CHAPTER 6 PROJECTILE MOTION

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "CHAPTER 6 PROJECTILE MOTION"

Transcription

1 CHAPTER 6 PROJECTILE MOTION 1 Basic principle of analyzing projecting motion Independency of vertical and horizontal motion 2 A simple case: Horizontally projected motion An angry bird is fired horizontally at 6m/s from a cliff of height 10m. Calculate (a) the time of flight; (b) the horizontal distance travelled; (c) the speed of the angry bird when it hit the ground. Page 1

2 [HKALE] Three bombs are released froma bomber flying horizontallywith constant velocity to theright. They are released fromrest (relative to the bomber)one by one at one-secondintervals. Neglecting airresistance, which of thefollowing diagrams correctlyshows the positions of thebomber and the three bombs ata certain instant? [HKALE] A small object is thrown horizontally towards wall 1.2m away. It hits the wall 0.8 m below its initial horizontallevel. At what speed does the object hit the wall?(neglect air resistance.) Page 2

3 [HKALE (modified)] Inside a room, a small ball is projected horizontally witha speed of 1.2 m/s from the point P on a wall as shown. It hitsthe floor at Q and rebounds to the point R on the opposite wall.(neglecting airresistance and friction.) (a) Find the time of flight along the path PQR. (b) Find the height PS. (c) Find the speed of the ball at R, assuming the collision at Q is perfectly elastic. (d) At what angle (to the horizontal) does the ball hit the floor at Q? Page 3

4 3 General projectile motion [Example] 1 A long jump athlete takes off at a speed of 5ms and 30 o to the ground. Neglecting air resistance, find (a) the horizontal distance travelled when he reaches the ground; (b) the maximum height he can reach. Page 4

5 [Derivation] For a general projectile with initial speed u at angle θ, without air resistance, show that (a) the time of flight is 2u sinθ t =. g (b) the range is u 2 sin 2θ d = g (c) the equation of the trajectory is 2 gx y = + x tanθ u cos θ Page 5

6 [Angry Bird] An angry bird, 10 m above the ground, is to be projected at angle 30 o to hit the target at horizontal distance 55 m from it and 12 m above the ground. Find the initial speed in order to hit the target. [Basketball] A basketball player is going to shoot from 3m in front of the target at 2.5 m from the ground. If the ball is shot from 2 m above the ground, and the initial speed of the ball is 8.5 m/s, what should the projection angle from the horizontal be? Page 6

7 [HKALE] [Table tennis] In a game of table tennis, the ball is struck when it is at C, which is 0.40 m vertically above the edge A ofthe table. Immediately after it is struck, the ball moves with a horizontal velocity v. It is then just passes thenet, hits the table at D and reaches the highest point E as shown below. The table is 2.70 m long and thenet is 0.15m high. Neglecting the effect of air resistance, calculate i) the value of v ii) the speed of the ball just before it hits the table. iii) If point E is at 0.25 m above the table, draw the graph of vertical velocity, vy, of the ball against time from C to E. Take downward as positive. (tc, tdand teon the time axis are the times when the ball is at C, D and E respectively. Page 7

8 4 The effect of air resistance on projectile trajectory [Derivation] Draw the expected trajectory when air resistance is NOT neglected Think before you draw: 1. When will the effect of air resistance become important? 2. What will be the change in maximum height and range? 3. Will the trajectory remain symmetric? FINAL REMARKS Serving as a good example of how physics theory can be applied in daily life, the study of projectile motion shows how one can combine basic theories of uniform motion, free fall, mathematical understanding of quadratic functions to give good model of daily life problem. In simple terms, all features of projectile motion can be understood by just a simple idea: the independency of vertical and horizontal motion. On problem solving, students are expected to perform calculations by treating vertical and horizontal motion in separate manner. Students are not encouraged to memorize the results of general projectile motion, but you should be able to derive by your own. Page 8

Kinematics-Projectiles

Kinematics-Projectiles 1. A volleyball hit into the air has an initial speed of 10 meters per second. Which vector best represents the angle above the horizontal that the ball should be hit to remain in the air for the greatest

More information

Two dimensional kinematics. Projectile Motion

Two dimensional kinematics. Projectile Motion Two dimensional kinematics Projectile Motion 1. You throw a ball straight upwards with a velocity of 40m/s. How long before it returns to your hand? A. 2s B. 4s C. 6s D. 8s E. 10s 1.You throw a ball straight

More information

Higher Projectile Motion Questions

Higher Projectile Motion Questions Higher Projectile Motion Questions 1. a) Name the two components of motion in projectiles. b) What is the acceleration on Earth for each of these two components. 2. A pencil case is dropped vertically

More information

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight;

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight; QUESTION 1 A ball is thrown horizontally from a cliff with a speed of 10 ms -1 shown in the diagram at right. Neglecting the effect of air resistance and taking gravitational acceleration to be g +9.8ms

More information

TEACHER ANSWER KEY December 10, Projectile Review 1

TEACHER ANSWER KEY December 10, Projectile Review 1 Projectile Review 1 TEACHER ANSWER KEY December 10, 2004 4 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.]

