Manual of Petroleum Measurement Standards Chapter 6 Metering Assemblies Section 3A Pipeline and Marine

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Manual of Petroleum Measurement Standards Chapter 6 Metering Assemblies Section 3A Pipeline and Marine"

Transcription

1 Manual of Petroleum Measurement Standards Chapter 6 Metering Assemblies Section 3A Pipeline and Marine Loading/Unloading Measurement Systems Draft Edition January 2018

2 Introduction This standard serves as a guide in the selection, installation and operation of pipeline and marine loading and unloading, FPSO (Floating Production, Storage, and Offloading) and FSO (Floating Storage and Offloading) metering systems. This standard does not endorse or advocate the preferential use of any specific type of metering system or meter. In general, metering system installations must meet certain fundamental requirements, including those that ensure proper meter type, size, installation, and adequate protective and readout devices. Descriptions of metering system components are included either in this standard or other API MPMS Chapters.

3 1 SCOPE This standard is part of a set of documents which detail the minimum requirements for metering systems in single phase liquid applications. This standard (Section 6.3A) details the specific requirements for the design, selection, and operation of pipeline, marine loading and unloading, FPSO, and FSO metering systems. LACT measurement, multiphase fluids, asphalts, wellhead and subsea measurements are not covered by this standard. 2 APPLICATION Sections of Chapter 6 describe metering system design. Section 6.1A describes the general considerations applicable to all metering systems and shall be consulted together with this standard, Ch. 6.3A, when designing systems. When aspects are covered under the scope of other chapters of the API Manual of Petroleum Measurement Standards, and to avoid replication and conflict, they are not covered by this standard. In these cases, this standard provides limited information and refers the user to those chapters. 3 NORMATIVE REFERENCES The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. API MPMS Chapter 6.1A, General Considerations GPA 2177, Analysis of Natural Gas Liquid Mixtures Containing Nitrogen and Carbon Dioxide by Gas Chromatography 4 TERMS, DEFINITIONS AND SYMBOLS 4.1 Terms and Definitions For the purposes of this document, the following terms and definitions apply. Terms of more general use may be found in the API MPMS Chapter 1 Online Terms and Definitions Database floating production storage and offloading vessel A floating vessel design to produce and process hydrocarbons from subsea sources or the collection of produced oil from nearby platforms, storage of oil and transfer of the hydrocarbons to other vessels or pipelines for transport floating storage and offloading vessel A floating vessel design to store produced hydrocarbons from nearby platforms or FPSO's, and transfer of the hydrocarbons to other vessels or pipelines for transport marine loading metering system A metering system designed to measure hydrocarbons transferred from a shore terminal or refinery to a vessel (ship or barge).

4 4.1.4 marine metering system A metering system that is designed to measure hydrocarbon between a vessel (ship or barge) and a shore terminal or refinery marine unloading metering system A metering system designed to measure hydrocarbons transferred from a vessel (ship or barge) to a shore terminal or refinery pipeline metering system A metering system that is used to measure hydrocarbons transferred between a pipeline, and another pipeline, terminal or refinery turndown ratio The ratio of the maximum capacity of a device (e.g., meter or metering system, transmitter) to the minimum capacity of the device. Normally, the turndown ratio for a meter is determined by dividing the maximum normal linear capacity by the minimum normal linear capacities. The turndown ratio for a transmitter is determined by dividing the Upper Range Value (URV) by the Lower Range Value (LRV) (if non-zero) viscous hydrocarbon Any liquid hydrocarbon that resists flow because of high shear or tensile stress and therefore may require special treatment or equipment in its handling or storage. 4.2 Acronyms, Abbreviations, and Symbols DP differential pressure DB&B double block and bleed FPSO floating production storage and offloading FSO floating storage and offloading PD positive displacement PLC programmable logic controller LPG liquefied petroleum gas NGL natural gas liquid 5 METERING SYSTEM OVERVIEW 5.1 Pipeline Metering Systems A metering system is a combination of primary, secondary, tertiary measurement components, along with piping and other equipment and instrumentation necessary to determine the measurement ticket. How a ticket (also called quantity transaction record (QTR), batch ticket, or measurement ticket) is calculated is dependent upon the type of meter used (volumetric or mass) and the quantity units. All metering systems in this section have the following general characteristics:

5 Provide for performance verification of all components Provide a means of proving Provide a means to determine or account for quality Provide accessibility of the equipment for maintenance 5.2 Pipeline Metering Systems A pipeline metering system is used for custody transfer measurement between a pipeline and connecting pipeline, terminal, or refinery, and has the following characteristics: Typically, do not require large volume air eliminators. Small volume air eliminators should be considered for applications where meters are installed vertically. A method of verifying the integrity of the high point bleeds shall be provided. Typically, have reduced turndown considerations. 5.3 Marine Metering Systems General A marine metering system is used for custody transfer measurement between a marine vessel and shore facility. Metering offers several advantages over tank gauging, including minimum vessel turnaround time, increased reliability and accuracy, improved uncertainty, traceable field standards (provers), automated reporting, and safety. Figure 1 Typical Marine Unloading Multi-Meter Run System with a Stationary Prover System (Individual Return) 1 Meter run inlet isolation valve 2 Strainer with bottom drain and differential pressure indicating system 3 Pressure transmitter upstream of flow meter, if required 4 Flow meter 5 Flow meter temperature element, test thermowell, and pressure transmitter. The order of the temperature and pressure devices may be transposable. 6 Density meter 7 Prover inlet double block and bleed isolation valve

6 8 Prover main-line double block and bleed block valve 9 Prover temperature element, test thermowell, and pressure transmitter. The order of the temperature and pressure devices may be transposable. Devices may be installed on both the prover inlet and return or on either the prover inlet or return. 10 Meter proving system 11 Prover return isolation valve 12 Flow control / back-pressure valve 13 Check valve, if required 14 Meter run outlet isolation valve 15 Sampling system 16 Air eliminator 17 Vessel unloading system Note: This simplified figure indicates components for a typical marine measurement system, but is not intended to indicate preferred locations. All sections of the system that may be isolated should have provisions for pressure relief (preferably not to be installed between the meter and prover) Marine Loading Marine loading is the movement of liquid hydrocarbons from shore to vessel. Figure 1 shows a typical marine unloading measurement system; however, a marine loading measurement system is typically very similar with the exception that the air eliminator may not be required and the vessel loading system is downstream of the marine loading measurement system. Some of the issues that need to be considered include the following: Air elimination, if required Line verification o Line displacement o Compatibility with current cargo o Quantity of line fill Typically have larger turndowns Minimization of vessel turnaround time Marine Unloading Marine unloading is the movement of liquid hydrocarbon from vessel to shore. Figure 1 shows a typical marine unloading metering system. Some of the issues that need to be considered include the following: Air elimination is required Line verification o Line displacement o Compatibility with current cargo o Quantity of line fill Typically have larger turndowns Minimization of vessel turnaround time 5.4 FPSO and FSO Metering Systems FPSO and FSO metering system is used for custody transfer measurement for metering systems installed on FPSOs and FSOs and has the following characteristics: Typically requires a smaller footprint and weight is a large consideration. Equipment is typically mounted on self-contained skid

7 6 SYSTEM DESIGN AND INSTALLATION CONSIDERATIONS 6.1 Define Design Criteria Metering systems can have various configurations, depending on flow rate, intermittent or continuous operation, maintenance requirements, redundancy requirements, economics, proving requirements, or prover design. Metering systems are designed based on the fluid properties (density, viscosity, vapor pressure), operating parameters (flow range, pressure, temperature, batch (parcel) sizes, etc.) and other requirements (available utilities, bi-directional vs. unidirectional operation, etc.) associated with the application. Meter types are chosen based on the meter s ability to measure the fluid accurately over the given systems flow range. Meters are sized depending on the overall system flow rate and meter run configuration (single or multiple meters). All system components (meter, prover, sampling system, etc.) should be designed to be able to meet minimum and maximum flow rates. On all metering system configurations, lines to and from the prover should be sized so that aligning the meter to the prover minimizes flow rate change. Additionally, the design should allow for maintaining the operating flow rate while meter is being proved. This can be done by using control valves to balance flow. To ensure accurate meter factors, metering systems shall be designed so that all the liquid that passes through the meter passes through the prover and no additional liquid is introduced between the meter and prover during meter proving. If pressure relief is needed to protect the meter run, it should not be installed between the meter and the prover. While it is not recommended, if a pressure relief needs to be installed between the meter and the prover, a means must be in place to assure that the pressure relief is not leaking by during proving operations as this will greatly affect meter factors attained from the proving. (See Chapter 6.1A for additional information.) The number of vents, drains and thermal relief valves on the piping between a meter(s) and prover (connections), and between a meter(s) and the point of custody transfer shall be kept to a minimum. If installed in either of these locations, each vent, drain or thermal relief shall be provided with a means to permit examination for, or prevention of, leakage. See Chapter 6.1A for additional information. In Coriolis and ultrasonic meter applications, provisions for meter isolation should be considered in the design to allow for periodic meter downtime to permit verification, and if required, adjustment of the zero of each meter. 6.2 Metering Technology Selection Without precluding new technologies that may become available in the future, the following four technologies are considered acceptable for use in custody transfer pipeline, marine, FPSO and FSO metering systems: Positive displacement meter Turbine meter Coriolis force mass meter Ultrasonic meter

