Ball Toss. Vernier Motion Detector


 Kevin Malone
 1 years ago
 Views:
Transcription
1 Experiment 6 When a juggler tosses a ball straight upward, the ball slows down until it reaches the top of its path. The ball then speeds up on its way back down. A graph of its velocity vs. time would show these changes. Is there a mathematical pattern to the changes in velocity? What is the accompanying pattern to the position vs. time graph? What would the acceleration vs. time graph look like? In this experiment, you will use a Motion Detector to collect position, velocity, and acceleration data for a ball thrown straight upward. Analysis of the graphs of this motion will answer the questions asked above. OBJECTIVES Collect position, velocity, and acceleration data as a ball travels straight up and down. Analyze the position vs. time, velocity vs. time, and acceleration vs. time graphs. Determine the mean acceleration from the acceleration vs. time graph. MATERIALS computer Vernier computer interface Logger Pro Vernier Motion Detector dodge ball PRELIMINARY QUESTIONS (6 points) Think about the changes in motion a ball will undergo as it travels straight up and down. Sketch your predictions of the motion on the axes below. Make sure to line up specific points on each graph with the one above it. Physics with Computers 61
2 Experiment 6 PROCEDURE 1. Plug the Motion Detector into the DIG/SONIC Place the Motion Detector on the floor. 3. Open the file 06 Ball Toss from the Physics with Vernier folder. 4. In this step, you will toss the ball straight upward above the Motion Detector and let it fall back toward the Motion Detector. Try to catch it about the same height you threw it. This step may require some practice. Repeat until you get a good set of graphs! Make sure your hands don t get in the way! 5. Examine the velocity vs. time graph. Repeat Step 4 if your velocity vs. time graph does not have a nice line with a negative slope. ANALYSIS 1. Print a copy of the graphs. (Please only print page 1.) Colored pencils or markers may help here. a) (1 point) Find the highest point on the position vs. time graph. Draw a vertical line from this graph down through all the other graphs. b) Identify the region when the ball was being tossed but was still being touched by your hands: (1 point) Examine the velocity vs. time graph and identify this region. Label this on the graph. (2 points) Examine the position vs. time and acceleration vs. time graphs and identify the same region. Label the graph. c) Identify the region where the ball is in free fall: upward. downward. d) Determine the position, velocity, and acceleration at specific points. Click the Examine button,, and move the mouse across any graph to answer the following questions. (1 point) On the velocity vs. time graph, decide where the ball had its maximum velocity, just as the ball was released from your hands after being thrown upward. Mark the spot and record the value on the graph. (1 point) On the position vs. time graph, locate the maximum height of the ball during free fall. Mark the spot and record the value on the graph. (1 point) Keeping the line from the Examine button through all the graphs, follow it down to the velocity vs. time graph. What was the velocity of the ball when it was at the top of its motion? Mark the spot on the velocity vs. time graph that shows this value. Record the value on the graph. (1 point) Keep following the line down to the acceleration vs. time graph. What was the value of acceleration when the ball was at the top of its motion? Mark the spot on the acceleration vs. time graph that shows this value. Record the value on the graph. 2. (2 points) The graph of acceleration vs. time should appear to be more or less constant. Click 62 Physics with Computers
3 and drag the mouse across the freefall section of the acceleration vs. time graph and click the Statistics button,. Mean acceleration How closely does the mean acceleration value compare to the accepted value of g (9.8 m/s 2 )? 3. (1 point) Give one reason why your values for the ball s acceleration may be different from the accepted value for g. EXTENSIONS (EXTRA CREDIT) Instead of throwing a ball upward, drop a ball and have it bounce on the ground from a predetermined height. (Position the Motion Detector above the ball.) Print and analyze the resulting graphs. Label the point on each graph where the ball was let go. Label the point on each graph where the ball hit the floor. Identify the region(s) of the graph where the ball is in free fall. Label the velocity of the ball just the instant before it hit the ground.  Now, assume you did not know the velocity you just read recorded. Measure the height from which you dropped the ball. Use kinematics equations to calculate the speed that the ball should hit the floor. How does this value compare to the velocity measured by Logger Pro? Click and drag the mouse across a freefall section of the motion on the acceleration vs. time graph and click the Statistics button,. Mean acceleration: How closely does the mean acceleration value compare to the accepted value of g (9.8 m/s 2 )?
