.5 SHIPBOARD TURBULENCE MEASUREMENTS OF THE MARINE ATMOSPHERIC BOUNDARY LAYER FROM HIRES EXPERIMENT

2.5 SHIPBOARD TURBULENCE MEASUREMENTS OF THE MARINE ATMOSPHERIC BOUNDARY LAYER FROM HIRES EXPERIMENT 2.5 SHIPBOARD TURBULENCE MEASUREMENTS OF THE MARINE ATMOSPHERIC BOUNDARY LAYER FROM HIRES EXPERIMENT John Kalogiros 1*, Q. Wang 2, R. J. Lind 2, T. Herbers 2, and J. Cook 2 1 National Observatory of Athens,

More information

DUE TO EXTERNAL FORCES

DUE TO EXTERNAL FORCES 17B.6 DNS ON GROWTH OF A VERTICAL VORTEX IN CONVECTION DUE TO EXTERNAL FORCES Ryota Iijima* and Tetsuro Tamura Tokyo Institute of Technology, Yokohama, Japan 1. INTRODUCTION Various types of vertical vortices,

More information

ANALYSIS OF TURBULENCE STRUCTURE IN THE URBAN BOUNDARY LAYER. Hitoshi Kono and Kae Koyabu University of Hyogo, Japan

ANALYSIS OF TURBULENCE STRUCTURE IN THE URBAN BOUNDARY LAYER. Hitoshi Kono and Kae Koyabu University of Hyogo, Japan Proceedings of the th Int. Conf. on Harmonisation within ANALYSIS OF TUBULENCE STUCTUE IN THE UBAN BOUNDAY LAYE Hitoshi Kono and Kae Koyabu University of Hyogo, Japan INTODUCTION The surface layer is defined

More information

Turbulence Regimes and Turbulence Intermittency in the Stable Boundary Layer during CASES-99

Turbulence Regimes and Turbulence Intermittency in the Stable Boundary Layer during CASES-99 338 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 69 Turbulence Regimes and Turbulence Intermittency in the Stable Boundary Layer during CASES-99 JIELUN SUN National Center for Atmospheric

More information

Wind: Small Scale and Local Systems Chapter 9 Part 1

Wind: Small Scale and Local Systems Chapter 9 Part 1 Wind: Small Scale and Local Systems Chapter 9 Part 1 Atmospheric scales of motion Scales of atmospheric circulations range from meters or less to thousands of kilometers- millions of meters Time scales

More information

The dryline is a mesoscale phenomena whose development and evaluation is strongly linked to the PBL.

The dryline is a mesoscale phenomena whose development and evaluation is strongly linked to the PBL. 2.2. Development and Evolution of Drylines The dryline is a mesoscale phenomena whose development and evaluation is strongly linked to the PBL. Text books containing sections on dryline: The Dry Line.

More information

Sophie Bastin (*), Philippe Drobinski IPSL, Paris, France;

Sophie Bastin (*), Philippe Drobinski IPSL, Paris, France; 1.7 TEMPERATURE AND WIND VELOCITY OSCILLATIONS ALONG A GENTLE SLOPE DURING SEA-BREEZE EVENTS. Sophie Bastin (), Philippe Drobinski IPSL, Paris, France; 1. INTRODUCTION The flow structure at Vallon d Ol

More information

Climatology of the 10-m wind along the west coast of South American from 30 years of high-resolution reanalysis

Climatology of the 10-m wind along the west coast of South American from 30 years of high-resolution reanalysis Climatology of the 10-m wind along the west coast of South American from 30 years of high-resolution reanalysis David A. Rahn and René D. Garreaud Departamento de Geofísica, Facultad de Ciencias Físicas

More information

Mesoscale Meteorology

Mesoscale Meteorology Mesoscale Meteorology METR 4433 Spring 2015 3.4 Drylines The dryline is a mesoscale phenomena whose development and evaluation is strongly linked to the PBL. In this section, we will consider its general

More information

Currents measurements in the coast of Montevideo, Uruguay

Currents measurements in the coast of Montevideo, Uruguay Currents measurements in the coast of Montevideo, Uruguay M. Fossati, D. Bellón, E. Lorenzo & I. Piedra-Cueva Fluid Mechanics and Environmental Engineering Institute (IMFIA), School of Engineering, Research