8 Reference API MPMS Chapter 5.1 for guidelines for selecting meter types. Also reference meter manufacturers and company measurement policy recommendations on meter flow ranges, pressure drops, and process fluids. The use of any of the above technologies may be considered for applications within the scope of this section. There are a few non-typical flow parameter considerations that may influence meter technology selection. These include: High viscosity o The use of PD meters with high viscosity clearances should be considered o The use of conventional turbine meters without appropriate viscosity correction in this service is not recommended o The increased pressure drop associated with a Coriolis meter should be considered in meter selection High abrasiveness/contamination/paraffinic o Meter technology selection should consider the impact of erosion on the metering elements. The decision should consider the type of contamination and degree of abrasiveness and its effect on the meter s metallurgy. o Applications with high paraffin content may lead to a build-up on the meter internals and lead to a reduced meter performance. High temperatures o May affect associated electronics that are close-coupled. Remote mounting of electronics should be considered. 6.3 Meter System Configuration General Typically, a metering system design consists of the following elements: Inlet/Outlet isolation valve Strainer Pressure, temperature, and density instrumentation Other liquid quality measurement devices including sampling systems Meter with applicable flow conditioning upstream and downstream piping Prover main-line block valve Prover inlet and return valve Stationary or portable prover Flow/back pressure Control Valve See Sections 8 and 9 for a more thorough discussion of each of the above Single Meter Run System The single meter system design should be considered when the flow rate is in a consistent range within the linear portion of the meter and can meet the turndown ratio of the meter, prover, sampling system, or other applicable components. If a single meter is provided and maintenance is required (e.g., for out-of-tolerance meter factor, mechanical or electronic issue, etc.), either the custody transfer must be halted or flow must be diverted

9 through a bypass. Installation and use of a bypass should be undertaken only with agreement by all parties involved with the custody transfer, including any government regulators. If a bypass is to be provided, it shall incorporate a double block-and-bleed valve or other means (e.g., spectacle blind) to assure that flow is not bypassing the meter when the meter is in operation. Figure 2 Typical Single Meter Run System with a Portable Prover 1 Meter run inlet isolation valve 2 Strainer with bottom drain and differential pressure indicating system 3 Pressure transmitter upstream of flow meter, if required 4 Flow meter 5 Flow meter temperature element, test thermowell, and pressure transmitter. The order of the temperature and pressure devices may be transposable. 6 Density meter 7 Prover main-line double block and bleed block valve 8 Prover inlet and return isolation valve 9 Flow control / back-pressure valve 10 Check valve, if required 11 Sampling system 12 Meter run outlet isolation valve Note: This simplified figure indicates components for a typical single meter pipeline measurement system, but is not intended to indicate preferred locations. All sections of the system that may be isolated should have provisions for pressure relief (preferably not to be installed between the meter and prover). Figure 3 Typical Single Meter Run System with a Stationary Prover System 1 Meter run inlet isolation valve 2 Strainer with bottom drain and differential pressure indicating system 3 Pressure transmitter upstream of flow meter, if required

10 4 Flow meter 5 Flow meter temperature element, test thermowell, and pressure transmitter. The order of the temperature and pressure devices may be transposable. 6 Density meter 7 Prover inlet double block and bleed isolation valve 8 Prover main-line double block and bleed block valve 9 Prover temperature element, test thermowell, and pressure transmitter. The order of the temperature and pressure devices may be transposable. Devices may be installed on both the prover inlet and return or on either the prover inlet or return. 10 Meter proving system 11 Prover return isolation valve 12 Flow control / back-pressure valve 13 Check valve, if required 14 Sampling system 15 Meter run outlet isolation valve Note: This simplified figure indicates components for a typical single meter pipeline measurement system, but is not intended to indicate preferred locations. All sections of the system that may be isolated should have provisions for pressure relief (preferably not to be installed between the meter and prover) Multiple Meter Run Systems Metering systems with multiple parallel meters are particularly well suited for applications that require a wide range of flow rates. The operating range of each meter can be limited by selecting the number of meters operating based on the total flow rate at any given time. Additionally, multiple meter run systems may have the added advantage of being more cost effective, particularly in applications with large flow rates. Additional advantages that multiple meter run systems have over single meter systems include: Operational flexibility Improved system uncertainty Increased system turndown System redundancy Optimized prover sizing Future system expansion The product flow can be aligned to flow through one or more of the meters at any one time using valve alignment. The multiple meter run systems can have meters of the same size or multiple sizes depending on flow requirements. When designing multiple parallel meter run systems, control valve(s) may be required to regulate flow rate through the meter during normal operations and proving operations. The meter shall be operated within the manufacturers operating range. Flow rate during proving shall be maintained at or near the normal operating flow rate. All multiple meter run systems shall install the capability to determine the flowing temperature and pressure for the quantity of fluid that passes through each meter run during both normal operations and while proving. Multiple meter run systems may include provisions to automatically enable or disable individual meter runs to accommodate varying system flow rates.

11 Figure 4 Typical Multi-Meter Run System with a Stationary Prover System (common Return) 1 Meter run inlet isolation valve 2 Strainer with bottom drain and differential pressure indicating system 3 Pressure transmitter upstream of flow meter, if required 4 Flow meter 5 Flow meter temperature element, test thermowell, and pressure transmitter. The order of the temperature and pressure devices may be transposable. 6 Density meter 7 Prover inlet double block and bleed isolation valve 8 Prover main-line double block and bleed block valve 9 Prover temperature element, test thermowell, and pressure transmitter. The order of the temperature and pressure devices may be transposable. Devices may be installed on both the prover inlet and return or on either the prover inlet or return. 10 Meter proving system 11 Prover return isolation valve 12 Flow control / back-pressure valve 13 Check valve, if required 14 Sampling system Note: This simplified figure indicates components for a typical multiple meter pipeline measurement system, but is not intended to indicate preferred locations. All sections of the system that may be isolated should have provisions for pressure relief (preferably not to be installed between the meter and prover).

12 Figure 5 Typical Multi-Meter Run System with a Stationary Prover System (Individual Return) 1 Meter run inlet isolation valve 2 Strainer with bottom drain and differential pressure indicating system 3 Pressure transmitter upstream of flow meter, if required 4 Flow meter 5 Flow meter temperature element, test thermowell, and pressure transmitter. The order of the temperature and pressure devices may be transposable. 6 Density meter 7 Prover inlet double block and bleed isolation valve 8 Prover main-line double block and bleed block valve 9 Prover temperature element, test thermowell, and pressure transmitter. The order of the temperature and pressure devices may be transposable. Devices may be installed on both the prover inlet and return or on either the prover inlet or return. 10 Meter proving system 11 Prover return isolation valve 12 Flow control / back-pressure valve 13 Check valve, if required 14 Meter run outlet isolation valve 15 Sampling system Note: This simplified figure indicates components for a typical multiple meter pipeline measurement system, but is not intended to indicate preferred locations. All sections of the system that may be isolated should have provisions for pressure relief (preferably not to be installed between the meter and prover) Bidirectional Measurement Systems Applications where a metering system is used for both deliveries and receipts the measurement can be achieved by use of crossover piping configurations, or by use of bidirectional metering technology. The recommended method for addressing measurement in bidirectional flow situations is through the installation of cross-over piping with double block-and-bleed valves between the upstream and downstream piping of a unidirectional metering system. With this arrangement flow through the meters and prover is always in the same direction and the instrumentation and other system components are optimally located. While not recommended, some applications use a bidirectional meter. For bidirectional meter runs, several issues must be addressed:

13 The flow conditioning section is designed for one direction, so duplicate systems shall be required. Sampling systems are generally designed for one direction, so duplicate systems may be required. Strainers are generally designed for one direction, so duplicate systems may be required. Instrumentation, such as pressure and temperature measurement, may need to be duplicated. Flow control valves may need to be duplicated. Proving connections may need to be duplicated. Meter factors shall be obtained for flow in each direction. Care should be taken for meter types impacted by flow conditions when designing the location of the prover connections so that the flow profile through the meter run is not different during proving. Figure 6 shows the typical valve configuration using four double block and bleed valves to achieve bidirectional flow through a unidirectional measurement system. To flow from point A to point B on Figure 6, valves V1 and V4 would be open and valves V2 and V3 would be closed. To flow from point B to point A on Figure 6, valves V3 and V2 would be open and valves V1 and V4 would be closed. Figure 6 Typical Bi-directional Metering System Note: This simplified figure indicates components for a typical bidirectional meter measurement system, but is not intended to indicate preferred locations. All sections of the system that may be isolated should have provisions for pressure relief (preferably not to be installed between the meter and prover) Viscous Metering Systems Viscous hydrocarbons require special treatment or equipment when they are handled or stored because of resistance to flow. Many viscous liquids may need to be heated to lower the viscosity, and/or blended with a less viscous hydrocarbon to reduce viscosity and facilitate handling.

