1. Modeling with the Sine Function

Size: px
Start display at page:

Download "1. Modeling with the Sine Function"

Transcription

1 Name Date Sheilah Chason Intro to Sinusoidal Curves Math 433 Aim: To elore the stretching and shrinking of sinusoidal curves and to grah these curves with different amlitudes and eriods. 1. Modeling with the Sine Function Take a look at the following grah, which shows the aroimate average dail high temerature in New York's Central Park. # # Source: National Weather Service/The New York Times, Januar 7, 1996,. 36. Each ear, the attern reeats over and over, resulting in the following grah. Here, the -coordinate reresents time in ears with = 0 reresenting August 1, while the -coordinate reresents the temerature in o F. This is an eamle of cclical or eriodic behavior. Cclical behavior is common in the business world; just as there are seasonal fluctuations in the temerature in Central Park, there are seasonal fluctuations in the demand for surfing equiment, swimwear, snow shovels, and the list goes on. The following grah even suggests a cclical behavior in emloment at securities firms in the United States. Ý Net ear we will derive these tes of sinusoidal curves. For now we will elore changing the amlitude and frequenc.

2 Directions: Fill out the chart. Plot all oints. Do not connect the oints. Θ Deg. tanθ Y=tanθ Domain: Range:

3 Name Trig Grahs Date Sheilah Chason Math 433 Y=sinθ Domain: Range: Y=cosθ Domain: Range: Y= tanθ Domain: Range:

4 Amlitude: On a sinusoidal curve, the difference between the maimum and minimum oints divided b two. Θ Y=sinθ Y=sinθ Y=sinθ Y=-sinθ Y=cosθ Y=-cosθ Y=1.5cosθ -π -3 π/ - π - π/ 0 π/ π 3 π/ π Summar of Amlitude:

5 Frequenc: Θ Y=sinθ Y=sinθ Y=-sin θ Y=1.5sinθ Y=cosθ Y=cosθ Y=cosθ 0 π/4 π / 3 π/4 π 5 π/4 3 π/ 7 π/4 π

6 Θ Y=sinθ Y=sinθ Y=sinθ Y=-sinθ Y=cosθ Y=cosθ Y=-cosθ -π -3 π/ - π - π/ 0 π/ π 3 π/ π

7 Grah the following, over the given domain, indicating the amlitude, eriod and frequenc, and critical values. 1)Y=-1.5 sin; Amlitude: Frequenc: 0 π )Y=cos ; -π π Amlitude: Frequenc: 3)Y=sin; Amlitude: Frequenc: [-π,π]

8 1)Grah Y= -sin and Amlitude: Frequenc: Y= cos over the interval [0,π] Amlitude: Frequenc: )Grah Y= 1.5sin and Amlitude: Frequenc: Y= -cos over the interval [- π,π] Amlitude: Frequenc:

9 Grah the following, over the given domain, indicating the amlitude, eriod and frequenc, and critical values. 1)Y= sin; Amlitude: Frequenc: 0 π )Y=cos() ; Amlitude: Frequenc: [-π,π] 3)Y=-1.5sin(); [-π,π] Amlitude: Frequenc:

10 Grah both functions on the same coordinate ais and determine the number of oints of intersection. 1)Grah Y= sin and Amlitude: Frequenc: Y= cos over the interval [0,π] Amlitude: Frequenc: )Grah Y= -1.5sin and Amlitude: Frequenc: Y= cos over the interval [-π,π] Amlitude: Frequenc:

11 Grah the following, over the given domain, indicating the amlitude, eriod and frequenc, and critical values. 1)Y= tan; Frequenc: 0 π )Y=-tan ; [-π,π] Frequenc: 3)Y=-tan (); [-π,π] Frequenc:

12 Name Date Sheilah Chason Math 44 Aim: How to grah =asin(b)+c and =acos(b)+c. To Do: If sec 40 =1.3054, find the following: Cos 40 = Sec 140 = Sec -40 = Cos 0 = Name that Grah / / / 3/ / / / 3/ -3/ / / 3/ Domain: Domain: Domain: Range: Range: Range: Amlitude: Amlitude: Amlitude: / / / 3/ -3/ / / 3/ -0.4 / / Domain: Domain: Domain: Range: Range: Range: Amlitude: Amlitude: Amlitude: / / / 3/ -3/ / / 3/ -3/ / / 3/ Domain: Domain: Domain: Range: Range: Range:

13 Amlitude: Amlitude: Amlitude: Vertical Shift of main ais(c): G()=sin()+1 Amlitude: Frequenc: Vertical Shift: Domain: [-π,π] Range: G(π)= G()=sin()+1 Amlitude: Frequenc: Vertical Shift: Domain: [-π,π] Range: G(π)= f()=cos()- Amlitude: Frequenc: Vertical Shift: Domain: [0,π] Range:

14 F(π)= H()= -sin(3)- Amlitude: Frequenc: Vertical Shift: Domain: [-π/3,π/3] Range: H(-π) G()=cos()+3 Amlitude: Frequenc: Vertical Shift: Domain: [-π,π] Range: G(π/)= F() = -sin ()+ Amlitude: Frequenc: Vertical Shift:

15 Domain: [-π,π] Range: F(π)= M()=-.5sin()-1 Amlitude: Frequenc: Vertical Shift: Domain: [-π,π] Range: F(π)= S()= -1cos()- Amlitude: Frequenc: Vertical Shift: Domain: [-π,π] Range: s(π)= E()= sin3-4 Amlitude: Frequenc: Vertical Shift: Domain: [-π/3,π/3] Range:

16 s(π)= Sketch sin( ) and sin( ) 1 on the ais below. Sketch cos( ) and cos( ) on the ais below.