4 Experiment 6 Physics Ball Toss Lab Answer Sheet PRELIMINARY QUESTIONS (6 points) Think about the changes in motion a ball will undergo as it travels straight up and down. Sketch your predictions of the motion on the axes below. Make sure to line up specific points on each graph with the one above it. ANALYSIS 1. Print a copy of the graphs. (Please only print page 1.) Colored pencils or markers may help here. a) (1 point) Find the highest point on the position vs. time graph. Draw a vertical line from this graph down through all the other graphs. b) Identify the region when the ball was being tossed but was still being touched by your hands: (1 point) Examine the velocity vs. time graph and identify this region. Label this on the graph. (2 points) Examine the position vs. time and acceleration vs. time graphs and identify the same region. Label the graph. c) Identify the region where the ball is in free fall: upward. downward. d) Determine the position, velocity, and acceleration at specific points. Click the Examine button,, and move the mouse across any graph to answer the following questions. (1 point) On the velocity vs. time graph, decide where the ball had its maximum velocity, just as the ball was released from your hands after being thrown upward. Mark the spot and record the value on the graph. 64 Physics with Computers
5 (1 point) On the position vs. time graph, locate the maximum height of the ball during free fall. Mark the spot and record the value on the graph. (1 point) Keeping the line from the Examine button through all the graphs, follow it down to the velocity vs. time graph. What was the velocity of the ball when it was at the top of its motion? Mark the spot on the velocity vs. time graph that shows this value. Record the value on the graph. (1 point) Keep following the line down to the acceleration vs. time graph. What was the value of acceleration when the ball was at the top of its motion? Mark the spot on the acceleration vs. time graph that shows this value. Record the value on the graph. 2. (2 points) The graph of acceleration vs. time should appear to be more or less constant. Click and drag the mouse across the freefall section of the acceleration vs. time graph and click the Statistics button,. Mean acceleration How closely does the mean acceleration value compare to the accepted value of g (9.8 m/s 2 )? 3. (1 point) Give one reason why your values for the ball s acceleration may be different from the accepted value for g. EXTENSIONS (EXTRA CREDIT) Instead of throwing a ball upward, drop a ball and have it bounce on the ground from a predetermined height. (Position the Motion Detector above the ball.) Print and analyze the resulting graphs. Label the point on each graph where the ball was let go. Label the point on each graph where the ball hit the floor. Identify the region(s) of the graph where the ball is in free fall. Label the velocity of the ball just the instant before it hit the ground.  Now, assume you did not know the velocity you just read recorded. Measure the height from which you dropped the ball. Use kinematics equations to calculate the speed that the ball should hit the floor. How does this value compare to the velocity measured by Logger Pro? Click and drag the mouse across a freefall section of the motion on the acceleration vs. time graph and click the Statistics button,. Mean acceleration: How closely does the mean acceleration value compare to the accepted value of g (9.8 m/s 2 )?
Higher Projectile Motion Questions
Higher Projectile Motion Questions 1. a) Name the two components of motion in projectiles. b) What is the acceleration on Earth for each of these two components. 2. A pencil case is dropped vertically
More informationtime v (vertical) time
NT4EQRT20: PROJECTILE MOTION FOR TWO ROCKS VELOCITY AND ACCELERATION GRAPHS II Two identical rocks are thrown horizontally from a cliff with Rock A having a greater velocity at the instant it is released
More information1D Kinematics Answer Section
1D Kinematics 1. A bird, accelerating from rest at a constant rate, experiences a displacement of 28 m in 11 s. What is the average velocity? a. 1.7 m/s c. 3.4 m/s b. 2.5 m/s d. zero 2. A truck moves 70
More informationMovement and Position
Movement and Position Syllabus points: 1.2 plot and interpret distancetime graphs 1.3 know and use the relationship between average speed, distance moved and 1.4 describe experiments to investigate the
More informationExploring the Properties of Gases. Evaluation copy. 10 cm in diameter and 25 cm high)
Exploring the Properties of Gases Computer 30 The purpose of this investigation is to conduct a series of experiments, each of which illustrates a different gas law. You will be given a list of equipment
More informationStudent Exploration: DistanceTime and VelocityTime Graphs
Name: Date: Student Exploration: DistanceTime and VelocityTime Graphs [NOTE TO TEACHERS AND STUDENTS: This lesson was designed as a followup to the DistanceTime Graphs Gizmo. We recommend you complete
More informationNote! In this lab when you measure, round all measurements to the nearest meter!