More information

1. downward 3. westward 2. upward 4. eastward

1. downward 3. westward 2. upward 4. eastward projectile review 1 Name 11-DEC-03 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] 1. Its vertical

More information

Physics 11 Unit III Practice Test Projectile Motion. Instructions: Pick the best answer available in Part A and Show all your work for Part B

Physics 11 Unit III Practice Test Projectile Motion. Instructions: Pick the best answer available in Part A and Show all your work for Part B Physics 11 Unit III Practice Test Projectile Motion Instructions: Pick the best answer available in Part A and Show all your work for Part B 1. Which of the following is constant for all projectiles? A.

More information

time v (vertical) time

time v (vertical) time NT4E-QRT20: PROJECTILE MOTION FOR TWO ROCKS VELOCITY AND ACCELERATION GRAPHS II Two identical rocks are thrown horizontally from a cliff with Rock A having a greater velocity at the instant it is released

More information

Exercise on Projectile Motion (Unit-III)

Exercise on Projectile Motion (Unit-III) Engineering Mechanics Exercise on Projectile Motion (Unit-III) 1 A projectile is fired with velocity 620 m/s at an angle of 40 with horizontal ground. Find the range, time of flight, maximum height attained

More information

1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach?

1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? Physics R Date: 1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched

More information

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight;

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight; QUESTION 1 A ball is thrown horizontally from a cliff with a speed of 10 ms -1 shown in the diagram at right. Neglecting the effect of air resistance and taking gravitational acceleration to be g = +9.8ms

More information

Unit 2 Review: Projectile Motion

Unit 2 Review: Projectile Motion Name: Unit 2 Review: Projectile Motion Date: 1. A projectile is fired from a gun near the surface of Earth. The initial velocity of the projectile has a vertical component of 98 meters per second and a

More information

Big Ideas 3 & 4: Kinematics 1 AP Physics 1

Big Ideas 3 & 4: Kinematics 1 AP Physics 1 Big Ideas 3 & 4: Kinematics 1 AP Physics 1 1. A ball is thrown vertically upward from the ground. Which pair of graphs best describes the motion of the ball as a function of time while it is in the air?

More information

Practice Test: Vectors and Projectile Motion

Practice Test: Vectors and Projectile Motion ame: Practice Test: Vectors and Projectile Motion Part A: Multiple Choice [15 points] 1. A projectile is launched at an angle of 30 0 above the horizontal. eglecting air resistance, what are the projectile

More information

CHAPTER 1. Knowledge. (a) 8 m/s (b) 10 m/s (c) 12 m/s (d) 14 m/s

CHAPTER 1. Knowledge. (a) 8 m/s (b) 10 m/s (c) 12 m/s (d) 14 m/s CHAPTER 1 Review K/U Knowledge/Understanding T/I Thinking/Investigation C Communication A Application Knowledge For each question, select the best answer from the four alternatives. 1. Which is true for

More information

Projectile Motion. Regardless of its path, a projectile will always follow these rules:

Projectile Motion. Regardless of its path, a projectile will always follow these rules: Projectile Motion What is a projectile? Regardless of its path, a projectile will always follow these rules: 1. A horizontally launched projectile moves both horizontally and vertically and traces out

More information

C) miles per hour. D) all of the above. 2) When you look at the speedometer in a moving car, you can see the car's

C) miles per hour. D) all of the above. 2) When you look at the speedometer in a moving car, you can see the car's Practice Kinematics Questions (Answers are at the end ) 1) One possible unit of speed is. A) light years per century. B) kilometers per hour. C) miles per hour. D) all of the above.. 2) When you look at

More information

Calculate the horizontal component of the baseball's velocity at an earlier time calculated in part (a).