14 Special consideration should be taken for meters, auxiliary equipment, and fittings to accommodate or mitigate the effects of high temperatures during handling of heated liquids. For heated viscous hydrocarbon systems, the following issues should be considered: Installation of insulation on the system to maintain temperature control and for personnel safety. Temperature limitations of, and effects on, system equipment. It is important that the temperature of the liquid be maintained within a reasonably close range because meter accuracy is affected by variations in process and meter temperature as well as by the resultant viscosity change. o Changes in temperature and viscosity may necessitate viscosity indexing, Reynolds Number indexing, and/or more frequent proving. The liquid temperature shall be held below the point that may cause vaporization and result in inaccurate meter registration It is difficult to separate entrained air or vapor from most viscous liquids. As viscosity increases, the time required for separating fine bubbles of air or vapor from the liquid increases. The removal of entrained bubbles requires a large air eliminator tank to effect separation. o The type or size of air eliminator equipment depends on the amount of air to be encountered, the form in which it will occur, the pumping rate, the viscosity of the liquid, and the overall accuracy requirements of the installation. Figure 7 below shows one method to maintain heat in the measurement system by circulating the liquid through a return line. The return line should tee off as close to the meter inlet as possible. In some applications, circulating the liquid through the entire meter system might be advisable; however, a means shall be provided to prevent registration on the meter counter during such period of circulation. Valves should be located in the return line to permit easy control of flow. Figure 7 Typical Meter Installation with Return Line for Maintaining Heat at the Meter 1 Meter run inlet isolation valve 2 Strainer with bottom drain and differential pressure indicating system 3 Flow meter 4 Double block and bleed valve on return line to storage

15 Note: This simplified figure indicates components for a typical meter installation with return line, but is not intended to indicate preferred locations. The figure does not include all the equipment required for measurement and does not show any of the devices or equipment located downstream of a meter. See Figures 1 5 for typical measurement system drawings. All sections of the system that may be isolated should have provisions for pressure relief (preferably not to be installed between the meter and prover). 7 PROVER SELECTION CONSIDERATIONS 7.1 General The first step when selecting a proving system is to determine whether to use a mobile (portable) prover or a stationary prover for the meter or meter system. This may depend on company measurement policy, connection agreements, and economics. Once this decision has been made, selecting the type of prover is the next step. The decision for the prover type to be used is based on uncertainty requirements, frequency of proving, testing flow rates, liquid properties, measurement turndown requirements, prover dimensions and weight, environment, installation considerations, maintenance, and in some cases local agency approvals. Although API MPMS Chapter 4 addresses centralized proving, this will not be discussed in this standard as it is not typical for pipeline, marine, FPSO or FSO applications. 7.2 Stationary vs Portable Provers Stationary provers are typically considered for applications involving the following: a) Multiple meter runs b) High proving frequency c) Remote location d) Wide process or fluid property changes e) Contractual requirements f) Product quality contamination g) Health, safety, environmental, and regulatory considerations Portable provers are typically considered for applications involving the following: a) Single meter run b) Using prover at multiple meter facilities c) Less frequent proving d) Single product lines e) Availability and accessibility of proving operator f) Contractual requirements where allowed g) Health, safety, environmental, and regulatory considerations 7.3 Prover Types General There are three types of provers used for meter calibration in the petroleum industry today, displacement provers, tank provers, and master meter provers.

16 7.3.2 Displacement Provers The three types of displacement prover are bidirectional, unidirectional, and captive displacement. The displacement prover is typically used for pipeline, marine, FPSO or FSO applications. It is recommended that a design factor be applied when sizing the prover to ensure a minimum of 1 in 10,000 resolution. Typically, the design factor would be applied to the meter manufacturer s nominal K-factor for sizing the prover calibrated volume. To ensure full compatibility, it is recommended that the prover size be selected based on the maximum normal linear flow rate of the largest meter to be proved and the minimum design capacity for the smallest meter to be proved. When using meters with manufactured pulses (Coriolis and ultrasonic meters), it is recommended to consult the meter and prover manufacturers when sizing displacement provers. Refer to API MPMS Chapter 4.2 Displacement Provers, for additional details on displacement provers Tank Provers Tank provers are not typically used in pipeline, marine, FPSO or FSO applications because of limited volume capacity and non-continuous flow operation. Refer to API MPMS Chapter 4.4 Tank Provers, for additional details on tank provers Master Meter Prover Master meter proving is used when proving by the direct method is impractical because of meter characteristics, logistics, time, space, economic, and safety considerations. However, it also allows for a much larger proving volume which may be helpful when calibrating meters having a non-uniform output. Some aspects to consider when using master meter provers: a) With the added uncertainty associated with the master meter, the overall measurement uncertainty for the custody transfer quantity is increased relative to other proving technologies. b) The master meter accuracy could be affected by liquid viscosity, flow rate, density, temperature, or pressure. c) Ideally master meters should be calibrated on the same fluid and flowing conditions that will be experienced by the line meter. Proving conditions that deviate from actual operating conditions will introduce uncertainty and inaccuracies to subsequent measurement. Refer to API MPMS Chapter 4.5 Master Meter Provers, for additional details on master meter provers. 8 QUALITY DETERMINATION 8.1 General Product quality information (S&W, density, product composition, etc.) is required for determining the meter factor and the custody transfer quantity." See API MPMS Chapter 6.1A for more details.

17 8.2 Sampling General Depending upon the purpose, samples may be collected proportional to flow using an automatic sampling system or on a spot basis manually." Automatic Sampling Automatic sampling is used to collect a sample that represents the overall custody transfer quantity. The results from physical property tests of such a sample are used to determine the net quantity of the transfer and are typically documented on the measurement ticket. There are two types of automatic sampling systems; inline sampling and sample loop. Both systems can produce representative samples if properly designed and operated. An automatic sampling system consists of stream conditioning (if required), a sample extraction device, a means of pacing the sampler proportional to flow or time, and the delivery of the extracted sample to a container or an analyzer. Please refer to API MPMS Chapter 8.2 (low vapor pressure hydrocarbons), API MPMS Chapter 8.5 (volatile crude oil, condensates and liquid products), and GPA 2174 (LPG) or ASTM D3700 (LPG) for more detailed discussions around the design of automated sampling systems and the need for and implementation of a calibration and verification procedure for sampling systems Manual Sampling Manual sampling is used to collect a spot sample of a hydrocarbon liquid at a particular point in time or in conjunction with a particular activity, such as meter proving. In the case of meter proving, the result from a density test is used to determine the meter factor and is documented on the meter proving report. Refer to API MPMS Ch. 8.1, section 8.4 (low vapor pressure hydrocarbons), ASTM D1265 (LPG), and GPA 2174 (LPG) or ASTM D3700 (LPG) for more information related to the design and operation of manual sampling systems. 8.3 Density General See API MPMS Chapter 6.1A for general guidance on density determination Density Meters General The API MPMS Chapter 9.4 provides guidance for online density meter selection, design, operation, installation, and calibration methods. Several common online density meter applications are addressed below Mass Determination Density meters can be used for inferred mass measurement or direct mass measurement of NGL or LPG. Refer to API MPMS Chapter 14.7 for guidance on the two mass measurement methods.