More information

Winds and Ocean Circulations

Winds and Ocean Circulations Winds and Ocean Circulations AT 351 Lab 5 February 20, 2008 Sea Surface Temperatures 1 Temperature Structure of the Ocean Ocean Currents 2 What causes ocean circulation? The direction of most ocean currents

More information

Goal: Develop quantitative understanding of ENSO genesis, evolution, and impacts

Goal: Develop quantitative understanding of ENSO genesis, evolution, and impacts The Delayed Oscillator Zebiak and Cane (1987) Model Other Theories Theory of ENSO teleconnections Goal: Develop quantitative understanding of ENSO genesis, evolution, and impacts The delayed oscillator

More information

The Influence of Ocean Surface Waves on Offshore Wind Turbine Aerodynamics. Ali Al Sam

The Influence of Ocean Surface Waves on Offshore Wind Turbine Aerodynamics. Ali Al Sam The Influence of Ocean Surface Waves on Offshore Wind Turbine Aerodynamics Ali Al Sam What I m going to wear today? Do I need to leave early to get to work? Taking buss or riding bike? Where will we drink

More information

11.4 WIND STRESS AND WIND WAVE OBSERVATIONS IN THE PRESENCE OF SWELL 2. METHODS

11.4 WIND STRESS AND WIND WAVE OBSERVATIONS IN THE PRESENCE OF SWELL 2. METHODS 11.4 WIND STRESS AND WIND WAVE OBSERVATIONS IN THE PRESENCE OF SWELL Douglas Vandemark 1*, W. M. Drennan 2, J. Sun, 3 J. R. French 4 and Hans Graber 2 1 NASA/GSFC, Wallops Island, VA 2 Univ. of Miami,

More information

Lecture 7. More on BL wind profiles and turbulent eddy structures. In this lecture

Lecture 7. More on BL wind profiles and turbulent eddy structures. In this lecture Lecture 7. More on BL wind profiles and turbulent eddy structures In this lecture Stability and baroclinicity effects on PBL wind and temperature profiles Large-eddy structures and entrainment in shear-driven

More information

Air-Sea Interaction Spar Buoy Systems

Air-Sea Interaction Spar Buoy Systems DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited Air-Sea Interaction Spar Buoy Systems Hans C. Graber CSTARS - University of Miami 11811 SW 168 th Street, Miami,

More information

Stefan Emeis

Stefan Emeis The Physics of Wind Park Optimization Stefan Emeis stefan.emeis@kit.edu INSTITUTE OF METEOROLOGY AND CLIMATE RESEARCH, Photo: Vattenfall/C. Steiness KIT University of the State of Baden-Wuerttemberg and

More information

Development and mechanisms of the nocturnal jet

Development and mechanisms of the nocturnal jet Development and mechanisms of the nocturnal jet P A Davies, Met. Office, London Road, Bracknell, Berkshire RG12 2SZ, UK Meteorol. Appl. 7, 239 246 (2000) Forecasting the occurrence and strength of the

More information

Determination of the Characteristics of High Winds in Istanbul

Determination of the Characteristics of High Winds in Istanbul International Journal of Sciences: Basic andappliedresearch (IJSBAR) ISSN 2307-4531 (Print & Online) http://gssrr.org/index.php?journal=journalofbasicandapplied --------------------------------------------------------------------------------------------------------------------------------------

More information

Use of Doppler LIDAR for measuring the vertical profiles of wind speed at a coastal site

Use of Doppler LIDAR for measuring the vertical profiles of wind speed at a coastal site Downloaded from orbit.dtu.dk on: Jul 03, 2018 Use of Doppler LIDAR for measuring the vertical profiles of wind speed at a coastal site Wagner, Rozenn; Lo Feudo, T.; Courtney, Michael; Calidonna, C.; De

More information

Gravity waves in stable atmospheric boundary layers

Gravity waves in stable atmospheric boundary layers Gravity waves in stable atmospheric boundary layers Carmen J. Nappo CJN Research Meteorology Knoxville, Tennessee 37919, USA Abstract Gravity waves permeate the stable atmospheric planetary boundary layer,