Distance and Displacement Lab Note! In this lab when you measure, round all measurements to the nearest meter! 1. Place a piece of tape where you will begin your walk outside. This tape marks the origin.
More informationQUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight;
QUESTION 1 A ball is thrown horizontally from a cliff with a speed of 10 ms 1 shown in the diagram at right. Neglecting the effect of air resistance and taking gravitational acceleration to be g +9.8ms
More informationAP Physics Chapter 2 Practice Test
AP Physics Chapter 2 Practice Test Answers: E,E,A,E,C,D,E,A,C,B,D,C,A,A 15. (c) 0.5 m/s 2, (d) 0.98 s, 0.49 m/s 16. (a) 48.3 m (b) 3.52 s (c) 6.4 m (d) 79.1 m 1. A 2.5 kg ball is thrown up with an initial
More informationAdd this important safety precaution to your normal laboratory procedures:
Student Activity Worksheet Speed and Velocity Are You Speeding? Driving Question What is speed and how is it related to velocity? Materials and Equipment For each student or group: Data collection system
More informationBoyle s Law: PressureVolume Relationship in Gases
Boyle s Law: PressureVolume Relationship in Gases The primary objective of this experiment is to determine the relationship between the pressure and volume of a confined gas. The gas we will use is air,
More informationQUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight;
QUESTION 1 A ball is thrown horizontally from a cliff with a speed of 10 ms 1 shown in the diagram at right. Neglecting the effect of air resistance and taking gravitational acceleration to be g = +9.8ms
More informationKinematicsProjectiles
1. A volleyball hit into the air has an initial speed of 10 meters per second. Which vector best represents the angle above the horizontal that the ball should be hit to remain in the air for the greatest
More informationEvaluation copy. Vapor Pressure of Liquids. computer OBJECTIVES MATERIALS
Vapor Pressure of Liquids Computer 10 In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask
More informationPhysics 2048 Test 1 Fall 2000 Dr. Jeff Saul Name:
Physics 2048 Test 1 Fall 2000 Dr. Jeff Saul Name: READ THESE INSTRUCTIONS BEFORE YOU BEGIN Before you start the test, WRITE YOUR NAME ON EVERY PAGE OF THE EXAM. Calculators are permitted, but no notes
More informationC) miles per hour. D) all of the above. 2) When you look at the speedometer in a moving car, you can see the car's
Practice Kinematics Questions (Answers are at the end ) 1) One possible unit of speed is. A) light years per century. B) kilometers per hour. C) miles per hour. D) all of the above.. 2) When you look at
More informationPhysics 11 Unit III Practice Test Projectile Motion. Instructions: Pick the best answer available in Part A and Show all your work for Part B
Physics 11 Unit III Practice Test Projectile Motion Instructions: Pick the best answer available in Part A and Show all your work for Part B 1. Which of the following is constant for all projectiles? A.
More information1. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit?
Chapter Problems Motion at Constant Speed Class Work. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit?. During the first 50 s a truck traveled at constant speed of 5 m/s.
More informationKinematics Review. What distance did the object travel in moving from point A to point B? A) 2.5 m B) 10. m C) 20. m D) 100 m
Kinematics Review 1. Base your answer to the following question on the diagram below which represents a 10kilogram object at rest at point A. The object accelerates uniformly from point A to point B in
More informationTwo dimensional kinematics. Projectile Motion
Two dimensional kinematics Projectile Motion 1. You throw a ball straight upwards with a velocity of 40m/s. How long before it returns to your hand? A. 2s B. 4s C. 6s D. 8s E. 10s 1.You throw a ball straight
More informationParametric Ball Toss TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TINspire Navigator System
Math Objectives Students will be able to use parametric equations to represent the height of a ball as a function of time as well as the path of a ball that has been thrown straight up. Students will be
More informationCHAPTER 1. Knowledge. (a) 8 m/s (b) 10 m/s (c) 12 m/s (d) 14 m/s
CHAPTER 1 Review K/U Knowledge/Understanding T/I Thinking/Investigation C Communication A Application Knowledge For each question, select the best answer from the four alternatives. 1. Which is true for
More informationCh. 2 & 3 Velocity & Acceleration
Ch. 2 & 3 Velocity & Acceleration Objective: Student will be able to Compare Velocity to Speed Identify what is acceleration Calculate velocity and acceleration from an equation and from slope of a graph.