18 Volume Correction Factor Determination Volumetric flow meter systems require density to determine correction factors for the effects of temperature and pressure. Refer to the applicable sections of API MPMS Chapter 11 and API MPMS Chapter Product quality Density measurement may be used to determine fluid density over a batch or detect changes in fluid density Interface Detection Density measurement may be used during batch operations to identify product changes to initiate the opening or closing of the measurement ticket. Density readings may need to be corrected to standard conditions to prevent false interface readings due to changes in temperature or pressure. 8.4 Sediment and Water (S&W) Determination Refer to API MPMS Ch. 6.1A for information for S&W determination. 8.5 Viscometers Viscometers are online instruments used to measure flowing viscosity. Viscometers can be used for viscosity indexing or to initiate meter provings on viscosity changes. 8.6 Compositional Analysis It is a requirement in the measurement of certain Natural Gas Liquid and Liquefied Petroleum Gas streams to obtain a compositional analysis which represents the individual hydrocarbon components of the metered product (see API MPMS 14.7/GPA 8182 for more details). The compositional analysis is performed to quantify the component volume metered, and the subsequent value of the product. Each hydrocarbon component (i.e. methane, ethane, propane etc.) has a different monetary value which must be calculated from the composition (see API MPMS 14.4 for more details). Where composite samples are taken, they shall be analyzed by a laboratory equipped to handle NGL and LPG samples utilizing GPA Method In some cases, alternate methods of sampling may be acceptable such as spot sampling, or by the use of an online chromatograph. 8.7 Other Quality Considerations Additional sampling may be requested or required to measure and/or verify product characteristics such as sulfur, RVP, octane, and flash point. Sampling and quality determination should be in accordance with industry standards and contractual agreements.

19 9 ADDITIONAL METERING SYSTEM COMPONENT DESIGN CONSIDERATIONS 9.1 Temperature General Temperature measurements are required for calculation of liquid quantities, prover volumes and flowing density at standard temperature. See API MPMS Chapters 6.1A, 7.4, 9.4, and applicable sections of MPMS Ch Temperature Measurement at Meters The objective when determining the temperature of metered liquid is to obtain an accurate liquid temperature inside the meter body. The temperature sensor is preferred to be installed downstream of the meter consistent with any flow conditioning requirements Temperature Measurement at Provers When determining the temperature of a liquid flowing through a prover for use in correcting for the thermal effects on the liquid and prover, the liquid temperature shall be measured as close to the prover inlet and/or outlet as is practical. When two measurements are taken, they shall be averaged to arrive at the prover temperature. The goal is to determine the liquid temperature in the calibrated section of the prover. The preferred location of the temperature measurement is not more than 5 pipe diameters from the prover inlet and not more than 5 pipe diameters from the prover outlet. Consideration should be given to installing the temperature measurement equidistant from the prover inlet/outlet such that their average better represents the liquid temperature. If a captive displacement prover is used, the temperature of the piston rod temperature is required. If the prover inlet and outlet temperatures are the same, one temperature sensor is acceptable providing it is installed on the prover outlet Temperature Measurement at Density Meter Temperature measurement is required for online density measurement to correct for their effects on the density meter and, if required, to correct the measured density to standard conditions. For guidance on temperature and pressure effects and determination, refer to API Chapter Test Thermowells A test thermowell should be provided close to temperature sensors that are permanently mounted in piping systems, such as in meter runs or meter prover systems to facilitate verification of temperature devices.

20 Test thermowells should be installed within 30 cm (12 inches) of the temperature transmitter or RTD location. 9.2 Pressure General Pressure measurements are required for calculation of liquid quantities, prover volumes and flowing density at standard pressure. See API MPMS Chapters 6.1A, and applicable section of MPMS Ch Pressure with Meters The objective when determining the pressure of metered liquid is to obtain an accurate liquid pressure inside the meter body. The pressure sensor is preferred to be installed downstream of the meter consistent with any flow conditioning requirements Pressure Measurement on Provers When determining the pressure of a liquid flowing through a prover for use in correcting for the hydraulic effects on the liquid and prover, the liquid pressure shall be measured as close to the prover inlet and outlet as is practical. When two measurements are taken, they shall be averaged to arrive at the prover pressure. The goal is to determine the liquid pressure in the calibrated section of the prover. The preferred location of the pressure measurement is not more than 5 pipe diameters from the prover inlet and not more than 5 pipe diameters from the prover outlet. Consideration should be given to installing the pressure measurement equidistant from the prover inlet/outlet such that their average better represents the liquid pressure. If the prover inlet and outlet pressures are the same, one pressure sensor is acceptable providing it is installed on the prover outlet Pressure Measurement at Density Meter Pressure measurement is required for online density measurement to correct for their effects on the density meter and, if required, to correct the measured density to standard conditions. For guidance on pressure effects and determination, refer to API Chapter Pressure Calibration and Verification Pressure devices should be installed so that in-situ calibration and verification can be readily conducted. A possible method of meeting this recommendation is installation of gauge valve with quick connect for the calibration or verification device Other Pressure Considerations It is important to maintain adequate pressure in the measurement system to prevent cavitation or flashing. See Chapter 6.1A for additional information on back pressure control.

21 9.3 Flow Conditioning For meter types that are dependent on flow profile, such as turbine and ultrasonic meters, the measurement system shall include a flow conditioning section upstream and downstream of each meter per manufacturer recommendations. See Chapter 5.3 and Chapter 5.8 for a full description of the arrangement and details for each meter technology. 9.4 Strainers Strainers are recommended upstream of the meter to remove contaminants from the flow stream that may cause fouling or damage to meters, valves, instrumentation, sampling equipment, and the prover. The strainer should be designed to minimize pressure drop at maximum flow rate and viscosity. A maximum of two to five psi pressure drop is a commonly used value for design considerations. A means of monitoring the differential pressure across the strainer is recommended. Increased differential pressure could indicate that the strainer requires cleaning and could cause a flow profile distortion. Possible methods of meeting this recommendation is a pressure sensor/gauge located on both sides of the strainer or a single differential pressure transmitter/gauge installed across the strainer. Ensure the design of the strainer does not influence the type of metering technology selected (consult meter manufacturer). The strainer basket perforations and/or mesh size should be sized in accordance with the meter manufacturer s recommendations. 9.5 Insulation/Heating Systems Insulation Insulation of the system may be required to maintain proper process liquid temperature, or for personnel safety. It can also be installed to maintain system equipment within recommended temperature limits Heating In addition to insulation, it may be necessary to add a heat source to maintain the process liquid and/or the equipment within required temperature range. 9.6 Valves General Anywhere a leak through a valve will cause a measurement error (e.g. prover mainline block valves, meter and prover drain valves, prover diverter or interchange valve, bypass valves) a means to verify the valve integrity shall be provided Isolation Valves For maintenance and isolation of meter runs, valves should be installed at both ends of each meter assembly so that the meter and other components can be maintained without having to shut down product flow. The valve upstream of the measurement device should be chosen to ensure negligible disturbance to the flow profile which could adversely affect the meter performance.

22 9.6.3 Prover Manifold Valves Prover manifold valves are used to direct the flow to and from the prover, and to ensure all liquid from the meter under test is being passed through the prover, and no fluid is being introduced between the meter and the prover. All hard-piped valves between the meter and the prover shall be double block and bleed type Bypass Valves Bypass valves are a means of diverting the liquid flow around the meter for either equipment maintenance or problems with the flowing stream. All bypass valves shall be double block and bleed type. Please refer to Chapter 6.1A Double Block and Bleed Valves A double block-and-bleed valve is a single valve with two seating surfaces that, in the closed position, provides a seal against pressure from both ends of the valve, with a means of vent or bleed the cavity between the seating surfaces to ensure valve integrity. The valve cavity should have a thermal relief to prevent valve damage Prover Four-way or Interchange valves The bidirectional prover four-way or unidirectional interchange valve shall establish complete liquid sealing while the prover displacer travels through the prover calibrated section. The four-way or interchange bleed port should be configured to verify valve integrity and should allow for visual or electronic means of seal verification. Refer to API MPMS Chapter 4.2 Displacement Provers, for additional details on Displacement provers Control Valves General Control valves are used for back pressure control, flow balancing, and flow control during proving operations. See API MPMS Chapters 5.2, 5.3, 5.6 and 5.8 for specific requirements Back Pressure Control Valves Back pressure control valves are used to ensure the liquid in the measurement system remain above the equilibrium vapor pressure Flow Control Valves Control of flow may be necessary in some application such as marine loading. Flow control is sometimes required to ensure meters are maintained within their rated capacity, particularly where meters of different sizes are provided in a multiple meter run system. Control of the flow rate during meter proving can be accomplished using control valves on opposing meters (meters other than the one being proved) in multiple meter run systems. NOTE: If properly selected, a single control valve can be used to provide the required minimum back pressure and flow control Check Valves A check valve is commonly provided to prevent back flow through the meter and/or prover.