17 Grah the following, over the given domain, indicating the amlitude, eriod and frequenc, and critical values. 1)Y=-1.5 sin()-; Amlitude: Frequenc: 0 π )Y=cos()+1 ; Amlitude: Frequenc: -π π 3)Y=-sin()-3 [-π,π] Amlitude: Frequenc:

18 1)Grah and Y= over the interval [ ] Amlitude: Frequenc: Amlitude: Frequenc: ) Grah and Y= over the interval [ ] Amlitude: Frequenc: Amlitude: Frequenc:

Lesson 30, page 1 of 9. Glencoe Geometry Chapter 8.3. Trigonometric Ratios

Lesson 30, page 1 of 9. Glencoe Geometry Chapter 8.3. Trigonometric Ratios Lesson 30 Lesson 30, page 1 of 9 Glencoe Geometry Chapter 8.3 Trigonometric Ratios Today we look at three special ratios of right triangles. The word Trigonometry is derived from two Greek words meaning

More information

Trigonometric Functions

Trigonometric Functions Trigonometric Functions (Chapters 6 & 7, 10.1, 10.2) E. Law of Sines/Cosines May 21-12:26 AM May 22-9:52 AM 1 degree measure May 22-9:52 AM Measuring in Degrees (360 degrees) is the angle obtained when

More information

Chapter 4: Single Vertical Arch

Chapter 4: Single Vertical Arch Chapter 4: Single Vertical Arch 4.1 Introduction This chapter considers a single pressurized arch in a vertical plane. This arch is similar to the arches that will be studied in the following chapter.

More information

Trig Functions Learning Outcomes. Solve problems about trig functions in right-angled triangles. Solve problems using Pythagoras theorem.

Trig Functions Learning Outcomes. Solve problems about trig functions in right-angled triangles. Solve problems using Pythagoras theorem. 1 Trig Functions Learning Outcomes Solve problems about trig functions in right-angled triangles. Solve problems using Pythagoras theorem. Opposite Adjacent 2 Use Trig Functions (Right-Angled Triangles)

More information

UNIT 2 RIGHT TRIANGLE TRIGONOMETRY Lesson 2: Applying Trigonometric Ratios Instruction

UNIT 2 RIGHT TRIANGLE TRIGONOMETRY Lesson 2: Applying Trigonometric Ratios Instruction Prerequisite Skills This lesson requires the use of the following skills: defining and calculating sine, cosine, and tangent setting up and solving problems using the Pythagorean Theorem identifying the

More information

Gary Delia AMS151 Fall 2009 Homework Set 3 due 10/07/2010 at 11:59pm EDT

Gary Delia AMS151 Fall 2009 Homework Set 3 due 10/07/2010 at 11:59pm EDT Gary Delia AMS151 Fall 2009 Homework Set 3 due 10/07/2010 at 11:59pm EDT 1. (2 pts) The angle of elevation to the top of a building is found to be 9 from the ground at a distance of 6000 feet from the

More information

MATHEMATICS: PAPER II

MATHEMATICS: PAPER II CLUSTER PAPER 2016 MATHEMATICS: PAPER II Time: 3 hours 150 marks PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY 1. This question paper consists of 28 pages and an Information Sheet of 2 pages(i-ii).

More information

Trig Functions Learning Outcomes. Solve problems about trig functions in right-angled triangles. Solve problems using Pythagoras theorem.

Trig Functions Learning Outcomes. Solve problems about trig functions in right-angled triangles. Solve problems using Pythagoras theorem. 1 Trig Functions Learning Outcomes Solve problems about trig functions in right-angled triangles. Solve problems using Pythagoras theorem. Opposite Adjacent 2 Use Trig Functions (Right-Angled Triangles)

More information

Energy Differences in Hilly Driving for Electric Vehicles:

Energy Differences in Hilly Driving for Electric Vehicles: Energ Differences in Hill Driving for Electric Vehicles: Introduction Consider the idealized hill (an isosceles triangle) shown in the bo, with the left and right angle being. Let d sides of the triangle

More information

Lesson 14: Simple harmonic motion, Waves (Sections )

Lesson 14: Simple harmonic motion, Waves (Sections ) Circular Motion and Simple Harmonic Motion The projection of uniform circular motion along any ais (the -ais here) is the same as simple harmonic motion. We use our understanding of uniform circular motion

More information

two points on a line. Plugging the given values into the ratio gives 5 3 = 2

two points on a line. Plugging the given values into the ratio gives 5 3 = 2 www.mathblackboard.com ruth@mathblackboard.com 18-310-190 ARCHIVE of POSTED PROBLEMS TO PONDER and SOLUTIONS for HIGH SCHOOL: Posted 01/30: If is the first term and 56 if the fourth term of a geometric

More information

PHYSICS 105. Assignment #3 Due by 10 pm September 29, DISCUSSION SECTION: [ ] D7 W 9 am [ ] D8 W 10 am [ ] HS W 10 am