More informationIntroduction to Waves. If you do not have access to equipment, the following experiments can be observed here:
Introduction to Waves If you do not have access to equipment, the following experiments can be observed here: http://tinyurl.com/lupz3dh 1.1 There is a tray with water in it. This can model throwing a
More informationLos Altos High School Physics Two Dimensional Kinematics Workbook Problems
1. Consider a United States Coast Guard plane flying a rescue mission 300 Km West of the Faraloon Islands. The mission requires the plane's crew to deliver a 50 kg package of emergency supplies to the
More informationGraphing Your Motion
Graphing Your Motion LabQuest 35 Graphs made using a Motion Detector can be used to study motion. A Motion Detector measures the distance to the nearest object in front of it by emitting and receiving
More informationPRESSURETEMPERATURE RELATIONSHIP IN GASES
PRESSURETEMPERATURE RELATIONSHIP IN GASES LAB PS2.PALM INTRODUCTION Gases are made up of molecules that are in constant motion and exert pressure when they collide with the walls of their container. The
More informationUnit 2 Review: Projectile Motion
Name: Unit 2 Review: Projectile Motion Date: 1. A projectile is fired from a gun near the surface of Earth. The initial velocity of the projectile has a vertical component of 98 meters per second and a
More informationPhysics for Scientist and Engineers third edition Kinematics 1D
Kinematics 1D The position of a runner as a function of time is plotted along the x axis of a coordinate system. During a 3.00 s time interval, the runner s position changes from x1=50.0 m to x2= 30.5
More informationAerobic Respiration. Evaluation copy
Aerobic Respiration Computer 17 Aerobic cellular respiration is the process of converting the chemical energy of organic molecules into a form immediately usable by organisms. Glucose may be oxidized completely
More informationThe Math and Science of Bowling
The Report (100 : The Math and Science of Bowling 1. For this project, you will need to collect some data at the bowling alley. You will be on a team with one other student. Each student will bowl a minimum
More informationPhysics 1021 Experiment 4. Buoyancy
1 Physics 1021 Buoyancy 2 Buoyancy Apparatus and Setup Materials Force probe 1000 ml beaker Vernier Calipers Plastic cylinder String or paper clips Assorted bars and clamps Water Attach the force probe
More informationRespiratory Response to Physiologic Challenges. Evaluation copy
Respiratory Response to Physiologic Challenges Computer 20 The respiratory cycle of inspiration and expiration is controlled by complex mechanisms involving neurons in the cerebral cortex, brain stem,
More informationExam 1 Kinematics September 17, 2010
Physics 16 Name KEY Exam 1 Kinematics September 17, 21 This is a closed book examination. You may use a 3x5 index card that you have made with any information on it that you would like. You must have your
More information5. The magnitude of a vector cannot be smaller than the magnitude of any of its components. TRUE FALSE
Physics 1 Exam 2 Practice S14 Name: Show work for ANY credit. Box answers. Assume 3 significant figures! Ignore air resistance. NEATNESS COUNTS. Conceptual Questions. (2 points each) 1. A 100 g ball rolls
More informationFor a tennis ball brand to be approved for tournament play
L A B 12 ANALYZING A BOUNCING TENNIS BALL Infinite Series For a tennis ball brand to be approved for tournament play by the United States Tennis Association (USTA), it must satisfy several specifications.
More informationCalculate the horizontal component of the baseball's velocity at an earlier time calculated in part (a).