23 9.6.9 Drain Valves Metering system designs should include taps at low points so that the system may be drained before maintenance. Use of drains between the meter and the prover should be minimized. Any drain that can affect measurement accuracy must be equipped with a means to prevent leaks or verify that no leaks exist Vent Valves Metering systems designs should include high point vents to eliminate air, vapors, or non-condensable gases. Use of vents between the meter and the prover should be minimized. Any vent that can affect measurement accuracy must be equipped with a means to prevent leaks or verify that no leaks exist Pressure Relief Valves Relief valves protect the system from the effects of over-pressuring. Installation of thermal relief valves between the meter and prover and between the metering system and the custody transfer point should be minimized. If required in one of these locations, a thermal relief valve should be provided with a means to detect leakage. See API MPMS 6.1A for more details related to installation and leak detection. 9.7 Air/Vapor Eliminators General Each metering system shall be designed to prevent air or vapor from passing through it. If necessary, air/vapor elimination equipment shall be installed upstream of the metering system. See API MPMS Chapter 6.1A for more details Pipeline Operations In a metering station, if a high vacuum (negative head) condition could exist, a block and/or check valve should be installed in vent lines to prevent air being drawn into the air remover. Care should be taken during storage tank operations to ensure a minimum amount of vapor enters the liquid meter systems during commodity change or drain-dry operations Marine Loading and Unloading Vessel Requirements Marine loading does not generally present a severe air problem because tankage, manifolds, and lines are normally kept full of liquid. However, air/vapor elimination equipment may still be required. During marine unloading, air may be introduced each time load-arm connections are made to the carrier. Air/vapor may also be introduced during a vessel s stripping operations. For marine unloading, operations must ensure the piping from the vessel to the air eliminator is full of product prior to start of the measurement ticket, refer to API MPMS Chapter 17.6 for further details. The air eliminator should also be equipped with a means of determining level before and after the unloading operation.

24 9.8 Automation and Controls Flow Computers A flow computer receives inputs from the primary device and the secondary devices. This data is either processed in the flow computer or transferred to a central measurement calculation system to determine the measurement ticket. Signals can be analog, digital, or digital communication protocol. The flow computer may be used to provide control signals to automatic samplers, control valves, or initiate and perform meter proving operations. For further information on flow computers, refer to API MPMS Ch Due to complexity of calculations and strict requirements on processing time, the use of flow computers is recommended PLCs Programmable Logic Controllers (PLCs) in pipeline and marine loading/unloading measurement systems are typically used to monitor and control the portions of metering system that are not directly involved in the measurement of liquid hydrocarbons. Motor operated meter isolation and prover routing valves are generally separated from the flow measurement computer and connected to a PLC. This arrangement allows separation of operation and measurement functionality. Thus, the PLC often controls valve sequencing, brings meter runs on and off line, and aligns the proving device. Because the PLC has logic capability, it can manage alarm conditions that could affect measurement, such as strainer shutdown for high differential pressure. Furthermore, the PLC may control auxiliary equipment like pumps, control valves, or sample extractors Supervisory and Control Systems A supervisory system is optional and is most often used on larger and more complex applications. The supervisory system is a computer based or panel type operator interface to an individual or multiple meter run systems. The HMI may provide a graphical representation of the metering system to the operator. The supervisory system may be used to perform manual or automatic operations such as setting sample rate, printing and archiving tickets, initiating provings, selecting and sequencing meter runs, generating reports and other functions. In addition to the flow computer, certain functions (e.g. measurement ticket, events/alarm report) of the supervisory systems may form part of the measurement system audit trail Local Totalizers Local totalizers can be used to back-up the primary totalizers and provide a local indication of totalized flow to the operator. 10 OPERATIONAL CONSIDERATIONS AND MAINTENANCE 10.1 Volume or Mass Calculation Calculations used to produce a measurement ticket are selected based on the measured liquid fluid properties and whether volumetric or mass measurement techniques are being applied. API MPMS Ch (volume), API MPMS Ch. 21.2, Addendum 1, Section 2 (mass), and GPA 8182 outline calculation requirements. User should consider verification of measurement ticket calculations in accordance with

25 API MPMS Chapter 12 and GPA 8182 and verification of flow computer configuration on a user defined frequency; typically, annually, or after changes to the configuration Documentation and Records Provisions should be included to capture and retain documents and records (e.g., alarm event logs, etc.) as defined by company policy, the connection or other agreements and/or applicable government regulations. An audit trail defines the documents and records necessary to allow the measurement ticket to be audited (see API MPMS 21.2). Elements of the audit trail are: Configuration logs Event and Alarm log Pressure, temperature, and density verification records Prover calibration certificate Chromatograph calibration records (if applicable) Calibration standard certificates 10.3 Strainers A maintenance program should be followed for inspection and cleaning of strainer baskets if no differential pressure indication is provided. If a means of monitoring differential pressure is provided, the pressure across the strainer should be monitored regularly. High differential pressure is an indication that the basket contains debris and should be cleaned. Zero or abnormally low differential pressure could be an indication that the basket may be ruptured and the strainer is not providing adequate protection for downstream equipment Valves Double Block and Bleed Valves All DB&B valves shall be verified at a user-defined frequency. If the valve fails to seal, the proving shall be aborted and the valve inspected Prover Four-way or Interchange valves Verify the prover four-way or interchange valve is sealed during proving operation at a user-defined frequency. If the valve fails to seal, the proving shall be aborted and the valve inspected. For further guidance, see API MPMS Volume/Mass Primary Measurement Devices Reference the appropriate API MPMS Chapter 5 for the applicable operation and maintenance considerations for the selected metering technology.

Manual of Petroleum Measurement Standards Chapter 6.1A

Manual of Petroleum Measurement Standards Chapter 6.1A Manual of Petroleum Measurement Standards Chapter 6.1A Metering Assemblies General Considerations DRAFT EDITION, Xxxxxx 2017 Table of contents to be created by editing committee 1 Scope This standard is

More information

LPG DRIVER ATTENDED TRANSPORT LOADING

LPG DRIVER ATTENDED TRANSPORT LOADING November 1993 Prepared By: Ken A. Steward. P.E. Linco-Electromatic, Inc. 4580 West Wall Street Midland, Texas 78703 LPG DRIVER ATTENDED TRANSPORT LOADING INTRODUCTION The safest and most accurate method

More information

Fundamentals of NGL Sampling Systems. By Dominic Giametta & Jim Klentzman

Fundamentals of NGL Sampling Systems. By Dominic Giametta & Jim Klentzman Fundamentals of NGL Sampling Systems By Dominic Giametta & Jim Klentzman The purpose of this paper is to discuss in depth the systems we use as a standard to sample natural gas liquids, or NGL s. Before

More information

Drilling Efficiency Utilizing Coriolis Flow Technology

Drilling Efficiency Utilizing Coriolis Flow Technology Session 12: Drilling Efficiency Utilizing Coriolis Flow Technology Clement Cabanayan Emerson Process Management Abstract Continuous, accurate and reliable measurement of drilling fluid volumes and densities

More information

ProSoft Technology, Inc. Summary Regarding Alberta Energy and Utilities Board Directive 017 of May 2007

ProSoft Technology, Inc. Summary Regarding Alberta Energy and Utilities Board Directive 017 of May 2007 Overview ProSoft Technology, Inc. Summary Regarding Alberta Energy and Utilities Board Directive 017 of May 2007 ProSoft Technology s Gas and Liquid Flow Computer (AFC) products will comply with the requirements

More information

L 100. Bubble-Tube Level System. Installation, Operation and Maintenance Instructions

L 100. Bubble-Tube Level System. Installation, Operation and Maintenance Instructions L 100 Bubble-Tube Level System Installation, Operation and Maintenance Instructions Figure 1 Contents Section Description Page 1.0 Introduction 2 2.0 Specifications 3 3.0 Installation 3 4.0 Warranty 6

More information

White Paper. Electrical control valve actuators on oil and gas production separators

White Paper. Electrical control valve actuators on oil and gas production separators White Paper Electrical control valve actuators on oil and gas production separators Electrical control valve actuators on oil and gas production separators White Paper 18 th August 2014 Electrical control

More information

LIQUID METER PROVING TECHNIQUES CT 4095

LIQUID METER PROVING TECHNIQUES CT 4095 LIQUID METER PROVING TECHNIQUES CT 4095 J. H. (Harry) James Gibson Energy Ltd. 1700, 440-2 nd Avenue S.W. Calgary, Alberta Canada, T2P 5E9 BACKGROUND Producers and shippers are becoming more and more aware

More information

Truck-mounted Mass Flow Metering for LPG Delivery

Truck-mounted Mass Flow Metering for LPG Delivery Truck-mounted Mass Flow Metering for LPG Delivery Itron, Inc. 1310 Emerald Rd. Greenwood, SC 29646 Introduction The mathematician Gustave De Coriolis first described the Coriolis Effect, which is an inertial

More information

Wedge Type Flow Meter Installation and Operation Manual

Wedge Type Flow Meter Installation and Operation Manual Wedge Type Flow Meter Installation and Operation Manual 358-EN Please read and save these instructions. Wedge Type Flow Meter PLEASE READ THIS FIRST! The purpose of this document is to provide guidance

More information

Micro Motion Coriolis Oil & Gas Metering Recommended Practices for Upstream Allocation