More information

Abrupt marine boundary layer changes revealed by airborne in situ and lidar measurements

Abrupt marine boundary layer changes revealed by airborne in situ and lidar measurements Abrupt marine boundary layer changes revealed by airborne in situ and lidar measurements David A. Rahn 1, Thomas R. Parish 2, and David Leon 2 1 Univeristy of Kansas 2 Univeristy of Wyoming Precision Atmospheric

More information

Thorsten Mauritsen *, Gunilla Svensson Stockholm University, Stockholm, Sweden

Thorsten Mauritsen *, Gunilla Svensson Stockholm University, Stockholm, Sweden J.1 WAVE FLOW SIMULATIONS OVER ARCTIC LEADS Thorsten Mauritsen *, Gunilla Svensson Stockholm University, Stockholm, Sweden Branko Grisogono Department of Geophysics, Faculty of Science, Zagreb, Croatia

More information

= y y. In meteorological parlance, terms such as the above are known as

= y y. In meteorological parlance, terms such as the above are known as Mesoscale Meteorology: The Planetary Boundary Layer 8 March 017 Introduction The planetary boundary layer, sometimes referred to as the atmospheric boundary layer, is a layer of finite depth over which

More information

The influence of low-level wind shear on the surface turbulence kinetic energy production in Adventdalen, Svalbard

The influence of low-level wind shear on the surface turbulence kinetic energy production in Adventdalen, Svalbard The influence of low-level wind shear on the surface turbulence kinetic energy production in Adventdalen, Svalbard Charalampos Sarchosidis and Milan Klöwer March 4, 2016 Abstract Turbulence in the atmospheric

More information

Meteorology I Pre test for the Second Examination

Meteorology I Pre test for the Second Examination Meteorology I Pre test for the Second Examination MULTIPLE CHOICE 1. A primary reason why land areas warm up more rapidly than water areas is that a) on land, all solar energy is absorbed in a shallow

More information

Geostrophic and Tidal Currents in the South China Sea, Area III: West Philippines

Geostrophic and Tidal Currents in the South China Sea, Area III: West Philippines Southeast Asian Fisheries Development Center Geostrophic and Tidal Currents in the South China Sea, Area III: West Philippines Anond Snidvongs Department od Marine Science, Chulalongkorn University, Bangkok

More information

1 INTRODUCTION. Figure 2: Synoptical situation at the beginning of the simulation: 5th January 1999 at 12UTC.

1 INTRODUCTION. Figure 2: Synoptical situation at the beginning of the simulation: 5th January 1999 at 12UTC. 2.2 NOCTURNAL CIRCULATIONS UNDER WEAK PRESSURE GRADIENTS IN THE ISLAND OF MALLORCA J. Cuxart and M.A. Jiménez Universitat de les Illes Balears, Spain 1 INTRODUCTION To study the local nocturnal circulations

More information

Impact of Typhoons on the Western Pacific: Temporal and horizontal variability of SST cooling Annual Report, 2011 James F. Price

Impact of Typhoons on the Western Pacific: Temporal and horizontal variability of SST cooling Annual Report, 2011 James F. Price DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Impact of Typhoons on the Western Pacific: Temporal and horizontal variability of SST cooling Annual Report,

More information

Chapter 8 Air Masses

Chapter 8 Air Masses Chapter 8 Air Masses Air Masses - 1 1. An Air Mass is a large body of air usually about 1500 km across and several km thick, that has homogeneous physical properties. 2. The important physical properties

More information

Geophysical Fluid Dynamics of the Earth. Jeffrey B. Weiss University of Colorado, Boulder

Geophysical Fluid Dynamics of the Earth. Jeffrey B. Weiss University of Colorado, Boulder Geophysical Fluid Dynamics of the Earth Jeffrey B. Weiss University of Colorado, Boulder The Earth is a spinning sphere Coriolis force depends on latitude solar flux depends on latitude Michael Ritter,

More information

Xiaoli Guo Larsén,* Søren Larsen and Andrea N. Hahmann Risø National Laboratory for Sustainable Energy, Roskilde, Denmark