PHYSICS 105. Assignment #3 Due by 10 pm September 29, DISCUSSION SECTION: [ ] D7 W 9 am [ ] D8 W 10 am [ ] HS W 10 am PHYSICS 105 Assignment #3 Due by 10 pm September 9, 009 NAME: DISCUSSION SECTION: [ ] D7 W 9 am [ ] D8 W 10 am [ ] HS W 10 am [ ] D9 W 11 am [ ] F 1 W 1 pm [ ] F W pm [ ] F3 W 3 pm [ ] F4 W 4 pm [ ] F5

More information

8.3 Trigonometric Ratios-Tangent. Geometry Mr. Peebles Spring 2013

8.3 Trigonometric Ratios-Tangent. Geometry Mr. Peebles Spring 2013 8.3 Trigonometric Ratios-Tangent Geometry Mr. Peebles Spring 2013 Bell Ringer 3 5 Bell Ringer a. 3 5 3 5 = 3 5 5 5 Multiply the numerator and denominator by 5 so the denominator becomes a whole number.

More information

Application of Geometric Mean

Application of Geometric Mean Section 8-1: Geometric Means SOL: None Objective: Find the geometric mean between two numbers Solve problems involving relationships between parts of a right triangle and the altitude to its hypotenuse

More information

Two dimensional kinematics. Projectile Motion

Two dimensional kinematics. Projectile Motion Two dimensional kinematics Projectile Motion 1. You throw a ball straight upwards with a velocity of 40m/s. How long before it returns to your hand? A. 2s B. 4s C. 6s D. 8s E. 10s 1.You throw a ball straight

More information

Members & Firms

Members & Firms Members & Firms 2016-2017 PAGE l 43 Members & Firms 2016-2017 PAGE l 44 Members & Firms 2016-2017 PAGE l 45 Members & Firms 2016-2017 PAGE l 46 Members & Firms 2016-2017 PAGE l 47 Members & Firms 2016-2017

More information

AP Physics 1 Summer Packet Review of Trigonometry used in Physics

AP Physics 1 Summer Packet Review of Trigonometry used in Physics AP Physics 1 Summer Packet Review of Trigonometry used in Physics For some of you this material will seem pretty familiar and you will complete it quickly. For others, you may not have had much or any

More information

AP Physics B Summer Homework (Show work)

AP Physics B Summer Homework (Show work) #1 NAME: AP Physics B Summer Homework (Show work) #2 Fill in the radian conversion of each angle and the trigonometric value at each angle on the chart. Degree 0 o 30 o 45 o 60 o 90 o 180 o 270 o 360 o

More information

1 What is Trigonometry? Finding a side Finding a side (harder) Finding an angle Opposite Hypotenuse.

1 What is Trigonometry? Finding a side Finding a side (harder) Finding an angle Opposite Hypotenuse. Trigonometry (9) Contents 1 What is Trigonometry? 1 1.1 Finding a side................................... 2 1.2 Finding a side (harder).............................. 2 1.3 Finding an angle.................................

More information

Sinusoidal Waves. Sinusoidal Waves. Sinusoidal Waves

Sinusoidal Waves. Sinusoidal Waves. Sinusoidal Waves Sinusoidal Waves A wave source at x = 0 that oscillates with simple harmonic motion (SHM) generates a sinusoidal wave. 2017 Pearson Education, Inc. Slide 16-1 Sinusoidal Waves Above is a history graph

More information

Sinusoidal Waves A sinusoidal wave moving in the positive direction of an x axis has the mathematical form

Sinusoidal Waves A sinusoidal wave moving in the positive direction of an x axis has the mathematical form 436 CHAPTER 16 WAVES I Transverse and Longitudinal Waves Mechanical waves can eist onl in material media and are governed b Newton s laws. Transverse mechanical waves, like those on a stretched string,

More information

Week 11, Lesson 1 1. Warm Up 2. Notes Sine, Cosine, Tangent 3. ICA Triangles

Week 11, Lesson 1 1. Warm Up 2. Notes Sine, Cosine, Tangent 3. ICA Triangles Week 11, Lesson 1 1. Warm Up 2. Notes Sine, Cosine, Tangent 3. ICA Triangles HOW CAN WE FIND THE SIDE LENGTHS OF RIGHT TRIANGLES? Essential Question Essential Question Essential Question Essential Question

More information

[A] 7 4 [B] 7 45 [C] 7 14 [D] [1] p. [3] 4. Solve. 2 x = 8 [B] 1 3

[A] 7 4 [B] 7 45 [C] 7 14 [D] [1] p. [3] 4. Solve. 2 x = 8 [B] 1 3 Simplif. Epress each answer with positive eponents. 9 5 1. 7 7. F 9 p I G J HG q KJ 8 7 4 [B] 7 45 [C] 7 14 [D] 49 14 [1] 7 7 p p [B] [C] 16 q q 17 p [D] p + q q 7 16. Evaluate. 7 9 [B] 1 9 [C] 1 [D] []

More information

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2. Chapter 11 Waves Energy can be transported by particles or waves A wave is characterized as some sort of disturbance that travels away from a source. The key difference between particles and waves is a

More information

PHY 221: Wavefunction, Wave Superposition, Standing Waves on a String

PHY 221: Wavefunction, Wave Superposition, Standing Waves on a String PHY 221: Wavefunction, Wave Superposition, Standing Waves on a String Objective Write a mathematical function to describe the wave. Describe a transverse wave and a longitudinal wave. Describe frequency,