Calculate the horizontal component of the baseball's velocity at an earlier time calculated in part (a). Ch3 Supplemental [ Edit ] Overview Summary View Diagnostics View Print View with Answers Ch3 Supplemental Due: 6:59pm on Monday, February 13, 2017 To understand how points are awarded, read the Grading

More information

j~/ ... FIGURE 3-31 Problem 9.

j~/ ... FIGURE 3-31 Problem 9. 9. () An airplane is traveling 735 kmlh in a direction 41S west of north (Fig. 3-31). (a) Find the components of the velocity vector in the northerly and westerly directions. (b) How far north and how

More information

Agood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the. Ball Trajectories

Agood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the. Ball Trajectories 42 Ball Trajectories Factors Influencing the Flight of the Ball Nathalie Tauziat, France By Rod Cross Introduction Agood tennis player knows instinctively how hard to hit a ball and at what angle to get

More information

Projectile Motion (8/24/11) (approx. completion time for just parts A & B: 1.5 h; for entire lab: 2.3 h)

Projectile Motion (8/24/11) (approx. completion time for just parts A & B: 1.5 h; for entire lab: 2.3 h) Projectile Motion (//) (approx. completion time for just parts A & B:. h; for entire lab:. h) EQUIPMENT NEEDED: Mini Launcher and steel ball plumb bob pushrod meter stick carbon paper white paper C-clamp

More information

Write these equations in your notes if they re not already there. You will want them for Exam 1 & the Final.

Write these equations in your notes if they re not already there. You will want them for Exam 1 & the Final. Tuesday January 30 Assignment 3: Due Friday, 11:59pm.like every Friday Pre-Class Assignment: 15min before class like every class Office Hours: Wed. 10-11am, 204 EAL Help Room: Wed. & Thurs. 6-9pm, here

More information

STUDY GUIDE UNIT 7 - PROJECTILES

STUDY GUIDE UNIT 7 - PROJECTILES Name Mods STUDY GUIDE UNIT 7 - PROJECTILES Date Agenda Homework Tues 11/17 Wed 11/18 Thurs 11/19 Fri 11/20 Mon 11/23 Tues 11/24 Lab - Projectiles Share Lab Data Go over lab Start problem set 1 Go over

More information

Projectile Motion Problems Worksheet

Projectile Motion Problems Worksheet Projectile Motion Problems Worksheet For all questions, ignore the effects of air resistance unless otherwise stated. 1. One of the landing gears falls off a plane that is flying horizontally with a constant

More information

Chapter 6. You lift a 10 N physics book up in the air a distance of 1 meter at a constant velocity of 0.5 m/s. The work done by gravity is

Chapter 6. You lift a 10 N physics book up in the air a distance of 1 meter at a constant velocity of 0.5 m/s. The work done by gravity is I lift a barbell with a mass of 50 kg up a distance of 0.70 m. Then I let the barbell come back down to where I started. How much net work did I do on the barbell? A) - 340 J B) 0 J C) + 35 J D) + 340

More information

5. The magnitude of a vector cannot be smaller than the magnitude of any of its components. TRUE FALSE

5. The magnitude of a vector cannot be smaller than the magnitude of any of its components. TRUE FALSE Physics 1 Exam 2 Practice S14 Name: Show work for ANY credit. Box answers. Assume 3 significant figures! Ignore air resistance. NEATNESS COUNTS. Conceptual Questions. (2 points each) 1. A 100 g ball rolls

More information

Secondary Physics: The Compass Rose, Cars and Tracks

Secondary Physics: The Compass Rose, Cars and Tracks Secondary Physics: The Compass Rose, Cars and Tracks Secondary Physics at the NASCAR Hall of Fame The Great Hall and Glory Road Focus object or destination in the Hall: Compass Rose, 18 compass lines,

More information

Ball Toss. Vernier Motion Detector

Ball Toss. Vernier Motion Detector Experiment 6 When a juggler tosses a ball straight upward, the ball slows down until it reaches the top of its path. The ball then speeds up on its way back down. A graph of its velocity vs. time would

More information

5. A bead slides on a curved wire, starting from rest at point A in the figure below. If the wire is frictionless, find each of the following.

5. A bead slides on a curved wire, starting from rest at point A in the figure below. If the wire is frictionless, find each of the following. Name: Work and Energy Problems Date: 1. A 2150 kg car moves down a level highway under the actions of two forces: a 1010 N forward force exerted on the drive wheels by the road and a 960 N resistive force.

More information

Unit 4: Projectiles ( Angled Projectiles )

Unit 4: Projectiles ( Angled Projectiles ) Unit 4: Projectiles ( Angled Projectiles ) When dealing with a projectile that is not launched/thrown perfectly horizontal, you must start by realizing that the initial velocity has two components: an

More information

ACTIVITY THE MOTION OF PROJECTILES

ACTIVITY THE MOTION OF PROJECTILES Name (printed) ACTIVITY THE MOTION OF PROJECTILES First Day Stamp INTRODUCTION In this activity you will begin to understand the nature of projectiles by mapping out the paths of two projectiles over time;

More information

Worksheet 1.1 Kinematics in 1D

Worksheet 1.1 Kinematics in 1D Worksheet 1.1 Kinematics in 1D Solve all problems on your own paper showing all work! 1. A tourist averaged 82 km/h for a 6.5 h trip in her Volkswagen. How far did she go? 2. Change these speeds so that