Xiaoli Guo Larsén,* Søren Larsen and Andrea N. Hahmann Risø National Laboratory for Sustainable Energy, Roskilde, Denmark Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 274 279, January 2012 A Notes and Correspondence Origin of the waves in A case-study of mesoscale spectra of wind and

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION Numerical investigation of the formation of elevated pollution layers over the Los Angeles air basin Rong Lu, R.P. Turco Department of Atmospheric Sciences, University of California, Los Angeles, 405 Hilgard

More information

Local Winds. Please read Ahrens Chapter 10

Local Winds. Please read Ahrens Chapter 10 Local Winds Please read Ahrens Chapter 10 Scales of Motion Microscale: meters Turbulent eddies Formed by mechanical disturbance or convection Lifetimes of minutes Mesoscale: km s to 100 s of km s Local

More information

Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG)

Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG) Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG) 1 Definitions: The sea breeze is a local, thermally direct circulation arising from

More information

Wind Flow Validation Summary

Wind Flow Validation Summary IBHS Research Center Validation of Wind Capabilities The Insurance Institute for Business & Home Safety (IBHS) Research Center full-scale test facility provides opportunities to simulate natural wind conditions

More information

4.9 MICROMETEOROLOGICAL CHARACTERISTICS OF THE SEA BREEZE DURING THE WILMINGTON 2005 URBAN DISPERSION STUDY

4.9 MICROMETEOROLOGICAL CHARACTERISTICS OF THE SEA BREEZE DURING THE WILMINGTON 2005 URBAN DISPERSION STUDY 4.9 MICROMETEOROLOGICAL CHARACTERISTICS OF THE SEA BREEZE DURING THE WILMINGTON 2005 URBAN DISPERSION STUDY Xiangyi Li and Marko Princevac * Department of Mechanical Engineering, University of California,

More information

Assessing atmospheric stability and its impacts on rotor-disk wind characteristics at an onshore wind farm

Assessing atmospheric stability and its impacts on rotor-disk wind characteristics at an onshore wind farm WIND ENERGY Wind Energ. 2012; 15:525 546 Published online 31 July 2011 in Wiley Online Library (wileyonlinelibrary.com)..483 RESEARCH ARTICLE Assessing atmospheric stability and its impacts on rotor-disk

More information

Real Life Turbulence and Model Simplifications. Jørgen Højstrup Wind Solutions/Højstrup Wind Energy VindKraftNet 28 May 2015

Real Life Turbulence and Model Simplifications. Jørgen Højstrup Wind Solutions/Højstrup Wind Energy VindKraftNet 28 May 2015 Real Life Turbulence and Model Simplifications Jørgen Højstrup Wind Solutions/Højstrup Wind Energy VindKraftNet 28 May 2015 Contents What is turbulence? Description of turbulence Modelling spectra. Wake

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 6 Worksheet 2 Meteorology Name: Circle the letter that corresponds to the correct answer 1) A steep pressure gradient: a. produces light winds. b. produces strong winds. c. is only possible in

More information

Mesoscale Atmospheric Systems. Upper-level fronts. 13 and 20 March 2018 Heini Wernli. 13 March 2018 H. Wernli 1

Mesoscale Atmospheric Systems. Upper-level fronts. 13 and 20 March 2018 Heini Wernli. 13 March 2018 H. Wernli 1 Mesoscale Atmospheric Systems Upper-level fronts 13 and 20 March 2018 Heini Wernli 13 March 2018 H. Wernli 1 Upper-level fronts Formation of fronts is favored by presence of quasi-horizontal boundaries:

More information

Atmospheric Waves James Cayer, Wesley Rondinelli, Kayla Schuster. Abstract

Atmospheric Waves James Cayer, Wesley Rondinelli, Kayla Schuster. Abstract Atmospheric Waves James Cayer, Wesley Rondinelli, Kayla Schuster Abstract It is important for meteorologists to have an understanding of the synoptic scale waves that propagate thorough the atmosphere

More information

AT350 EXAM #2 November 18, 2003

AT350 EXAM #2 November 18, 2003 AT350 EXAM #2 November 18, 2003 Name and ID: Enter your name and student ID number on the answer sheet and on this exam. Record your answers to the 50 questions by using a No. 2 pencil to completely fill

More information

Supplementary Material for Satellite Measurements Reveal Persistent Small-Scale Features in Ocean Winds Fig. S1.