Micro Motion Coriolis Oil & Gas Metering Recommended Practices for Upstream Allocation Micro Motion Coriolis Oil & Gas Metering Recommended Practices for Upstream Allocation WWW.micromotion.com This document describes the best practices for selecting a Micro Motion flowmeter, which consists

More information

"BS An overview of updates to the previous ( 2009 ) edition. Andrew Wrath & BS7965 Working Group

BS An overview of updates to the previous ( 2009 ) edition. Andrew Wrath & BS7965 Working Group "BS7965 2013 - An overview of updates to the previous ( 2009 ) edition Andrew Wrath & BS7965 Working Group BS7965:2013 Guide to the selection, installation, operation and calibration of diagonal path transit

More information

Smart Water Application Technologies (SWAT) TM

Smart Water Application Technologies (SWAT) TM Smart Water Application Technologies (SWAT) TM Equipment Functionality Test Protocol Version 2.3 June 2014 SWAT Committee 8280 Willow Oaks Corporate Drive Suite 400 Fairfax, VA 22031 www.irrigation.org

More information

THERMAL MASS FLOW MEASUREMENT FOR GASES

THERMAL MASS FLOW MEASUREMENT FOR GASES THERMAL MASS MEASUREMENT FOR GASES Make the Wise Choice. Choose Sage Flow Meters. A Commitment to Higher Performance SAGE METERING is a manufacturer of high performance Thermal Mass Flow Meters which measure

More information

STANDARD SPECIFICATION FOR FLOW INSTRUMENTS DOCUMENT NO : 44-LK /J.02/0006-A4

STANDARD SPECIFICATION FOR FLOW INSTRUMENTS DOCUMENT NO : 44-LK /J.02/0006-A4 Page 1 of 9 ` STANDARD SPECIFICATION FOR FLOW INSTRUMENTS DOCUMENT NO : 44-LK-5102-00/J.02/0006-A4 Rev No. Issue Date Pages Rev Description Prepared A 12.08.08 9 Issued for Comments / Approval By Checked

More information

Annex G (normative) Requirements for Nondestructive Examination

Annex G (normative) Requirements for Nondestructive Examination Purchase API Spec online at http://www.techstreet.com/api Annex G (normative) G.1 General Requirements for Nondestructive Examination This annex specifies the requirements for NDE that shall be performed

More information

CONTROL VALVE TESTING

CONTROL VALVE TESTING The optimal functioning of the Control valve not only exists of sufficient body & seat tightness, but more important, the total "performance" of the valve and its controls! For an accurate and reliable

More information

Date of Issue: July 2016 Affected Publication: API Specification 16C, Choke and Kill Equipment, Second Edition, March 2015 ADDENDUM 1

Date of Issue: July 2016 Affected Publication: API Specification 16C, Choke and Kill Equipment, Second Edition, March 2015 ADDENDUM 1 Date of Issue: July 2016 Affected Publication: API Specification 16C, Choke and Kill Equipment, Second Edition, March 2015 ADDENDUM 1 Page 16, Section 4.6, delete the entire section and renumber all subsequent

More information

ULTRASONIC METER FLOW CALIBRATIONS CONSIDERATIONS AND BENIFITS. Joel Clancy

ULTRASONIC METER FLOW CALIBRATIONS CONSIDERATIONS AND BENIFITS. Joel Clancy ULTRASONIC METER FLOW CALIBRATIONS CONSIDERATIONS AND BENIFITS Joel Clancy Colorado Engineering Experiment Station, Inc. of Iowa (CEESI Iowa) 2365 240 th Street Garner, Iowa 50438 Introduction Measurement

More information

THE NATURAL CHOICE. High end valves for the natural gas value chain. Inspired By Challenge

THE NATURAL CHOICE. High end valves for the natural gas value chain. Inspired By Challenge THE NATURAL CHOICE High end valves for the natural gas value chain Inspired By Challenge 01 NATURAL GAS SOURCES For drilling platforms, FPSO (Floating, Production, Storage and Offloading) and FSRUs (Floating

More information

HYDROSTATIC LEAK TEST PROCEDURE

HYDROSTATIC LEAK TEST PROCEDURE This information is proprietary and shall not be disclosed outside your organization, nor shall it be duplicated, used or disclosed for purposes other than as permitted under the agreement with Kinetics

More information

How to specify a product. Process Sensors and Mechanical Instruments

How to specify a product. Process Sensors and Mechanical Instruments How to specify a product Process Sensors and Mechanical Instruments Keep the overview. Here is some guideline information on how to specify our products. Intended as supplementary help to specification

More information

2600T Series Pressure Transmitters Plugged Impulse Line Detection Diagnostic. Pressure Measurement Engineered solutions for all applications

2600T Series Pressure Transmitters Plugged Impulse Line Detection Diagnostic. Pressure Measurement Engineered solutions for all applications Application Description AG/266PILD-EN Rev. C 2600T Series Pressure Transmitters Plugged Impulse Line Detection Diagnostic Pressure Measurement Engineered solutions for all applications Increase plant productivity

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 3-2 Orifice Plates EXERCISE OBJECTIVE In this exercise, you will study how differential pressure flowmeters operate. You will describe the relationship between the flow rate and the pressure drop

More information

The HumiSys. RH Generator. Operation. Applications. Designed, built, and supported by InstruQuest Inc.

The HumiSys. RH Generator. Operation. Applications. Designed, built, and supported by InstruQuest Inc. The HumiSys RH Generator Designed, built, and supported by InstruQuest Inc. Versatile Relative Humidity Generation and Multi-Sensor System The new HumiSys with single or dual RH probes capabilities is

More information

Technical Data Sheet. OPTIMASS 7000 Custody Transfer Mass Flowmeter

Technical Data Sheet. OPTIMASS 7000 Custody Transfer Mass Flowmeter Technical Data Sheet KROHNE 12/2004 7.02516.21.00 CH/GR OPTIMASS 7000 Custody Transfer Mass Flowmeter with single straight measuring tube OIML R117 Pattern Approval Accuracy classes 0.3 / 0.5 / 1.0 / 1.5

More information

What is LPG? Released Energy in the narrowest area. Clean and sure in the practise

What is LPG? Released Energy in the narrowest area. Clean and sure in the practise since 1975 The company FAS (Flüssiggas-Anlagen GmbH, Salzgitter) was established in 1975 as commercial enterprise for LPG equipment (propane/butane). At the end of the seventies the safety idea gained

More information

OPERATING PROCEDURES

OPERATING PROCEDURES OPERATING PROCEDURES 1.0 Purpose This element identifies Petsec s Operating Procedures for its Safety and Environmental Management System (SEMS) Program; it applies to all Petsec operations. Petsec is

More information

Installation, Operation, and Maintenance Manual. Welker Constant Pressure Cylinder With Welker Magnetic Indicator (With Gravity Mixer) Model CP2GM-HP

Installation, Operation, and Maintenance Manual. Welker Constant Pressure Cylinder With Welker Magnetic Indicator (With Gravity Mixer) Model CP2GM-HP Installation, Operation, and Maintenance Manual Welker Constant Pressure Cylinder With Welker Magnetic Indicator (With Gravity Mixer) Model The information in this manual has been carefully checked for

More information

44 (0) E:

44 (0) E: FluidFlow Relief Valve Sizing Handbook Flite Software 2016 Flite Software N.I. Ltd, Block E, Balliniska Business Park, Springtown Rd, Derry, BT48 0LY, N. Ireland. T: 44 (0) 2871 279227 E: sales@fluidflowinfo.com

More information

GAS CONTRACTS MEASUREMENT LANGUAGE AND ITS EVOLUTION. Lohit Datta-Barua, Ph. D. Enterprise Products

GAS CONTRACTS MEASUREMENT LANGUAGE AND ITS EVOLUTION. Lohit Datta-Barua, Ph. D. Enterprise Products GAS CONTRACTS MEASUREMENT LANGUAGE AND ITS EVOLUTION Lohit Datta-Barua, Ph. D. Enterprise Products GENERAL: The business environment in our industry has seen tremendous change since early 1980s. This has

More information

Level MEASUREMENT 1/2016

Level MEASUREMENT 1/2016 Level MEASUREMENT 1/2016 AGENDA 2 A. Introduction B. Float method C. Displacer method D. Hydrostatic pressure method E. Capacitance method G. Ultrasonic method H. Radar method I. Laser method J. Level

More information

6.6 Relief Devices. Introduction

6.6 Relief Devices. Introduction 6.6 Relief Devices Introduction Relief devices are used to help prevent a catastrophic failure of equipment and/or minimize the effects of any unanticipated or uncontrolled events. As such, relief devices

More information

TITAN FLOW CONTROL, INC.