More information

Secondary 3 Mathematics Chapter 10 Applications of Trigonometry Practice 1 Learning Objectives: To provide an aim for

Secondary 3 Mathematics Chapter 10 Applications of Trigonometry Practice 1 Learning Objectives: To provide an aim for 1 1 1 1 1 1 1 1 1 1 Secondary 3 Mathematics Chapter pplications of Trigonometry Practice 1 Learning Objectives: To provide an aim for students to achieve at the end of each lesson. Understand and solve

More information

Trigonometry. terminal ray

Trigonometry. terminal ray terminal ray y Trigonometry Trigonometry is the study of triangles the relationship etween their sides and angles. Oddly enough our study of triangles egins with a irle. r 1 θ osθ P(x,y) s rθ sinθ x initial

More information

Chapter 16. Waves-I Types of Waves

Chapter 16. Waves-I Types of Waves Chapter 16 Waves-I 16.2 Types of Waves 1. Mechanical waves. These waves have two central features: They are governed by Newton s laws, and they can exist only within a material medium, such as water, air,

More information

Offshore Wind Turbine Wake Characterization using Scanning Doppler Lidar

Offshore Wind Turbine Wake Characterization using Scanning Doppler Lidar Offshore Wind Turbine Wake Characterization using Scanning Doppler Lidar R. Krishnamurthy a, J. Reuder b, B. Svardal c, H.J.S. Fernando a, J. B. Jakobsen d a University of Notre-Dame, Notre-Dame, Indiana

More information

Welcome to Trigonometry!

Welcome to Trigonometry! Welcome to Trigonometry! Right Triangle Trigonometry: The study of the relationship between the sides and the angles of right triangles. Why is this important? I wonder how tall this cake is... 55 0 3

More information

Learning Goal: I can explain when to use the Sine, Cosine and Tangent ratios and use the functions to determine the missing side or angle.

Learning Goal: I can explain when to use the Sine, Cosine and Tangent ratios and use the functions to determine the missing side or angle. MFM2P Trigonometry Checklist 1 Goals for this unit: I can solve problems involving right triangles using the primary trig ratios and the Pythagorean Theorem. U1L4 The Pythagorean Theorem Learning Goal:

More information

6.3 Using Slope LESSON EXPLORE ACTIVITY 1. rate of change =

6.3 Using Slope LESSON EXPLORE ACTIVITY 1. rate of change = v? LESSON 6.3 Using Slope ESSENTIL QUESTION Calculate and interpret the average rate of change of a function (presented smbolicall or as a table) over a specified interval. Estimate the rate of change

More information

Special edition paper

Special edition paper Development of a Track Management Method for Shinkansen Speed Increases Shigeaki Ono** Takehiko Ukai* We have examined the indicators of appropriate track management that represent the ride comfort when

More information

PHYS 102 Quiz Problems Chapter 16 : Waves I Dr. M. F. Al-Kuhaili

PHYS 102 Quiz Problems Chapter 16 : Waves I Dr. M. F. Al-Kuhaili PHYS 102 Quiz Problems Chapter 16 : Waves I Dr. M. F. Al-Kuhaili 1. (TERM 001) A sinusoidal wave traveling in the negative x direction has amplitude of 20.0 cm, a wavelength of 35.0 cm, and a frequency

More information

Physics 122 Class #6 Outline

Physics 122 Class #6 Outline Physics 122 Class #6 Outline Announcements/Reading Assignment Speed of waves in a string Wave energy and intensity History and snapshot plots Properties of sinusoidal waves Velocity of the string (not

More information

CHAPTER 8 (SECTIONS 8.1 AND 8.2) WAVE PROPERTIES, SOUND

CHAPTER 8 (SECTIONS 8.1 AND 8.2) WAVE PROPERTIES, SOUND Name Period CHAPTER 8 (SECTIONS 8.1 AND 8.2) WAVE PROPERTIES, SOUND 1 ACTIVITY LESSON DESCRIPTION SCORE/POINTS 1. NT NOTES PACKET (notes and study questions ) _ /50 NT NOTES PACKET (vocab definitions &

More information

Kinematics and Luffing Moment of Lemniscate Type Crane with Boom. Driving

Kinematics and Luffing Moment of Lemniscate Type Crane with Boom. Driving dvanced Materials Research Online: 2012-04-12 ISSN: 1662-8985, Vols. 503-504, pp 923-926 doi:10.4028/www.scientific.net/mr.503-504.923 2012 Trans Tech ublications, Switzerland Kinematics and Luffing Moment

More information

Parametric equations with projectiles

Parametric equations with projectiles Parametric equations with projectiles The following equations are useful to model the x and y-coordinates of projectile motion launched at an angle θ (in degrees), initial velocity v 0 and acceleration

More information

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2. Energy can be transported by particles or waves: Chapter 11 Waves A wave is characterized as some sort of disturbance that travels away from a source. The key difference between particles and waves is

More information

2.6 Related Rates Worksheet Calculus AB. dy /dt!when!x=8

2.6 Related Rates Worksheet Calculus AB. dy /dt!when!x=8 Two Rates That Are Related(1-7) In exercises 1-2, assume that x and y are both differentiable functions of t and find the required dy /dt and dx /dt. Equation Find Given 1. dx /dt = 10 y = x (a) dy /dt