Ch3 Supplemental [ Edit ] Overview Summary View Diagnostics View Print View with Answers Ch3 Supplemental Due: 6:59pm on Monday, February 13, 2017 To understand how points are awarded, read the Grading
More informationProjectile Motion (8/24/11) (approx. completion time for just parts A & B: 1.5 h; for entire lab: 2.3 h)
Projectile Motion (//) (approx. completion time for just parts A & B:. h; for entire lab:. h) EQUIPMENT NEEDED: Mini Launcher and steel ball plumb bob pushrod meter stick carbon paper white paper Cclamp
More informationProjectile Motion. Regardless of its path, a projectile will always follow these rules:
Projectile Motion What is a projectile? Regardless of its path, a projectile will always follow these rules: 1. A horizontally launched projectile moves both horizontally and vertically and traces out
More informationLung Volumes and Capacities
Lung Volumes and Capacities Experiment 19 Measurement of lung volumes provides a tool for understanding normal function of the lungs as well as disease states. The breathing cycle is initiated by expansion
More information½ 3. 2/3 V (1/3 (1/2V)+1/3(V)+1/3(1/2V))
TEST 2 Q 1 some HONORS review questions to try Define: displacement, velocity, average velocity, average speed, acceleration. Displacement: change in distance from start (with direction) Velocity: change
More informationCHAPTER 10: LINEAR KINEMATICS OF HUMAN MOVEMENT
CHAPTER 10: LINEAR KINEMATICS OF HUMAN MOVEMENT 1. Vector mechanics apply to which of the following? A. displacement B. velocity C. speed D. both displacement and velocity 2. If velocity is constant, then
More informationCHAPTER 6 PROJECTILE MOTION
CHAPTER 6 PROJECTILE MOTION 1 Basic principle of analyzing projecting motion Independency of vertical and horizontal motion 2 A simple case: Horizontally projected motion An angry bird is fired horizontally
More informationBig Ideas 3 & 4: Kinematics 1 AP Physics 1
Big Ideas 3 & 4: Kinematics 1 AP Physics 1 1. A ball is thrown vertically upward from the ground. Which pair of graphs best describes the motion of the ball as a function of time while it is in the air?
More informationSOLUBILITY OF A SOLID IN WATER
1516L Experiment 2 SOLUBILITY OF A SOLID IN WATER Objectives In this experiment you will determine the solubility of potassium nitrate (KNO 3 ) in water at various temperatures. You will prepare a plot
More informationTEACHER ANSWER KEY December 10, Projectile Review 1
Projectile Review 1 TEACHER ANSWER KEY December 10, 2004 4 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.]
More information1. downward 3. westward 2. upward 4. eastward
projectile review 1 Name 11DEC03 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] 1. Its vertical
More informationExperiment P18: Buoyant Force (Force Sensor)
PASCO scientific Physics Lab Manual: P181 Experiment P18: (Force Sensor) Concept Time SW Interface Macintosh file Windows file Newton's Laws 45 m 300/500/700 P18 P18_BUOY.SWS EQUIPMENT NEEDED CONSUMABLES
More informationWhat is the acceleration of a racing car if its velocity is increased uniformly from 44 m/s, south to 66 m/s, south over an 11 second period?
1 What is the acceleration of a racing car if its velocity is increased uniformly from 44 m/s, south to 66 m/s, south over an 11 second period? 7 A car traveling in a straight line has a velocity of +5.0
More informationACTIVITY THE MOTION OF PROJECTILES
Name (printed) ACTIVITY THE MOTION OF PROJECTILES First Day Stamp INTRODUCTION In this activity you will begin to understand the nature of projectiles by mapping out the paths of two projectiles over time;
More informationMidterm Exam: Making a Study Guide
Name: Class: Physics Teacher: Mr. Szopiak Date: Midterm Exam: Making a Study Guide This worksheet will help you and your classmates put together a pretty comprehensive guide to your midterm studying. Your
More informationSetUp: Students will be working at the computer lab for 1 period (min), 2 different colored pens or pencils.
Name: Lab # Behavior of Gases PhET Simulation Learning Goals: Explore the relationships between pressure, volume, and temperature. Create graphs based on predictions and observations. Make qualitative
More informationAPBiology Unit 2, Chapter 8
APBiology Unit 2, Chapter 8 Research Question What factors affect the rate of cellular respiration in multicellular organisms? Background Living systems require free energy and matter to maintain order,
More informationFrames of Reference. What Do You Think? For You To Do GOALS
Activity 1 A Running Start and Frames of Reference GOALS In this activity you will: Understand and apply Galileo s Principle of Inertia. Understand and apply Newton s First Law of Motion. Recognize inertial
More information3. Answer the following questions with your group. How high do you think he was at the top of the stairs? How did you estimate that elevation?