TITAN FLOW CONTROL, INC. PREFACE: This manual contains information concerning the installation, operation, and maintenance of Titan Flow Control (Titan FCI) Simplex Basket Strainers. To ensure efficient and safe operation of Titan

More information

DISTILLATION POINTS TO REMEMBER

DISTILLATION POINTS TO REMEMBER DISTILLATION POINTS TO REMEMBER 1. Distillation columns carry out physical separation of liquid chemical components from a mixture by a. A combination of transfer of heat energy (to vaporize lighter components)

More information

Vortex flowmeters. Product family introduction Principle of operation Product review Applications Key product features

Vortex flowmeters. Product family introduction Principle of operation Product review Applications Key product features Vortex flowmeters introduction Product review s Key product features This document should not be duplicated, used, distributed, or disclosed for any purpose unless authorized by Siemens. Page 1 Vortex

More information

Installation, operating and maintenance Instructions for Seemag bypass level indicator

Installation, operating and maintenance Instructions for Seemag bypass level indicator Issue: S Date: 05-09-14 Type G35 General information The Seetru bypass magnetic level indicator, abbreviate SEEMAG, serves to show the filling level of fluids in tanks, basins, tubes etc. The Seemag operates

More information

Inert Air (N2) Systems Manual

Inert Air (N2) Systems Manual INSTRUCTION MANUAL Inert Air (N2) Systems Manual N2-MANUAL 2.10 READ AND UNDERSTAND THIS MANUAL PRIOR TO OPERATING OR SERVICING THIS PRODUCT. GENERAL INFORMATION Positive pressure nitrogen gas pressurizing

More information

Copyright, 2005 GPM Hydraulic Consulting, Inc.

Copyright, 2005 GPM Hydraulic Consulting, Inc. Troubleshooting and Preventive Maintenance of Hydraulic Systems Learning to Read the Signs of Future System Failures Instructed by: Al Smiley & Alan Dellinger Copyright, 2005 GPM Hydraulic Consulting,

More information

Case Study Results on Natural Gas Custody Transfer Measurement with Coriolis Meters in Saudi Arabia

Case Study Results on Natural Gas Custody Transfer Measurement with Coriolis Meters in Saudi Arabia Case Study Results on Natural Gas Custody Transfer Measurement with Coriolis Meters in Saudi Arabia Introduction Mohammed Al-Torairi: Saudi Aramco mohammed.torairi@aramco.com WC-1337, Al-Midra Tower Dhahran

More information

MSC Guidelines for the Review of Vapor Control Systems Procedure Number: C1-46 Revision Date: March 30, 2012

MSC Guidelines for the Review of Vapor Control Systems Procedure Number: C1-46 Revision Date: March 30, 2012 R. J. LECHNER, CDR, Tank Vessel and Offshore Division Purpose: To outline procedures for review of vapor control system (VCS) piping plans and pressure drop calculations, and for generating a VCS List

More information

CALCULATING THE SPEED OF SOUND IN NATURAL GAS USING AGA REPORT NO Walnut Lake Rd th Street Houston TX Garner, IA 50438

CALCULATING THE SPEED OF SOUND IN NATURAL GAS USING AGA REPORT NO Walnut Lake Rd th Street Houston TX Garner, IA 50438 CALCULATING THE SPEED OF SOUND IN NATURAL GAS USING AGA REPORT NO. 10 Jerry Paul Smith Joel Clancy JPS Measurement Consultants, Inc Colorado Engineering Experiment Station, Inc (CEESI) 13002 Walnut Lake

More information

For Multi-Parameter Meters see mvx

For Multi-Parameter Meters see mvx Design Features VORTEX IN-LINE FLOW METERS For Multi-Parameter Meters see m Principles of Operation n No moving parts to wear or fail. n Electronics can be remotely mounted up to 30.5 m (0 ft). n No fluid

More information

Recommendations on Checking Anaesthesia Delivery Systems

Recommendations on Checking Anaesthesia Delivery Systems Page 1 of 11 Recommendations on Checking Anaesthesia Delivery Version Effective Date 1 Oct 1992 (reviewed Feb 07, Feb 02) 2 2004 3 Nov 2011 4 Dec 2016 Document No. HKCA T1 v4 Prepared by College Guidelines

More information

MEASUREMENT BEST PRACTICES FORIMPROVEDREFINERY SAFETY, AVAILABILITY & EFFICIENCY

MEASUREMENT BEST PRACTICES FORIMPROVEDREFINERY SAFETY, AVAILABILITY & EFFICIENCY MEASUREMENT BEST PRACTICES FORIMPROVEDREFINERY SAFETY, AVAILABILITY & EFFICIENCY Mark Menezes, PlantWeb Marketing Manager Rosemount Inc. Eric Wickberg, Pressure Applications Marketing Manager Rosemount

More information

ISO INTERNATIONAL STANDARD. Gas cylinders Cylinder valves with integrated pressure regulators Specification and type testing

ISO INTERNATIONAL STANDARD. Gas cylinders Cylinder valves with integrated pressure regulators Specification and type testing INTERNATIONAL STANDARD ISO 22435 First edition 2007-09-01 Gas cylinders Cylinder valves with integrated pressure regulators Specification and type testing Bouteilles à gaz Robinets de bouteilles avec détendeur

More information

For Multi-Parameter Meters see mvx

For Multi-Parameter Meters see mvx VORTEX IN-LINE FLOW METERS Design Features For Multi-Parameter Meters see mvx Principles of Operation VX No moving parts to wear or fail. Electronics can be remotely mounted up to 30.5 m (0 ft). No fluid

More information

Vaporizer Technique. FAS Flüssiggas-Anlagen GmbH

Vaporizer Technique. FAS Flüssiggas-Anlagen GmbH Cover_Booklet_Premium_ Poland Folder\Links\Cover_ Poland.psd One of the best assorted and largest stock of equipments of any kind destined for all industrial LPG applications within Europe. With more than

More information

Significant Change to Dairy Heat Treatment Equipment and Systems

Significant Change to Dairy Heat Treatment Equipment and Systems Significant to Dairy Heat Treatment September 2008 Page 1 Significant to Dairy Heat Treatment Equipment and Systems September 2008 1 Background Requirements for the assessment of dairy heat treatment equipment

More information

Organisation Internationale de Métrologie Légale

Organisation Internationale de Métrologie Légale Organisation Internationale de Métrologie Légale OIML INTERNATIONAL RECOMMENDATION Pressure balances Manomètres à piston OIML R 110 Edition 1994 (E) CONTENTS Foreword... 3 1 Scope... 4 2 Terminology...

More information

Injection Controller Program User Manual (for FloBoss 107 and ROC800-Series)

Injection Controller Program User Manual (for FloBoss 107 and ROC800-Series) Part D301757X012 June 2016 Injection Controller Program User Manual (for FloBoss 107 and ROC800-Series) Remote Automation Solutions Revision Tracking Sheet June 2016 This manual may be revised periodically

More information

TECHNICAL DATA Q= C. Table 1 - Specifications

TECHNICAL DATA Q= C. Table 1 - Specifications September 25, 2013 Pressure Regulation 537a 1. Description The Model B-3 Pilot Operated Pressure Control Valve is a factory assembled unit. The unit consists of a Model J-2 Halar coated Flow Control Valve,

More information

AMT-Ex Dewpoint Transmitter

AMT-Ex Dewpoint Transmitter AMT-Ex Dewpoint Transmitter Instruction Manual Alpha Moisture Systems Alpha House 96 City Road Bradford BD8 8ES England Tel: +44 1274 733100 Fax: +44 1274 733200 email: mail@amsytems.co.uk web: www.amsystems.co.uk

More information

CONTROL and INSTRUMENTATION

CONTROL and INSTRUMENTATION CONTROL and INSTRUMENTATION COURSE 500: 5 DAYS: Max 8 Candidates This course covers the key aspects of current instrumentation and process control technology and is designed to enable maintenance personnel

More information

SABERINDO PACIF SABERINDO PACIFIC CIFIC SABERINDO PA. A Tyco International Company

SABERINDO PACIF SABERINDO PACIFIC CIFIC SABERINDO PA. A Tyco International Company CIF A Tyco International Company 1 Foam Concentrate CIF 3% AFFF -UL Listed -UL Canada Listed 6% AFFF 6 parts AFFF concentrate to 94 parts water -UL Listed- Foam Liquid -UL Canada Listed 3% FLUOROPROTEIN

More information

Measurement Guideline for Upstream Oil and Gas Operations. Oil and Gas Commission

Measurement Guideline for Upstream Oil and Gas Operations. Oil and Gas Commission Measurement Guideline for Upstream Oil and Gas Operations Oil and Gas Commission March 1, 2017 1 Table of Contents Introduction... 14 Intent... 14 WHAT S NEW IN THIS EDITION... 15 Content Additions...