More information

6.6 Gradually Varied Flow

6.6 Gradually Varied Flow 6.6 Gradually Varied Flow Non-uniform flow is a flow for which the depth of flow is varied. This varied flow can be either Gradually varied flow (GVF) or Rapidly varied flow (RVF). uch situations occur

More information

Math Section 4.1 Special Triangles

Math Section 4.1 Special Triangles Math 1330 - Section 4.1 Special Triangles In this section, we ll work with some special triangles before moving on to defining the six trigonometric functions. Two special triangles are 30 60 90 triangles

More information

Friday 13 June 2014 Morning

Friday 13 June 2014 Morning H Friday 13 June 2014 Morning GCSE APPLICATIONS OF MATHEMATICS A382/02 Applications of Mathematics 2 (Higher Tier) *3053050410* Candidates answer on the Question Paper. OCR supplied materials: None Other

More information

Sec 9.5. Applications of Trigonometry to Navigation and Surveying

Sec 9.5. Applications of Trigonometry to Navigation and Surveying Sec 9.5 Applications of Trigonometry to Navigation and Surveying Which direction? In basic Trig standard position: Which direction? Navigation used by ships, planes etc. 9.5 Applications of Trigonometry

More information

Organizing Quantitative Data

Organizing Quantitative Data Organizing Quantitative Data MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2018 Objectives At the end of this lesson we will be able to: organize discrete data in

More information

True class interval. frequency total. frequency

True class interval. frequency total. frequency 20 1 16 14 12 10 6 4 2 0 frequency 44.5 54.5 64.5 74.5 4.5 94.5 104.5 49.5 59.5 69.5 79.5 9.5 99.5 True class interval True class interval 49.5-59.5 59.5-69.5 69.5-79.5 79.5-9.5 9.5-99.5 total frequency

More information

g L Agenda Chapter 13 Problem 28 Equations of Motion for SHM: What if we have friction or drag? Driven Oscillations; Resonance 4/30/14 k m f = 1 2π

g L Agenda Chapter 13 Problem 28 Equations of Motion for SHM: What if we have friction or drag? Driven Oscillations; Resonance 4/30/14 k m f = 1 2π Agenda Today: HW quiz, More simple harmonic motion and waves Thursday: More waves Midterm scores will be posted by Thursday. Chapter 13 Problem 28 Calculate the buoyant force due to the surrounding air

More information

CHAPTER 6 PROJECTILE MOTION

CHAPTER 6 PROJECTILE MOTION CHAPTER 6 PROJECTILE MOTION 1 Basic principle of analyzing projecting motion Independency of vertical and horizontal motion 2 A simple case: Horizontally projected motion An angry bird is fired horizontally

More information

Geom- Chpt. 8 Algebra Review Before the Chapter

Geom- Chpt. 8 Algebra Review Before the Chapter Geom- Chpt. 8 Algebra Review Before the Chapter Solving Quadratics- Using factoring and the Quadratic Formula Solve: 1. 2n 2 + 3n - 2 = 0 2. (3y + 2) (y + 3) = y + 14 3. x 2 13x = 32 1 Working with Radicals-

More information

INSTRUMENT INSTRUMENTAL ERROR (of full scale) INSTRUMENTAL RESOLUTION. Tutorial simulation. Tutorial simulation

INSTRUMENT INSTRUMENTAL ERROR (of full scale) INSTRUMENTAL RESOLUTION. Tutorial simulation. Tutorial simulation Lab 1 Standing Waves on a String Learning Goals: To distinguish between traveling and standing waves To recognize how the wavelength of a standing wave is measured To recognize the necessary conditions

More information

Agood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the. Ball Trajectories

Agood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the. Ball Trajectories 42 Ball Trajectories Factors Influencing the Flight of the Ball Nathalie Tauziat, France By Rod Cross Introduction Agood tennis player knows instinctively how hard to hit a ball and at what angle to get

More information

PHYSICAL REQUIREMENTS FOR A TAKEOFF IN SURFING. Akihiko Kimura 1 and Taro Kakinuma 2

PHYSICAL REQUIREMENTS FOR A TAKEOFF IN SURFING. Akihiko Kimura 1 and Taro Kakinuma 2 PHYSICAL REQUIREMENTS FOR A TAKEOFF IN SURFING Akihiko Kimura 1 and Taro Kakinuma 2 The conditions required for a takeoff in surfing, are discussed, with the waves simulated numerically, considering two

More information

Unit 7 Trigonometry Test #1 Review

Unit 7 Trigonometry Test #1 Review Secondary Math 3 Name x 2^0Y1T9l NKYu]tga\ gsgovfztywdamr]e _LYLrg.n j HDlRls TrgiUgMhntvsZ TryedsUearbverdz. Unit 7 Trigonometry Test #1 Review Find the value of the trig function indicated. Date Period

More information

Functions - Trigonometry

Functions - Trigonometry 10. Functions - Trigonometry There are si special functions that describe the relationship between the sides of a right triangle and the angles of the triangle. We will discuss three of the functions here.