Classwork Exploratory Challenge 1. Watch the first 1:08 minutes of the video below and describe in words the motion of the man. Elevation vs. Time #2 [http://www.mrmeyer.com/graphingstories1/graphingstories2.mov.
More informationForce and Motion Test Review
Name: Period: Force and Motion Test Review 1. I can tell you that force is.. 2. Force is measured in units called. 3. Unbalanced forces acting on an object will MOST LIKELY cause the object to A. remain
More informationChapter 6. You lift a 10 N physics book up in the air a distance of 1 meter at a constant velocity of 0.5 m/s. The work done by gravity is
I lift a barbell with a mass of 50 kg up a distance of 0.70 m. Then I let the barbell come back down to where I started. How much net work did I do on the barbell? A)  340 J B) 0 J C) + 35 J D) + 340
More informationACTIVITY THE MOTION OF PROJECTILES
Name (printed) ACTIVITY THE MOTION OF PROJECTILES First Day Stamp INTRODUCTION In this activity you will begin to understand the nature of projectiles by mapping out the paths of two projectiles over time;
More informationPotential and Kinetic Energy: The Roller Coaster Lab Student Version
Potential and Kinetic Energy: The Roller Coaster Lab Student Version Key Concepts: Energy is the ability of a system or object to perform work. It exists in various forms. Potential Energy is the energy
More informationPractice Test: Vectors and Projectile Motion
ame: Practice Test: Vectors and Projectile Motion Part A: Multiple Choice [15 points] 1. A projectile is launched at an angle of 30 0 above the horizontal. eglecting air resistance, what are the projectile
More informationStudent Exploration: DistanceTime Graphs
Name: Date: Procedure: Student Exploration: DistanceTime Graphs 1. Launch Internet Explorer 2. Go to www.explorelearning.com 3. Click on Login. 4. Enter the Username: orange1011 Password: black1011 5.
More informationPRELAB: COLLISIONS IN TWO DIMENSIONS
p. 1/7 PRELAB: COLLISIONS IN TWO DIMENSIONS 1. In the collision described in Prediction 11, what is the direction of the change in momentum vector D p r for the less massive puck? for the more massive
More informationActivity P07: Acceleration of a Cart (Acceleration Sensor, Motion Sensor)
Activity P07: Acceleration of a Cart (Acceleration Sensor, Motion Sensor) Equipment Needed Qty Equipment Needed Qty Acceleration Sensor (CI6558) 1 Dynamics Cart (inc. w/ Track) 1 Motion Sensor (CI6742)
More informationForce, Motion and Energy Review
NAME Force, Motion and Energy Review 1 In the picture to the right, two teams of students are playing tugofwar. Each team is pulling in the opposite direction, but both teams are moving in the same direction.
More information1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach?
Physics R Date: 1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched
More informationTEMPERATURE S RELATIONSHIP TO GAS & VAPOR PRESSURE
TEMPERATURE S RELATIONSHIP TO GAS & VAPOR PRESSURE Adapted from "Chemistry with Computers" Vernier Software, Portland OR, 1997 ELECTRONIC LABORATORY NOTEBOOK (ELN) INSTRUCTIONS Read the directions and
More informationBoyle s Law: PressureVolume Relationship in Gases. PRELAB QUESTIONS (Answer on your own notebook paper)
Boyle s Law: PressureVolume Relationship in Gases Experiment 18 GRADE LEVEL INDICATORS Construct, interpret and apply physical and conceptual models that represent or explain systems, objects, events
More information3. Answer the following questions with your group. How high do you think he was at the top of the stairs? How did you estimate that elevation?
J Hart Interactive Algebra 1 Classwork Exploratory Challenge 1. Watch the first 1:08 minutes of the video below and describe in words the motion of the man. Elevation vs. Time #2 [http://www.mrmeyer.com/graphingstories1/graphingstories2.mov.