More information

Kinematics Review. What distance did the object travel in moving from point A to point B? A) 2.5 m B) 10. m C) 20. m D) 100 m

Kinematics Review. What distance did the object travel in moving from point A to point B? A) 2.5 m B) 10. m C) 20. m D) 100 m Kinematics Review 1. Base your answer to the following question on the diagram below which represents a 10-kilogram object at rest at point A. The object accelerates uniformly from point A to point B in

More information

ACTIVITY THE MOTION OF PROJECTILES

ACTIVITY THE MOTION OF PROJECTILES Name (printed) ACTIVITY THE MOTION OF PROJECTILES First Day Stamp INTRODUCTION In this activity you will begin to understand the nature of projectiles by mapping out the paths of two projectiles over time;

More information

BIOMECHANICAL MOVEMENT

BIOMECHANICAL MOVEMENT SECTION PART 5 5 CHAPTER 12 13 CHAPTER 12: Biomechanical movement Practice questions - text book pages 169-172 1) For which of the following is the athlete s centre of mass most likely to lie outside of

More information

PHYSICS REVIEW SHEET 2010 MID-TERM EXAM

PHYSICS REVIEW SHEET 2010 MID-TERM EXAM PHYSICS REVIEW SHEET 2010 MID-TERM EXAM Concepts And Definitions Definitions of fact, hypothesis, law, theory Explain the scientific method Difference between average and instantaneous speed and speed

More information

CHAPTER 10: LINEAR KINEMATICS OF HUMAN MOVEMENT

CHAPTER 10: LINEAR KINEMATICS OF HUMAN MOVEMENT CHAPTER 10: LINEAR KINEMATICS OF HUMAN MOVEMENT 1. Vector mechanics apply to which of the following? A. displacement B. velocity C. speed D. both displacement and velocity 2. If velocity is constant, then

More information

The table below shows how the thinking distance and braking distance vary with speed. Thinking distance in m

The table below shows how the thinking distance and braking distance vary with speed. Thinking distance in m Q1.The stopping distance of a car is the sum of the thinking distance and the braking distance. The table below shows how the thinking distance and braking distance vary with speed. Speed in m / s Thinking

More information

Projectile Motion. A projectile may also start at a given level and then move upward and downward again as does a football that has been

Projectile Motion. A projectile may also start at a given level and then move upward and downward again as does a football that has been Projectile Motion Vocsiary Projectile: An object that moves through space acted upon only by the earth s gravity. A projectile may start at a given height and move toward the ground in an arc. For example,

More information

Free Fall, Hang Time, and Projectile Motion Worksheet NO WORK NO CREDIT

Free Fall, Hang Time, and Projectile Motion Worksheet NO WORK NO CREDIT Free Fall, Hang Time, and Projectile Motion Worksheet d = d + v t + ½ a t 2 Hang Time: time = time v = v + a t time = 2 time Free Fall These equations can be used to solve for the motion in the x-direction

More information

Projectile Motion applications

Projectile Motion applications Projectile Motion applications 1. A stone is thrown horizontally at a speed of 10.0 m/s from the top of a cliff 78.4 m high. a. How long does it take the stone to reach the bottom of the cliff? b. How

More information

Eg.#1 A diver steps off a 10. m. high diving board with an initial vertical velocity of zero and experiences an average acceleration 2

Eg.#1 A diver steps off a 10. m. high diving board with an initial vertical velocity of zero and experiences an average acceleration 2 1.3.1 Acceleration due to Gravity Defined as: For many years, it was thought that higher mass objects fall towards the Earth more quickly than lower mass objects. This idea was introduced in approximately

More information

I hope you earn one Thanks.

I hope you earn one Thanks. A 0 kg sled slides down a 30 hill after receiving a tiny shove (only enough to overcome static friction, not enough to give significant initial velocity, assume v o =0). A) If there is friction of µ k

More information

Introduction. Physics E-1a Expt 4a: Conservation of Momentum and Fall 2006 The Ballistic Pendulum

Introduction. Physics E-1a Expt 4a: Conservation of Momentum and Fall 2006 The Ballistic Pendulum Physics E-1a Expt 4a: Conservation of Momentum and Fall 2006 The Ballistic Pendulum Introduction Preparation: Before coming to lab, read this lab handout and the suggested reading in Giancoli (through

More information

Midterm Exam: Making a Study Guide

Midterm Exam: Making a Study Guide Name: Class: Physics Teacher: Mr. Szopiak Date: Midterm Exam: Making a Study Guide This worksheet will help you and your classmates put together a pretty comprehensive guide to your midterm studying. Your