More information

Energy Drilling Prospects

Energy Drilling Prospects 01 05 Energy Drilling Prospects Fraser Offshore Ltd is a drilling project management company. It designs, plans and drills oil wells for clients who are typically oil & gas companies or large utilities

More information

Algebra/Geometry Blend Unit #7: Right Triangles and Trigonometry Lesson 1: Solving Right Triangles. Introduction. [page 1]

Algebra/Geometry Blend Unit #7: Right Triangles and Trigonometry Lesson 1: Solving Right Triangles. Introduction. [page 1] Algebra/Geometry Blend Unit #7: Right Triangles and Trigonometry Lesson 1: Solving Right Triangles Name Period Date Introduction [page 1] Learn [page 2] Pieces of a Right Triangle The map Brian and Carla

More information

S0300-A6-MAN-010 CHAPTER 2 STABILITY

S0300-A6-MAN-010 CHAPTER 2 STABILITY CHAPTER 2 STABILITY 2-1 INTRODUCTION This chapter discusses the stability of intact ships and how basic stability calculations are made. Definitions of the state of equilibrium and the quality of stability

More information

Performance of the High Solidity Wind Turbines in Low Wind Potential Sites of Sri Lanka

Performance of the High Solidity Wind Turbines in Low Wind Potential Sites of Sri Lanka Engineer Vol. XXXVIII, No. 01, pp. 7-15, 2005 Institution of Engineers, Sri Lanka 1. Performance of the High Solidity Wind Turbines in Low Wind Potential Sites of Sri Lanka Mahinsasa Narayana 1 and A G

More information

Sin, Cos, and Tan Revealed

Sin, Cos, and Tan Revealed Sin, Cos, and Tan Revealed Reference Did you ever wonder what those keys on your calculator that say sin, cos, and tan are all about? Well, here s where you find out. You ve seen that whenever two right

More information

Abstract. 1 Introduction

Abstract. 1 Introduction A computational method for calculatingthe instantaneous restoring coefficients for a ship moving in waves N. El-Simillawy College of Engineering and Technology, Arab Academyfor Science and Technology,

More information

Truss Analysis Method of Sections Steven Vukazich San Jose State University

Truss Analysis Method of Sections Steven Vukazich San Jose State University Truss Analysis Method of Sections Steven Vukazich San ose State University General Procedure for the Analysis of Simple Trusses using the Method of Sections 1. Draw a ree Body Diagram (BD) of the entire

More information

In previous examples of trigonometry we were limited to right triangles. Now let's see how trig works in oblique (not right) triangles.

In previous examples of trigonometry we were limited to right triangles. Now let's see how trig works in oblique (not right) triangles. The law of sines. In previous examples of trigonometry we were limited to right triangles. Now let's see how trig works in oblique (not right) triangles. You may recall from Plane Geometry that if you

More information

Related Rates - Classwork

Related Rates - Classwork Related Rates - Classwork Earlier in the year, we used the basic definition of calculus as the mathematics of change. We defined words that meant change: increasing, decreasing, growing, shrinking, etc.

More information

Acknowledgement: Author is indebted to Dr. Jennifer Kaplan, Dr. Parthanil Roy and Dr Ashoke Sinha for allowing him to use/edit many of their slides.

Acknowledgement: Author is indebted to Dr. Jennifer Kaplan, Dr. Parthanil Roy and Dr Ashoke Sinha for allowing him to use/edit many of their slides. Acknowledgement: Author is indebted to Dr. Jennifer Kaplan, Dr. Parthanil Roy and Dr Ashoke Sinha for allowing him to use/edit many of their slides. Topic for this lecture 0Today s lecture s materials

More information

AP Physics 1 Lesson 4 Homework Outcomes Quiz 4 Preparation. Name. Date. Period

AP Physics 1 Lesson 4 Homework Outcomes Quiz 4 Preparation. Name. Date. Period Physics 1 Lesson 4 Homework Outcomes Quiz 4 Preparation Name Date Period Practice Problems I. A continuous force of 2.0 N is exerted on a 2.0 kg block to the right. The block moves with a constant horizontal

More information

Hydrostatics and Stability Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur

Hydrostatics and Stability Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur Hydrostatics and Stability Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 22 Righting Stability II We

More information

Problem Set 6: Static Equilibrium and Torque, Work-Kinetic Energy Theorem, Work Done by Friction and other Dissipative Forces

Problem Set 6: Static Equilibrium and Torque, Work-Kinetic Energy Theorem, Work Done by Friction and other Dissipative Forces Problem Set 6: Static Equilibrium and Torque, Work-Kinetic Energy Theorem, Work Done by riction and other Dissipative orces Design Engineering Challenge: The Big Dig.007 Contest Hockey Puck Handling Strategies

More information

Math 4. Unit 1: Conic Sections Lesson 1.1: What Is a Conic Section?