More informationLINEAR AND ANGULAR KINEMATICS Readings: McGinnis Chapters 2 and 6 DISTANCE, DISPLACEMENT, SPEED, VELOCITY, AND ACCELERATION:
LINEAR AND ANGULAR KINEMATICS Readings: McGinnis Chapters 2 and 6 1 DISTANCE, DISPLACEMENT, SPEED, VELOCITY, AND ACCELERATION: How far? Describing change in linear or angular position Distance (Scalar
More informationEvaluation copy. Effect of Vascularity on Skin Temperature Recovery. Computer
Effect of Vascularity on Skin Temperature Recovery Computer 2 Homeostasis refers to the body s ability to maintain internal conditions (e.g., temperature, ph, hydration) within the narrow limits that are
More informationThe Science of Golf. Test Lab Toolkit The Swing: Putting. Grades Education
The Science of Golf Test Lab Toolkit The Swing: Grades 912 Partners in Education Science Technology Engineering Mathematics Table of Contents Welcome to the Test Lab 02 Investigate: Gravity on the Green
More informationDissolved Oxygen in Water. Evaluation copy. Table 1. Temperature Range ( C) Trout Smallmouth bass Caddisfly larvae
Dissolved Oxygen in Water Computer 12A Although water is composed of oxygen and hydrogen atoms, biological life in water depends upon another form of oxygen molecular oxygen. Oxygen is used by organisms
More informationThe distancetime graphs below represent the motion of a car. Match the descriptions with the graphs. Explain your answers.
Motion Graphs 6 The distancetime graphs below represent the motion of a car. Match the descriptions with the graphs. Explain your answers. Descriptions: 1. The car is stopped. 2. The car is traveling
More informationChapter 11: Motion. How Far? How Fast? How Long?
Chapter 11: Motion How Far? How Fast? How Long? 1. Suppose the polar bear was running on land instead of swimming. If the polar bear runs at a speed of about 8.3 m/s, how far will it travel in 10.0 hours?
More informationBIOMECHANICAL MOVEMENT
SECTION PART 5 5 CHAPTER 12 13 CHAPTER 12: Biomechanical movement Practice questions  text book pages 169172 1) For which of the following is the athlete s centre of mass most likely to lie outside of
More informationOctober 09, Ch04 2Dmotion.notebook. Honors Physics Chapter 4. Scalar Vector Resultant. Components
Honors Physics Chapter 4 Scalar Vector Resultant Components 1 When we take two vectors and ADD them, the thing we get is called the RESULTANT, or VECTOR SUM. It is also possible to take a single vector
More informationStudent Exploration: DistanceTime Graphs
Name: Date: Student Exploration: DistanceTime Graphs Vocabulary: speed, yintercept Prior Knowledge Questions (Do these BEFORE using the Gizmo.) Max ran 50 meters in 10 seconds. Molly ran 30 meters in
More informationQuadratic Word Problems
Quadratic Word Problems Normally, the graph is a maximum ( x 2 /opens down) because of the real life scenarios that create parabolas. The equation of the quadratic will be given. We will only be using
More informationWild Thing. Objective 1 (E1): To calculate the average speed of the train for one trip.
Wild Thing Objective 1 (E1): To calculate the average speed of the train for one trip. SUGGESTED PROCEDURE: Given the length of the track (not just the horizontal components!) and use the time required
More informationThe table below shows how the thinking distance and braking distance vary with speed. Thinking distance in m
Q1.The stopping distance of a car is the sum of the thinking distance and the braking distance. The table below shows how the thinking distance and braking distance vary with speed. Speed in m / s Thinking
More informationAgood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the. Ball Trajectories
42 Ball Trajectories Factors Influencing the Flight of the Ball Nathalie Tauziat, France By Rod Cross Introduction Agood tennis player knows instinctively how hard to hit a ball and at what angle to get
More informationWalk  Run Activity An S and P Wave Travel Time Simulation ( S minus P Earthquake Location Method)
Walk  Run Activity An S and P Wave Travel Time Simulation ( S minus P Earthquake Location Method) L. W. Braile and S. J. Braile (June, 2000) braile@purdue.edu http://web.ics.purdue.edu/~braile Walk
More informationPHYSICS REVIEW SHEET 2010 MIDTERM EXAM
PHYSICS REVIEW SHEET 2010 MIDTERM EXAM Concepts And Definitions Definitions of fact, hypothesis, law, theory Explain the scientific method Difference between average and instantaneous speed and speed
More informationTension Cracks. Topics Covered. Tension crack boundaries Tension crack depth Query slice data Thrust line Sensitivity analysis.