More information

ScienceDirect. Rebounding strategies in basketball

ScienceDirect. Rebounding strategies in basketball Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 72 ( 2014 ) 823 828 The 2014 conference of the International Sports Engineering Association Rebounding strategies in basketball

More information

1D Kinematics Answer Section

1D Kinematics Answer Section 1D Kinematics 1. A bird, accelerating from rest at a constant rate, experiences a displacement of 28 m in 11 s. What is the average velocity? a. 1.7 m/s c. 3.4 m/s b. 2.5 m/s d. zero 2. A truck moves 70

More information

October 09, Ch04 2Dmotion.notebook. Honors Physics Chapter 4. Scalar Vector Resultant. Components

October 09, Ch04 2Dmotion.notebook. Honors Physics Chapter 4. Scalar Vector Resultant. Components Honors Physics Chapter 4 Scalar Vector Resultant Components 1 When we take two vectors and ADD them, the thing we get is called the RESULTANT, or VECTOR SUM. It is also possible to take a single vector

More information

BROCK UNIVERSITY. Name: Student #: Page 1 of 12

BROCK UNIVERSITY. Name: Student #: Page 1 of 12 Name: Student #: BROCK UNIVERSITY Page 1 of 12 Final Exam: July 2016 Number of pages: 12 (+ formula sheet) Course: PHYS 1P21/1P91 Number of students: 104 Examination date: 9 July 2016 Number of hours:

More information

Los Altos High School Physics -Two Dimensional Kinematics Workbook Problems

Los Altos High School Physics -Two Dimensional Kinematics Workbook Problems 1. Consider a United States Coast Guard plane flying a rescue mission 300 Km West of the Faraloon Islands. The mission requires the plane's crew to deliver a 50 kg package of emergency supplies to the

More information

Physics for Scientist and Engineers third edition Kinematics 1-D

Physics for Scientist and Engineers third edition Kinematics 1-D Kinematics 1-D The position of a runner as a function of time is plotted along the x axis of a coordinate system. During a 3.00 s time interval, the runner s position changes from x1=50.0 m to x2= 30.5

More information

Secondary 3 Mathematics Chapter 10 Applications of Trigonometry Practice 1 Learning Objectives: To provide an aim for

Secondary 3 Mathematics Chapter 10 Applications of Trigonometry Practice 1 Learning Objectives: To provide an aim for 1 1 1 1 1 1 1 1 1 1 Secondary 3 Mathematics Chapter pplications of Trigonometry Practice 1 Learning Objectives: To provide an aim for students to achieve at the end of each lesson. Understand and solve

More information

CASE STUDY FOR USE WITH SECTION B

CASE STUDY FOR USE WITH SECTION B GCE A level 135/01-B PHYSICS ASSESSMENT UNIT PH5 A.M. THURSDAY, 0 June 013 CASE STUDY FOR USE WITH SECTION B Examination copy To be given out at the start of the examination. The pre-release copy must

More information

Analysis of Movement

Analysis of Movement Orlando 2009 Biomechanics II: Analysis of Movement An overview and advanced discussion of the effects of movement, with a focus on the technology available to analyze skills and support science-based instruction.

More information

AP Physics B Fall Final Exam Review

AP Physics B Fall Final Exam Review Name: Date: AP Physics B Fall Final Exam Review 1. The first 10 meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The

More information

CHAPTER 10: PROJECTILE MOTION

CHAPTER 10: PROJECTILE MOTION MO OT TIIO ON N CHAPTER 10: PROJECTILE MOTION T HE FIRST HUMAN cannonball was a 14-year-old girl named Zazel who toured with the P.T. Barnum Circus. A compressed spring in the cannon launched her into

More information

1. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit?

1. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit? Chapter Problems Motion at Constant Speed Class Work. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit?. During the first 50 s a truck traveled at constant speed of 5 m/s.

More information

Chapter 3: Two-Dimensional Motion and Vectors

Chapter 3: Two-Dimensional Motion and Vectors Assumption College English Program Mr. Stephen Dobosh s EP- M 4 P h y s i c s C l a s s w o r k / H o m e w o r k P a c k e t Chapter 3: Two-Dimensional Motion and Vectors Section 1: Introduction to Vectors

More information

Quadratic Word Problems

Quadratic Word Problems Quadratic Word Problems Normally, the graph is a maximum ( x 2 /opens down) because of the real life scenarios that create parabolas. The equation of the quadratic will be given. We will only be using

More information

1 A Mangonel is a type of catapult used to launch projectiles such as rocks. A student made a working model of a Mangonel. crossbar. bucket.