Math 4. Unit 1: Conic Sections Lesson 1.1: What Is a Conic Section? Unit 1: Conic Sections Lesson 1.1: What Is a Conic Section? 1.1.1: Study - What is a Conic Section? Duration: 50 min 1.1.2: Quiz - What is a Conic Section? Duration: 25 min / 18 Lesson 1.2: Geometry of

More information

AN EXPERIMENTAL STUDY OF WAVE FORCES ON VERTICAL BREAKWATER

AN EXPERIMENTAL STUDY OF WAVE FORCES ON VERTICAL BREAKWATER Journal of Marine Science and Technology, Vol., No. 3,. -17 (7) AN EXPERIMENTAL STUDY OF WAVE FORCES ON VERTICAL BREAKWATER Yung-Fang Chiu*, Jaw-Guei Lin**, Shang-Chun Chang**, Yin-Jei Lin**, and Chia-Hsin

More information

Pseudoadiabatic chart / sonde diagram

Pseudoadiabatic chart / sonde diagram Pseudoadiabatic chart / sonde diagram T = T θ 0 R c = θ const R c This can be lotted with a logarithmic scale for the ressure. The lines for constant otential temerature is following the dry adiabatic

More information

WIND ENGINEERING VOLUME 39, NO. 3, 2015

WIND ENGINEERING VOLUME 39, NO. 3, 2015 Continuum Wind Flow Model: Introduction to Model Theory and Case Study Review by Elizabeth Walls REPRINTED FROM WIND ENGINEERING VOLUME 39, NO. 3, 2015 MULTI-SCIENCE PUBLISHING COMPANY 26 ELDON WAY HOCKLEY

More information

Mixed Trig Problems. For each problem show a complete solution with diagrams that include all the pertinent facts and answers.

Mixed Trig Problems. For each problem show a complete solution with diagrams that include all the pertinent facts and answers. Mixed Trig Problems For each problem show a complete solution with diagrams that include all the pertinent facts In ABC, cos A = 0.6. Find sin A and tan A. In ABC, cos A = 0.6. Find sin A and tan A. Sin

More information

Cumulative Frequency Diagrams

Cumulative Frequency Diagrams Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ Cumulative Frequency Diagrams Mark Scheme Level Subject Exam Board Topic Sub Topic Booklet

More information

Homework Helpers Sampler

Homework Helpers Sampler Homework Helpers Sampler This sampler includes s for Algebra I, Lessons 1-3. To order a full-year set of s visit >>> http://eurmath.link/homework-helpers Published by the non-profit Great Minds. Copyright

More information

Properties of waves. Definition:

Properties of waves. Definition: Properties of waves A wave motion is the ability of transferring energy from one point (the source) to another point without there being any transfer of matter between the two points. Waves are either

More information

1. What are the differences and similarities among transverse, longitudinal, and surface waves?

1. What are the differences and similarities among transverse, longitudinal, and surface waves? Assignment Waves Reading: Giancoli, Chapters 11, 12, 22, 24 Holt, Chapters 12, 14 Objectives/HW The student will be able to: 1 Define, apply, and give examples of the following concepts: wave, pulse vs.

More information

Right is Special 1: Triangles on a Grid

Right is Special 1: Triangles on a Grid Each student in your group should have a different equilateral triangle. Complete the following steps: Using the centimeter grid paper, determine the length of the side of the triangle. Write the measure

More information

PHYSICS - GIANCOLI CALC 4E CH 15: WAVE MOTION.

PHYSICS - GIANCOLI CALC 4E CH 15: WAVE MOTION. !! www.clutchprep.com CONCEPT: WHAT IS A WAVE? A WAVE is a moving disturbance (oscillation) that carries energy. - A common example is a wave on a string, where the moving string carries energy We re only

More information

4-3 Rate of Change and Slope. Warm Up. 1. Find the x- and y-intercepts of 2x 5y = 20. Describe the correlation shown by the scatter plot. 2.

4-3 Rate of Change and Slope. Warm Up. 1. Find the x- and y-intercepts of 2x 5y = 20. Describe the correlation shown by the scatter plot. 2. Warm Up 1. Find the x- and y-intercepts of 2x 5y = 20. Describe the correlation shown by the scatter plot. 2. Objectives Find rates of change and slopes. Relate a constant rate of change to the slope of

More information

Finding the Area of a Major League Baseball Field

Finding the Area of a Major League Baseball Field Undergraduate Journal of Mathematical Modeling: One + Two Volume 5 2012 Fall Issue 1 Article 7 Finding the Area of a Major League Baseball Field Jacob Courchaine University of South Florida Advisors: Arcadii

More information

RATE OF CHANGE AND INSTANTANEOUS VELOCITY

RATE OF CHANGE AND INSTANTANEOUS VELOCITY RATE OF CHANGE AND INSTANTANEOUS VELOCITY Section 2.2A Calculus AP/Dual, Revised 2017 viet.dang@humbleisd.net 7/30/2018 1:34 AM 2.2A: Rates of Change 1 AVERAGE VELOCITY A. Rates of change play a role whenever

More information

Lecture 8. Sound Waves Superposition and Standing Waves

Lecture 8. Sound Waves Superposition and Standing Waves Lecture 8 Sound Waves Superposition and Standing Waves Sound Waves Speed of Sound Waves Intensity of Periodic Sound Waves The Doppler Effect Sound Waves are the most common example of longitudinal waves.