Tension Cracks 161 Tension Cracks In slope stability analyses with cohesive soils, tension forces may be observed in the upper part of the slope. In general, soils cannot support tension so the results
More information1 An object moves at a constant speed of 6 m/s. This means that the object:
Slide 1 / 57 1 n object moves at a constant speed of 6 m/s. This means that the object: Increases its speed by 6 m/s every second ecreases its speed by 6 m/s every second oesn t move Has a positive acceleration
More informationCollege of Engineering
College of Engineering Department of Mechanical and Aerospace Engineering MAE250, Section 001 Introduction to Aerospace Engineering Final Project Bottle Rocket Written By: Jesse Hansen Connor Petersen
More information1 A Mangonel is a type of catapult used to launch projectiles such as rocks. A student made a working model of a Mangonel. crossbar. bucket.
1 A Mangonel is a type of catapult used to launch projectiles such as rocks. A student made a working model of a Mangonel. crossbar bucket arm rubber band string scale handle As the handle is turned, the
More informationChapter 14. Vibrations and Waves
Chapter 14 Vibrations and Waves Chapter 14 Vibrations and Waves In this chapter you will: Examine vibrational motion and learn how it relates to waves. Determine how waves transfer energy. Describe wave
More informationTranspiration. DataQuest OBJECTIVES MATERIALS
Transpiration DataQuest 13 Water is transported in plants, from the roots to the leaves, following a decreasing water potential gradient. Transpiration, or loss of water from the leaves, helps to create
More informationTeam /08/2016. Report What is the fastest humanly possible time for the Olympic 100m freestyle event? Summary
Report 1089 What is the fastest humanly possible time for the Olympic 100m freestyle event? Summary The Olympic Swimming Events are some of the most prestigious and exciting areas of the Olympic Games,
More informationdifferent instances on your motion diagram.
Observe the motion of the ball. What kind of motion is it? How do you know? the same way (don t change the strength of your push!) and keep the ball moving along a straight line. track). Set the ball on
More informationIt is often said in sports that records are made to be
L A B 2 THE LIMIT OF SWIMMING SPEED Finding Limits It is often said in sports that records are made to be broken. This saying suggests there is no limit to athletic performance. In some sports, such as
More informationj~/ ... FIGURE 331 Problem 9.
9. () An airplane is traveling 735 kmlh in a direction 41S west of north (Fig. 331). (a) Find the components of the velocity vector in the northerly and westerly directions. (b) How far north and how
More informationCHAPTER 10: PROJECTILE MOTION
MO OT TIIO ON N CHAPTER 10: PROJECTILE MOTION T HE FIRST HUMAN cannonball was a 14yearold girl named Zazel who toured with the P.T. Barnum Circus. A compressed spring in the cannon launched her into
More informationLesson 12 New Procedure PULMONARY FUNCTION I
Physiology Lessons for use with the Biopac Student Lab Lesson 12 New Procedure PULMONARY FUNCTION I Volumes and Capacities For Windows 98SE, Me, 2000 Pro, XP or Mac OS X 10.310.4 Richard Pflanzer, Ph.D.
More informationThe Physics of Baseball
The Physics of Baseball Pre Lab: America s National Pastime A Bit of History Filled with men, myths, and legends, the history of baseball is much too long to be described in any Bit of History. If you
More informationPHY 221: Wavefunction, Wave Superposition, Standing Waves on a String
PHY 221: Wavefunction, Wave Superposition, Standing Waves on a String Objective Write a mathematical function to describe the wave. Describe a transverse wave and a longitudinal wave. Describe frequency,
More informationPractice Questions: Waves (AP Physics 1) Multiple Choice Questions:
Practice Questions: Waves (AP Physics 1) Multiple Choice Questions: 28. A transverse wave is traveling on a string. The graph above shows position as a function of time for a point on the string. If the
More informationThe Bouncing Ball. Masterclass 2
Masterclass 2 The Bouncing Ball Class objective : To get a sense of spacing, timing, weight, and flexibility in motion. Equipment required: Lightbox, pencil, and paper. N ow that we have established the
More informationFree Fall, Hang Time, and Projectile Motion Worksheet NO WORK NO CREDIT
Free Fall, Hang Time, and Projectile Motion Worksheet d = d + v t + ½ a t 2 Hang Time: time = time v = v + a t time = 2 time Free Fall These equations can be used to solve for the motion in the xdirection
More information