1 A Mangonel is a type of catapult used to launch projectiles such as rocks. A student made a working model of a Mangonel. crossbar. bucket. 1 A Mangonel is a type of catapult used to launch projectiles such as rocks. A student made a working model of a Mangonel. crossbar bucket arm rubber band string scale handle As the handle is turned, the

More information

Basketball free-throw rebound motions

Basketball free-throw rebound motions Available online at www.sciencedirect.com Procedia Engineering 3 () 94 99 5 th Asia-Pacific Congress on Sports Technology (APCST) Basketball free-throw rebound motions Hiroki Okubo a*, Mont Hubbard b a

More information

Biomechanics Sample Problems

Biomechanics Sample Problems Biomechanics Sample Problems Forces 1) A 90 kg ice hockey player collides head on with an 80 kg ice hockey player. If the first person exerts a force of 450 N on the second player, how much force does

More information

Name: Answer Key Date: Regents Physics. Projectiles

Name: Answer Key Date: Regents Physics. Projectiles Nae: Anwer Key Date: Regent Phyic Tet # 5 Review 1. Equation to know: Projectile (1) A y = Ainθ () A = Acoθ Δv vf vi vf + vi (3) a= = (4) vavg = (5) d=vit+½at Δ t tf ti (6) v f =vi+at (7) vf =vi +ad. Ter

More information

Detailed study 3.4 Topic Test Investigations: Flight

Detailed study 3.4 Topic Test Investigations: Flight Name: Billanook College Detailed study 3.4 Topic Test Investigations: Flight Ivanhoe Girls Grammar School Questions 1 and 2 relate to the information shown in the diagram in Figure 1. z Question 1 y Figure

More information

Transcript of Ping Pong Ball Launcher Research and Design

Transcript of Ping Pong Ball Launcher Research and Design Transcript of Ping Pong Ball Launcher Research and Design Objective To construct a mechanism to launch a ping pong ball into a garbage bin 2, 4, 6, and 8 metres away from the launcher, with restrictions:

More information

Physics 2048 Test 1 Fall 2000 Dr. Jeff Saul Name:

Physics 2048 Test 1 Fall 2000 Dr. Jeff Saul Name: Physics 2048 Test 1 Fall 2000 Dr. Jeff Saul Name: READ THESE INSTRUCTIONS BEFORE YOU BEGIN Before you start the test, WRITE YOUR NAME ON EVERY PAGE OF THE EXAM. Calculators are permitted, but no notes

More information

Gary Delia AMS151 Fall 2009 Homework Set 3 due 10/07/2010 at 11:59pm EDT

Gary Delia AMS151 Fall 2009 Homework Set 3 due 10/07/2010 at 11:59pm EDT Gary Delia AMS151 Fall 2009 Homework Set 3 due 10/07/2010 at 11:59pm EDT 1. (2 pts) The angle of elevation to the top of a building is found to be 9 from the ground at a distance of 6000 feet from the

More information

Catapult Project. Even though we will be wearing safety glasses, the catapult must not have any sharp edges that could injure yourself or others.

Catapult Project. Even though we will be wearing safety glasses, the catapult must not have any sharp edges that could injure yourself or others. Catapult Project Objective. Design and build a catapult capable of launching a large metal projectile ( a nut about the size of 5 nickels) more than 12 ft and up to 32 feet away in order to accurately

More information

2 m/s or 2 m/s to the left. To The Questions. Question 1. Answer 1. Question 2. What is the impulse acting on the ball? (Down is positive)

2 m/s or 2 m/s to the left. To The Questions. Question 1. Answer 1. Question 2. What is the impulse acting on the ball? (Down is positive) To The Questions 500 1000 1000 500 1 2 4 5000 5 3 200 500 650 7 8 5000 9 10 800 13 11 50 200 12 800 14 50 1000 15 18 16 200 5000 17 1000 19 500 20 50 23 21 50 200 22 50 24 50 25 500 Back to Briefcases

More information

Kinematic Differences between Set- and Jump-Shot Motions in Basketball

Kinematic Differences between Set- and Jump-Shot Motions in Basketball Proceedings Kinematic Differences between Set- and Jump-Shot Motions in Basketball Hiroki Okubo 1, * and Mont Hubbard 2 1 Department of Advanced Robotics, Chiba Institute of Technology, 2-17-1 Tsudanuma,

More information

CHANGES IN FORCE AND MOTION

CHANGES IN FORCE AND MOTION reflect CRACK! That s the sound of a bat hitting a baseball. The ball fl ies through the air and lands over the fence for a home run. The motion of a batted ball seems simple enough. Yet, many forces act