Supplementary Material for Satellite Measurements Reveal Persistent Small-Scale Features in Ocean Winds Fig. S1. Supplementary Material for Satellite Measurements Reveal Persistent Small-Scale Features in Ocean Winds by D. B. Chelton, M. G. Schlax, M. H. Freilich and Ralph F. Milliff Fig. S1. Global 4-year average

More information

Kathleen Dohan. Wind-Driven Surface Currents. Earth and Space Research, Seattle, WA

Kathleen Dohan. Wind-Driven Surface Currents. Earth and Space Research, Seattle, WA Updates to OSCAR and challenges with capturing the wind-driven currents. Wind-Driven Surface Currents Kathleen Dohan Earth and Space Research, Seattle, WA ENSO OSCAR Surface currents from satellite fields

More information

Exploring wave-turbulence interaction through LES modeling

Exploring wave-turbulence interaction through LES modeling Exploring wave-turbulence interaction through LES modeling Mireia Udina 1 Jielun Sun 2 M. Rosa Soler 1 Branko Kosović 2 1. Dept. Astronomia i Meteorologia Universitat de Barcelona, Barcelona, Catalunya

More information

3. Observed initial growth of short waves from radar measurements in tanks (Larson and Wright, 1975). The dependence of the exponential amplification

3. Observed initial growth of short waves from radar measurements in tanks (Larson and Wright, 1975). The dependence of the exponential amplification Geophysica (1997), 33(2), 9-14 Laboratory Measurements of Stress Modulation by Wave Groups M.G. Skafel and M.A. Donelan* National Water Research Institute Canada Centre for Inland Waters Burlington, Ontario,

More information

The effects of atmospheric stability on coastal wind climates

The effects of atmospheric stability on coastal wind climates Meteorol. Appl. 6, 39 47 (1999) The effects of atmospheric stability on coastal wind climates R J Barthelmie, Department of Wind Energy and Atmospheric Physics, Risø National Laboratory, 4000 Roskilde,

More information

The Air-Sea Interaction. Masanori Konda Kyoto University

The Air-Sea Interaction. Masanori Konda Kyoto University 2 The Air-Sea Interaction Masanori Konda Kyoto University 2.1 Feedback between Ocean and Atmosphere Heat and momentum exchange between the ocean and atmosphere Atmospheric circulation Condensation heat

More information

Low-Level Jet Climatology from Enhanced Rawinsonde Observations at a Site in the Southern Great Plains

Low-Level Jet Climatology from Enhanced Rawinsonde Observations at a Site in the Southern Great Plains OCTOBER 1997 WHITEMAN ET AL. 1363 Low-Level Jet Climatology from Enhanced Rawinsonde Observations at a Site in the Southern Great Plains C. DAVID WHITEMAN, XINDI BIAN, AND SHIYUAN ZHONG Pacific Northwest

More information

Lecture 14. Heat lows and the TCZ

Lecture 14. Heat lows and the TCZ Lecture 14 Heat lows and the TCZ ITCZ/TCZ and heat lows While the ITCZ/TCZ is associated with a trough at low levels, it must be noted that a low pressure at the surface and cyclonic vorticity at 850 hpa

More information

Atmospheric Stability Affects Wind Turbine Performance and Wake Effect

Atmospheric Stability Affects Wind Turbine Performance and Wake Effect Atmospheric Stability Affects Wind Turbine Performance and Wake Effect Hong Liu, John Liu*, Gus DiMaria and Jon Fournier CanWEA Annual Conference and Exhibition, October 23-25, 2018, Calgary, AB *York

More information

ATMS 310 Tropical Dynamics

ATMS 310 Tropical Dynamics ATMS 310 Tropical Dynamics Introduction Throughout the semester we have focused on mid-latitude dynamics. This is not to say that the dynamics of other parts of the world, such as the tropics, are any