More information

Homework 2b: Bathymetric Profiles [based on the Chauffe & Jefferies (2007)]

Homework 2b: Bathymetric Profiles [based on the Chauffe & Jefferies (2007)] 14 August 2008 HW-2b: - Bathymetric Profiles 1 2-5. BATHYMETRIC PROFILES Homework 2b: Bathymetric Profiles [based on the Chauffe & Jefferies (2007)] A bathymetric profile provides a "skyline view" of the

More information

Gait Analysis of Wittenberg s Women s Basketball Team: The Relationship between Shoulder Movement and Injuries

Gait Analysis of Wittenberg s Women s Basketball Team: The Relationship between Shoulder Movement and Injuries Gait Analysis of Wittenberg s Women s Basketball Team: The Relationship between Shoulder Movement and Injuries Katie Bondy Senior Presentation May 1 st 2013 Research Question Among basketball players,

More information

Finding the Area of a Major League Baseball Field

Finding the Area of a Major League Baseball Field Undergraduate Journal of Mathematical Modeling: One + Two Volume 5 2012 Fall Issue 1 Article 7 Finding the Area of a Major League Baseball Field Jacob Courchaine University of South Florida Advisors: Arcadii

More information

Section 4.2 Objectives

Section 4.2 Objectives Section 4. Objectives Determine whether the slope of a graphed line is positive, negative, 0, or undefined. Determine the slope of a line given its graph. Calculate the slope of a line given the ordered

More information

Internet Technology Fundamentals. To use a passing score at the percentiles listed below:

Internet Technology Fundamentals. To use a passing score at the percentiles listed below: Internet Technology Fundamentals To use a passing score at the percentiles listed below: PASS candidates with this score or HIGHER: 2.90 High Scores Medium Scores Low Scores Percentile Rank Proficiency

More information

Labor Markets. Chris Edmond NYU Stern. Spring 2007

Labor Markets. Chris Edmond NYU Stern. Spring 2007 Labor Markets Chris Edmond NYU Stern Spring 2007 1 Today Labor market indicators employment, unemployment, participation Labor supply and demand Cross-country comparisons of labor market outcomes Labor

More information

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education MARK SCHEME for the May/June 0 question paper for the guidance of teachers 0607 CAMBRIDGE INTERNATIONAL

More information

Superposition of waves on a string

Superposition of waves on a string Superposition of waves on a string Name: Group Members: Date: TA s Name: Apparatus: PASCO mechanical vibrator, string, mass hanger (50 g) and set of masses, meter stick, electronic scale, signal generator,

More information

Unit 3 Trigonometry. 3.1 Use Trigonometry to Find Lengths

Unit 3 Trigonometry. 3.1 Use Trigonometry to Find Lengths Topic : Goal : Unit 3 Trigonometry trigonometry I can use the primary trig ratios to find the lengths of sides in a right triangle 3.1 Use Trigonometry to Find Lengths In any right triangle, we name the

More information

MINI LAUNCHER. Instruction Manual and Experiment Guide for the PASCO scientific Model ME A 2/ PASCO scientific $10.

MINI LAUNCHER. Instruction Manual and Experiment Guide for the PASCO scientific Model ME A 2/ PASCO scientific $10. 90 60 50 of Ball Instruction Manual and Experiment Guide for the PASCO scientific Model ME-6825 012-05479A 2/95 MINI LAUNCHER 80 70 WEAR SAFETY GLASSES WHEN IN USE. DO NOT PUSH PISTON WITH FINGER! Third

More information

46 Chapter 8 Statistics: An Introduction

46 Chapter 8 Statistics: An Introduction 46 Chapter 8 Statistics: An Introduction Activity 5 Continued Box 4 1. The median is 6. The mode is 5. The mean is about 7 (6.8). 2. The median and the mode were unchanged, but the mean increased significantly.

More information

SURFING BRACHISTOCHRONES

SURFING BRACHISTOCHRONES Parabola Volume 34, Issue 3 (1998) SURFING BRACHISTOCHRONES by Bruce Henry and Simon Watt 1 One of the most famous problems in the history of dynamics is the brachistochrone problem. The problem is to

More information

Final Technical Report RAILYARD ALIGNMENT AND BENEFITS STUDY. Appendix F: Traffic Analysis, I 280

Final Technical Report RAILYARD ALIGNMENT AND BENEFITS STUDY. Appendix F: Traffic Analysis, I 280 Final Technical Report RAILYARD ALIGNMENT AND BENEFITS STUDY Appendix F: Traffic Analysis, I 280 MEMORANDUM Date: To: From: Subject: Susan Gygi, San Francisco Planning Department Dennis Lee and Eric Womeldorff

More information

Car Following by Optical Parameters

Car Following by Optical Parameters University of Iowa Iowa Research Online Driving Assessment Conference 03 Driving Assessment Conference Jul 23rd, 12:00 AM Car Following by Optical Parameters Craig W. Sauer George J. Andersen Asad Saidpour

More information

Dynamic Criteria 3rd June 2005

Dynamic Criteria 3rd June 2005 Dynamic Intact Stability Criteria Scope. General The aim of this report is to introduce dynamic criteria for the intact stability of ships which cover the phenomena of parametric roll and pure loss of

More information

Applications of trigonometry

Applications of trigonometry Applications of trigonometry This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Introduction to Transportation Engineering. Discussion of Stopping and Passing Distances

Introduction to Transportation Engineering. Discussion of Stopping and Passing Distances Introduction to Transportation Engineering Discussion of Stopping and Passing Distances Dr. Antonio A. Trani Professor of Civil and Environmental Engineering Virginia Polytechnic Institute and State University

More information

Put in simplest radical form. (No decimals)

Put in simplest radical form. (No decimals) Put in simplest radical form. (No decimals) 1. 2. 3. 4. 5. 6. 5 7. 4 8. 6 9. 5 10. 9 11. -3 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 3 28. 1 Geometry Chapter 8 - Right Triangles

More information