More information

CHAPTER 3 PROBLEM WORKBOOK

CHAPTER 3 PROBLEM WORKBOOK CHAPTER 3 PROBLEM WORKBOOK A FINDING RESULTANT MAGNITUDE AND DIRECTION 1. An ostrich cannot fly, but it is able to run fast. Suppose an ostrich runs east for 7.95 s and then runs 161 m south, so that the

More information

by Michael Young Human Performance Consulting

by Michael Young Human Performance Consulting by Michael Young Human Performance Consulting The high performance division of USATF commissioned research to determine what variables were most critical to success in the shot put The objective of the

More information

Force and Motion Test Review

Force and Motion Test Review Name: Period: Force and Motion Test Review 1. I can tell you that force is.. 2. Force is measured in units called. 3. Unbalanced forces acting on an object will MOST LIKELY cause the object to A. remain

More information

Frames of Reference. What Do You Think? For You To Do GOALS

Frames of Reference. What Do You Think? For You To Do GOALS Activity 1 A Running Start and Frames of Reference GOALS In this activity you will: Understand and apply Galileo s Principle of Inertia. Understand and apply Newton s First Law of Motion. Recognize inertial

More information

Motion. 1 Describing Motion CHAPTER 2

Motion. 1 Describing Motion CHAPTER 2 CHAPTER 2 Motion What You ll Learn the difference between displacement and distance how to calculate an object s speed how to graph motion 1 Describing Motion 2(D), 4(A), 4(B) Before You Read Have you

More information

2D Collisions Lab. Read through the procedures and familiarize yourself with the equipment. Do not turn on the

2D Collisions Lab. Read through the procedures and familiarize yourself with the equipment. Do not turn on the 2D Collisions Lab 1 Introduction In this lab you will perform measurements on colliding pucks in two dimensions. The spark table will allow you to determine the velocity and trajectory of the pucks. You

More information

Exam 1 Kinematics September 17, 2010

Exam 1 Kinematics September 17, 2010 Physics 16 Name KEY Exam 1 Kinematics September 17, 21 This is a closed book examination. You may use a 3x5 index card that you have made with any information on it that you would like. You must have your

More information

UNIT 2 RIGHT TRIANGLE TRIGONOMETRY Lesson 2: Applying Trigonometric Ratios Instruction

UNIT 2 RIGHT TRIANGLE TRIGONOMETRY Lesson 2: Applying Trigonometric Ratios Instruction Prerequisite Skills This lesson requires the use of the following skills: defining and calculating sine, cosine, and tangent setting up and solving problems using the Pythagorean Theorem identifying the

More information

1 An object moves at a constant speed of 6 m/s. This means that the object:

1 An object moves at a constant speed of 6 m/s. This means that the object: Slide 1 / 57 1 n object moves at a constant speed of 6 m/s. This means that the object: Increases its speed by 6 m/s every second ecreases its speed by 6 m/s every second oesn t move Has a positive acceleration

More information

Name Period Date. Record all givens, draw a picture, arrow all vectors, write the formula, substitute and solve. units

Name Period Date. Record all givens, draw a picture, arrow all vectors, write the formula, substitute and solve. units Example Problems 7.2 Conservation of E1. A monkey fires a 10 kg rifle. The bullet of mass 0.02 kg, leaves with a muzzle of the rifle with a velocity of 310 m/s to the right. What is the recoil velocity

More information

Tutorial 5 Relative equilibrium

Tutorial 5 Relative equilibrium Tutorial 5 Relative equilibrium 1. n open rectangular tank 3m long and 2m wide is filled with water to a depth of 1.5m. Find the slope of the water surface when the tank moves with an acceleration of 5m/s

More information

Chapter 2 Two Dimensional Kinematics Homework # 09

Chapter 2 Two Dimensional Kinematics Homework # 09 Homework # 09 Pthagorean Theorem Projectile Motion Equations a 2 +b 2 =c 2 Trigonometric Definitions cos = sin = tan = a h o h o a v =v o v =v o + gt =v o t = o + v o t +½gt 2 v 2 = v 2 o + 2g( - o ) v

More information

½ 3. 2/3 V (1/3 (1/2V)+1/3(V)+1/3(1/2V))

½ 3. 2/3 V (1/3 (1/2V)+1/3(V)+1/3(1/2V)) TEST 2 Q 1 some HONORS review questions to try Define: displacement, velocity, average velocity, average speed, acceleration. Displacement: change in distance from start (with direction) Velocity: change

More information

Acceleration: Galileo s Inclined Plane

Acceleration: Galileo s Inclined Plane Teacher s Notes Main Topic Subtopic Learning Level Technology Level Activity Type Motion Acceleration High Low Student Description: Use a water clock to measure a ball s acceleration as it rolls down an

More information

Parametric Ball Toss TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System