More information

Characterization of Boundary-Layer Meteorology During DISCOVER-AQ

Characterization of Boundary-Layer Meteorology During DISCOVER-AQ Characterization of Boundary-Layer Meteorology During DISCOVER-AQ Daniel M. Alrick and Clinton P. MacDonald Sonoma Technology, Inc. Gary A. Morris St. Edward s University for Texas Air Quality Research

More information

Turbulence forecasts based on upper-air soundings

Turbulence forecasts based on upper-air soundings OC3570 Turbulence forecasts based on upper-air soundings By Greg Ireton Introduction The objective of this paper is to make turbulence forecasts from upper-air data by making Richardson s number calculations

More information

A R e R v e iew e w on o n th t e h e Us U e s s e s of o Clou o d u - (S ( y S s y t s e t m e )-Re R sol o ving n Mod o e d ls Jeff Duda

A R e R v e iew e w on o n th t e h e Us U e s s e s of o Clou o d u - (S ( y S s y t s e t m e )-Re R sol o ving n Mod o e d ls Jeff Duda A Review on the Uses of Cloud- (System)-Resolving Models Jeff Duda What is a Cloud-Resolving-Model (CRM)? General definition: A model with the following properties Resolution high enough to be able to

More information

Analysis of Long Time Series of Coastal Wind

Analysis of Long Time Series of Coastal Wind 907 Analysis of Long Time Series of Coastal Wind TORE HEGGEM, RUNE LENDE, AND JØRGEN LØVSETH Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway (Manuscript received

More information

Low-Level Wind Maxima and Structure of the Stably Stratified Boundary Layer in the Coastal Zone

Low-Level Wind Maxima and Structure of the Stably Stratified Boundary Layer in the Coastal Zone Low-Level Wind Maxima and Structure of the Stably Stratified Boundary Layer in the Coastal Zone Mahrt, L., Vickers, D., & Andreas, E. L. (2014). Low-Level Wind Maxima and Structure of the Stably Stratified

More information

The Use of Bulk and Profile Methods for Determining Surface Heat Fluxes in the Presence of Glacier Winds

The Use of Bulk and Profile Methods for Determining Surface Heat Fluxes in the Presence of Glacier Winds 3 The Use of Bulk and Profile Methods for Determining Surface Heat Fluxes in the Presence of Glacier Winds A -D second-order closure model and in situ observations on a melting glacier surface are used

More information

RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE

RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE By William S. Kessler and Richard Kleeman Journal of Climate Vol.13, 1999 SWAP, May 2009, Split, Croatia Maristella Berta What does give

More information

Observed Roughness Lengths for Momentum and Temperature on a Melting Glacier Surface

Observed Roughness Lengths for Momentum and Temperature on a Melting Glacier Surface 5 Observed Roughness Lengths for Momentum and Temperature on a Melting Glacier Surface The roughness lengths for momentum and temperature are calculated on a melting glacier surface. Data from a five level

More information

Monsoon. Arabic word mausim means season. Loose definition: a wind/precipitation pattern that shifts seasonally

Monsoon. Arabic word mausim means season. Loose definition: a wind/precipitation pattern that shifts seasonally Monsoon Arabic word mausim means season Loose definition: a wind/precipitation pattern that shifts seasonally Classical criteria (Ramage 1971) Prevailing wind shifts 120 o between Jan & July Average frequency

More information

Summary of Lecture 10, 04 March 2008 Introduce the Hadley circulation and examine global weather patterns. Discuss jet stream dynamics jet streams

Summary of Lecture 10, 04 March 2008 Introduce the Hadley circulation and examine global weather patterns. Discuss jet stream dynamics jet streams Summary of Lecture 10, 04 March 2008 Introduce the Hadley circulation and examine global weather patterns. Discuss jet stream dynamics jet streams arise because the Coriolis force prevents Hadley-type

More information

Thermally driven mesoscale flows simulations and measurements

Thermally driven mesoscale flows simulations and measurements Boreal Environment Research : 6 64 7 ISSN 9-695 (print) ISSN 797-469 (online) helsinki 8 December 7 Thermally driven mesoscale flows simulations and measurements Karin Törnblom, Hans Bergström and Cecilia

More information

Anemometry. Anemometry. Wind Conventions and Characteristics. Anemometry. Wind Variability. Anemometry. Function of an anemometer:

Anemometry. Anemometry. Wind Conventions and Characteristics. Anemometry. Wind Variability. Anemometry. Function of an anemometer: Anemometry Anemometry Function of an anemometer: Measure some or all of the components of the wind vector In homogeneous terrain, vertical component is small express wind as -D horizontal vector For some

More information

IMAGE-BASED STUDY OF BREAKING AND BROKEN WAVE CHARACTERISTICS IN FRONT OF THE SEAWALL

IMAGE-BASED STUDY OF BREAKING AND BROKEN WAVE CHARACTERISTICS IN FRONT OF THE SEAWALL IMAGE-BASED STUDY OF BREAKING AND BROKEN WAVE CHARACTERISTICS IN FRONT OF THE SEAWALL Weijie Liu 1 and Yoshimitsu Tajima 1 This study aims to study the breaking and broken wave characteristics in front

More information

McKnight's Physical Geography 11e

McKnight's Physical Geography 11e Chapter 2 Lecture McKnight's Physical Geography 11e Lectures Chapter 5 Atmospheric Pressure and Wind Michael Commons Ohio Northern University Atmospheric Pressure and Wind The Nature of Atmospheric Pressure

More information

WSRC-MS mdf r An Observational Study of Turbulence in the SPBL

WSRC-MS mdf r An Observational Study of Turbulence in the SPBL WSRC-MS-97-0385 mdf- 770760--r An Observational Study of Turbulence in the SPBL by R. Kurzeja Westinghouse Savannah River Company Savannah River Site Aiken, South Carolina 29808 A document prepared for

More information

Idealized WRF model sensitivity simulations of sea breeze types and their effects on offshore windfields: Supplementary material

Idealized WRF model sensitivity simulations of sea breeze types and their effects on offshore windfields: Supplementary material Idealized WRF model sensitivity simulations of sea breeze types and their effects on offshore windfields: Supplementary material Authors: C. J. Steele, S. R. Dorling, R. von Glasow and J. Bacon Synoptic

More information

Agronomy 406 World Climates

Agronomy 406 World Climates Agronomy 406 World Climates January 30, 2018 Monsoons. Ocean properties and circulation. Review for today: Online textbook: 1.3.1 (Sea water) Composition and properties. For Thursday: Rahmstorf, S.: The

More information

Super-parameterization of boundary layer roll vortices in tropical cyclone models

Super-parameterization of boundary layer roll vortices in tropical cyclone models DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Super-parameterization of boundary layer roll vortices in tropical cyclone models PI Isaac Ginis Graduate School of Oceanography

More information

Isaac Newton ( )

Isaac Newton ( ) Introduction to Climatology GEOGRAPHY 300 Isaac Newton (1642-1727) Tom Giambelluca University of Hawai i at Mānoa Atmospheric Pressure, Wind, and The General Circulation Philosophiæ Naturalis Principia

More information

Influence of Heat Transport by Sea Breezes on Inland Temperature in the Osaka Area

Influence of Heat Transport by Sea Breezes on Inland Temperature in the Osaka Area Academic Article Journal of Heat Island Institute International Vol. 9-2 (2) Influence of Heat Transport by Sea Breezes on Inland Temperature in the Osaka Area Atsumasa Yoshida* Junichi Yashiro* Xinbo

More information

Air Pressure and Wind

Air Pressure and Wind Air Pressure and Wind 19.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. Air pressure is exerted in all directions down, up, and sideways. The

More information

Effect of Orography on Land and Ocean Surface Temperature

Effect of Orography on Land and Ocean Surface Temperature Present and Future of Modeling Global Environmental Change: Toward Integrated Modeling, Eds., T. Matsuno and H. Kida, pp. 427 431. by TERRAPUB, 2001. Effect of Orography on Land and Ocean Surface Temperature

More information

Mesoscale air-sea interaction and feedback in the western Arabian Sea

Mesoscale air-sea interaction and feedback in the western Arabian Sea Mesoscale air-sea interaction and feedback in the western Arabian Sea Hyodae Seo (Univ. of Hawaii) Raghu Murtugudde (UMD) Markus Jochum (NCAR) Art Miller (SIO) AMS Air-Sea Interaction Workshop Phoenix,