Parametric Ball Toss TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System Math Objectives Students will be able to use parametric equations to represent the height of a ball as a function of time as well as the path of a ball that has been thrown straight up. Students will be

More information

Activity P07: Acceleration of a Cart (Acceleration Sensor, Motion Sensor)

Activity P07: Acceleration of a Cart (Acceleration Sensor, Motion Sensor) Activity P07: Acceleration of a Cart (Acceleration Sensor, Motion Sensor) Equipment Needed Qty Equipment Needed Qty Acceleration Sensor (CI-6558) 1 Dynamics Cart (inc. w/ Track) 1 Motion Sensor (CI-6742)

More information

Chapter 14. Vibrations and Waves

Chapter 14. Vibrations and Waves Chapter 14 Vibrations and Waves Chapter 14 Vibrations and Waves In this chapter you will: Examine vibrational motion and learn how it relates to waves. Determine how waves transfer energy. Describe wave

More information

Force, Motion and Energy Review

Force, Motion and Energy Review NAME Force, Motion and Energy Review 1 In the picture to the right, two teams of students are playing tug-of-war. Each team is pulling in the opposite direction, but both teams are moving in the same direction.

More information

Online homework due tomorrow by 8 am Written homework due now

Online homework due tomorrow by 8 am Written homework due now Homework #3 Online homework due tomorrow by 8 am Written homework due now Exam 1 Tue Feb 24 from 7 to 9 pm Help session on Mon Feb 23 from 3 to 5 pm in Goessman 64 Sample exam answers to be posted by tomorrow

More information

Write important assumptions used in derivation of Bernoulli s equation. Apart from an airplane wing, give an example based on Bernoulli s principle

Write important assumptions used in derivation of Bernoulli s equation. Apart from an airplane wing, give an example based on Bernoulli s principle HW#3 Sum07 #1. Answer in 4 to 5 lines in the space provided for each question: (a) A tank partially filled with water has a balloon well below the free surface and anchored to the bottom by a string. The

More information

AP Physics Chapter 2 Practice Test

AP Physics Chapter 2 Practice Test AP Physics Chapter 2 Practice Test Answers: E,E,A,E,C,D,E,A,C,B,D,C,A,A 15. (c) 0.5 m/s 2, (d) 0.98 s, 0.49 m/s 16. (a) 48.3 m (b) 3.52 s (c) 6.4 m (d) 79.1 m 1. A 2.5 kg ball is thrown up with an initial

More information

Phys 101 College Physics I ` Student Name: Additional Exercises on Chapter 3

Phys 101 College Physics I ` Student Name: Additional Exercises on Chapter 3 Phys 0 College Physics I ` Student Name: Additional Exercises on Chapter ) A displacement vector is.0 m in length and is directed 60.0 east of north. What are the components of this vector? Choice Northward

More information

Forces that govern a baseball s flight path

Forces that govern a baseball s flight path Forces that govern a baseball s flight path Andrew W. Nowicki Physics Department, The College of Wooster, Wooster, Ohio 44691 April 21, 1999 The three major forces that affect the baseball while in flight

More information

Rocket Activity Foam Rocket

Rocket Activity Foam Rocket Rocket Activity Foam Rocket Objective Students will learn about rocket stability and trajectory with rubber bandrpowered foam rockets. Description Students will construct rockets made from pipe insulating

More information

Georgian University GEOMEDI. Abstract. In this article we perform theoretical analysis of long jumps with the purpose to find

Georgian University GEOMEDI. Abstract. In this article we perform theoretical analysis of long jumps with the purpose to find On the t Influence of Air Resistance and Wind during Long Jump Egoyan A. E. ( alex1cen@yahoo.com ), Khipashvili I. A. Georgian University GEOMEDI Abstract. In this article we perform theoretical analysis

More information

End of Chapter Exercises

End of Chapter Exercises End of Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. While on an airplane, you take a drink from your water

More information

Physics Wave Problems. Science and Mathematics Education Research Group

Physics Wave Problems. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Department of Curriculum and Pedagogy Physics Wave Problems Science and Mathematics Education Research Group Supported by UBC Teaching and Learning

More information

Coaching the Triple Jump Boo Schexnayder

Coaching the Triple Jump Boo Schexnayder I. Understanding the Event A. The Run and Its Purpose B. Hip Undulation and the Phases C. Making the Connection II. III. IV. The Approach Run A. Phases B. Technical Features 1. Posture 2. Progressive Body

More information

Ch06 Work and Energy.notebook November 10, 2017

Ch06 Work and Energy.notebook November 10, 2017 Work and Energy 1 Work and Energy Force = push or pull Work = force*distance (//) Technically: Work = force*distance*cos θ 2 Sample 1: How much work is done lifting a 5 N weight 3m vertically? 3 Work is

More information