More information

Full scale measurements and simulations of the wind speed in the close proximity of the building skin

Full scale measurements and simulations of the wind speed in the close proximity of the building skin Full scale measurements and simulations of the wind speed in the close proximity of the building skin Radoslav Ponechal 1,* and Peter Juras 1 1 University of Zilina, Faculty of Civil Engineering, Department

More information

Goals for today: continuing Ch 8: Atmospheric Circulation and Pressure Distributions. 26 Oct., 2011

Goals for today: continuing Ch 8: Atmospheric Circulation and Pressure Distributions. 26 Oct., 2011 Goals for today: 26 Oct., 2011 continuing Ch 8: Atmospheric Circulation and Pressure Distributions Examples of synoptic scale and mesoscale circulation systems that are driven by geographic diversity in

More information

Ocean Circulation. Si Hui Lee and Frances Wen. You can access ME at

Ocean Circulation. Si Hui Lee and Frances Wen. You can access ME at Ocean Circulation Si Hui Lee and Frances Wen You can access ME at http://tinyurl.com/oceancirculation Earth - the blue planet - 71% area covered by the oceans - 3/4 of ocean area between 3000-6000m deep

More information

Meteorology & Air Pollution. Dr. Wesam Al Madhoun

Meteorology & Air Pollution. Dr. Wesam Al Madhoun Meteorology & Air Pollution Dr. Wesam Al Madhoun Dispersion = Advection (Transport) + Dilution (Diffusion) Source Transport Receptor Re-entrainment Fick s law of diffusion J= - D * D C/Dx Where, J= Mass

More information

Wednesday, September 15, 2010 Coriolis force, 3 dimensions (p 65)

Wednesday, September 15, 2010 Coriolis force, 3 dimensions (p 65) Wednesday, September 15, 2010 Coriolis force, 3 dimensions (p 65) Weather fronts (p 63) General circulation on a rotating Earth (p 65) Geostrophy force balance (p 66) Local effects (no coriolis force)

More information

Forest Winds in Complex Terrain

Forest Winds in Complex Terrain Forest Winds in Complex Terrain Ilda Albuquerque 1 Contents Project Description Motivation Forest Complex Terrain Forested Complex Terrain 2 Project Description WAUDIT (Wind Resource Assessment Audit and

More information

Observed directional characteristics of the wind, wind stress, and surface waves on the open ocean

Observed directional characteristics of the wind, wind stress, and surface waves on the open ocean JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 99, NO. C11, PAGES 22,589 22,596, NOVEMBER 15, 1994 Observed directional characteristics of the wind, wind stress, and surface waves on the open ocean Karl F. Rieder

More information

METCRAX II An upcoming field investigation of downslopewindstorm-type

METCRAX II An upcoming field investigation of downslopewindstorm-type METCRAX II An upcoming field investigation of downslopewindstorm-type flows on the inner sidewall of Arizona's Meteor Crater C. David Whiteman, Sebastian W. Hoch, Rich Rotunno, Ron Calhoun, Manuela Lehner,

More information

P2.17 OBSERVATIONS OF STRONG MOUNTAIN WAVES IN THE LEE OF THE MEDICINE BOW MOUNTAINS OF SOUTHEAST WYOMING

P2.17 OBSERVATIONS OF STRONG MOUNTAIN WAVES IN THE LEE OF THE MEDICINE BOW MOUNTAINS OF SOUTHEAST WYOMING P2.17 OBSERVATIONS OF STRONG MOUNTAIN WAVES IN THE LEE OF THE MEDICINE BOW MOUNTAINS OF SOUTHEAST WYOMING Larry D. Oolman 1, Jeffrey R. French 1, Samuel Haimov 1, David Leon 1, and Vanda Grubišić 2 1 University

More information

Observations of Velocity Fields Under Moderately Forced Wind Waves

Observations of Velocity Fields Under Moderately Forced Wind Waves Observations of Velocity Fields Under Moderately Forced Wind Waves Timothy P. Stanton Oceanography Department, Code OC/ST Naval Postgraduate School Monterey, CA 93943-5000 phone: (831) 656 3144 fax: (831)

More information