More information

MULTI-DIAMETER, BI-DIRECTIONAL PIGGING FOR PIPELINE PRE-COMMISSIONING

MULTI-DIAMETER, BI-DIRECTIONAL PIGGING FOR PIPELINE PRE-COMMISSIONING MULTI-DIAMETER, BI-DIRECTIONAL PIGGING FOR PIPELINE PRE-COMMISSIONING By: Magne Andreas Vik, StatoilHydro; Alf Åge Kristiansen, StatoilHydro Simon Sykes, FTL Seals Technology; Steve Hutcheson, Pipeline

More information

DeZURIK Double Block & Bleed (DBB) Knife Gate Valve Safety Manual

DeZURIK Double Block & Bleed (DBB) Knife Gate Valve Safety Manual Double Block & Bleed (DBB) Knife Gate Valve Safety Manual Manual D11044 September, 2015 Table of Contents 1 Introduction... 3 1.1 Terms... 3 1.2 Abbreviations... 4 1.3 Product Support... 4 1.4 Related

More information

TECHNICAL DATA Q = C. v P S. 2 Model G-2000 Dry valve. Page 1 of 13

TECHNICAL DATA Q = C. v P S. 2 Model G-2000 Dry valve. Page 1 of 13 Page 1 of 13 1. Description The Viking 2 Model G-2000 Dry Valve Riser Assembly consists of a small profile, light weight, pilot operated valve that is used to separate the water supply from the dry sprinkler

More information

800 Series Mass Flow Meters and Controllers. High Performance Mass Flow Meters and Controllers

800 Series Mass Flow Meters and Controllers. High Performance Mass Flow Meters and Controllers 800 Series Mass Flow Meters and Controllers High Performance Mass Flow Meters and Controllers WHY MASS FLOW? In most processes it is mass, not volume, which is the critical variable. Volumetric flow measurements

More information

Liquid level measurement using hydrostatic pressure and buoyancy

Liquid level measurement using hydrostatic pressure and buoyancy iquid level measurement using hydrostatic pressure and buoyancy This worksheet and all related files are licensed under the Creative Commons Attribution icense, version 1.0. To view a copy of this license,

More information

Fisher DVI Desuperheater Venturi Inline

Fisher DVI Desuperheater Venturi Inline Instruction Manual DVI Desuperheater Fisher DVI Desuperheater Venturi Inline Contents Introduction... 1 Scope of Manual... 1 Description... 1 Principle of Operation... 2 Installation... 3 Operating Instructions...

More information

CARTRIDGE FILTERS TECHNICAL MANUAL MT 080. Installation, commissioning and maintenance instructions. 08/02 Edition

CARTRIDGE FILTERS TECHNICAL MANUAL MT 080. Installation, commissioning and maintenance instructions. 08/02 Edition CARTRIDGE FILTERS TECHNICAL MANUAL MT 080 Installation, commissioning and maintenance instructions 08/02 Edition 1 2 CONTENTS 1.0 PAGE INTRODUCTION 1.1 MAIN FEATURES 1.2 OPERATION 1.3 CLOSING OF HEAD WITH

More information

Pneumatic dead-weight tester Model CPB3500

Pneumatic dead-weight tester Model CPB3500 Calibration technology Pneumatic dead-weight tester Model CPB3500 WIKA data sheet CT 31.22 Applications Primary standard for calibrating the scale in a pneumatic range from -1... 120 bar / -14.5... 1,600

More information

Mechanical Seal Piping Plans

Mechanical Seal Piping Plans Mechanical Seal Piping Plans Companion Booklet Single Seals Dual Seals Quench Seals Second. Cont. Dual Gas Introduction A primary factor in achieving highly reliable, effective sealing performance is to

More information

Meter Weights & Measures Reference

Meter Weights & Measures Reference Meter Weights & Measures Reference Engineering Data Liquid Controls An IDEX Energy & Fuels Business Engineering Data: D400-20 Table of Contents Foreword Foreword...3 Editorial Note...3 Definitions...4

More information

KAYDON RING & SEAL, INC.

KAYDON RING & SEAL, INC. KAYDON RING & SEAL, INC. K-DGS Series Dry Gas Seals KAYDON K-DGS Dry Gas Seals K-DGS Configurations Single Seal (K-DGS) Compact and economical, the single seal configuration is recommended for non-toxic

More information

MEASUREMENT GUIDELINES

MEASUREMENT GUIDELINES MEASUREMENT GUIDELINES Under the Newfoundland and Labrador and Nova Scotia Offshore Areas Drilling and Production Regulations ISBN #978-1-927098-05-9 TABLE OF CONTENTS PART ONE - GENERAL... 1 1.1 Introduction...

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD IEC 60567 Third edition 2005-06 Oil-filled electrical equipment Sampling of gases and of oil for analysis of free and dissolved gases Guidance This English-language version is derived

More information

Metering Code Gas TSO, measurement by connected party Effective from to the present

Metering Code Gas TSO, measurement by connected party Effective from to the present Please note that although Gasunie Transport Services B.V. translated the Dutch network codes with utmost care, Gasunie Transport Services B.V. would like to point out that only the decisions of the Dutch

More information

PSM SOLUTIONS: AMMONIA SCR SYSTEMS

PSM SOLUTIONS: AMMONIA SCR SYSTEMS PSM SOLUTIONS: AMMONIA SCR SYSTEMS 1 Issues that surround the storage of anhydrous ammonia 1. Government Audit/Citation Exposure a. OSHA i. NEP ii. PQV b. EPA 2. Safety Issues a. Burns b. Respiratory c.

More information

Wet pipe low flow foam/water system

Wet pipe low flow foam/water system December 6, 2010 Foam 14a 1. The Viking Low Flow Foam/Water proportioning system, is a UL Listed and FM Approved system, for use with Viking supplied foam concentrates. This system consists of a standard

More information

SCIENCE LAB UTILITY CONTROLS

SCIENCE LAB UTILITY CONTROLS SCIENCE LAB UTILITY CONTROLS INCORPORATING GAS PRESSURE PROVING GAS PRESSURE PROVING EQUIPMENT - ENGINEERED TO DELIVER EXCEPTIONAL LEVELS OF SAFETY THE MERLIN RANGE DESIGNED FOR EDUCATIONAL LABORATORIES

More information

Slug Catchers Engineered Solutions to Separation Problems

Slug Catchers Engineered Solutions to Separation Problems Slug Catchers Engineered Solutions to Separation Problems Separation Products from Taylor Forge Taylor Forge Engineered Systems has been a leading manufacturer of liquid separation equipment for the pipeline

More information

Additel 761 Automated Pressure Calibrators

Additel 761 Automated Pressure Calibrators Automated Calibrators UPDATED Fully automated pressure calibrator with built-in pressure generator / controller to as high as 600 psi (40 bar) or as low as 0.01 Pa (0.00004 inh 2 O) accuracy Dual pressure

More information

3.0 Pressure Transmitter Selection

3.0 Pressure Transmitter Selection 3.0 Pressure Transmitter Selection Each Tronic Line pressure transmitter has different features to meet specific performance, environmental, and price requirements. It is not possible to describe every

More information

INSTALLATION, OPERATION, AND MAINTENANCE MANUAL WELKER TRANSPORTABLE CRUDE OIL CONTAINER

INSTALLATION, OPERATION, AND MAINTENANCE MANUAL WELKER TRANSPORTABLE CRUDE OIL CONTAINER INSTALLATION, OPERATION, AND MAINTENANCE MANUAL WELKER TRANSPORTABLE CRUDE OIL CONTAINER MODEL TCC-5 DRAWING NUMBERS AD417CO AD557CO MANUAL NUMBER IOM-197 REVISION Rev. 0, 12/20/2016 TABLE OF CONTENTS

More information

PHIL JANOSI MSC. International Product Manager, Coriolis Flowmeter KROHNE Ltd, UK.

PHIL JANOSI MSC. International Product Manager, Coriolis Flowmeter KROHNE Ltd, UK. OFFICIAL SPONSOR PHIL JANOSI MSC. International Product Manager, Coriolis Flowmeter KROHNE Ltd, UK. ADVANCES IN HIGH CAPACITY CORIOLIS FLOWMETERS INTRODUCTION Rising Oil prices between 2005 to 2015 resulted

More information

Installation, Operation, and Maintenance Manual Parker Balston Model N2-04 Nitrogen Generator

Installation, Operation, and Maintenance Manual Parker Balston Model N2-04 Nitrogen Generator Installation, Operation, and Maintenance Manual Parker Balston Figure 1 - N2-04 Nitrogen Generator These instructions must be thoroughly read and understood before installing and operating this product.

More information

Drift-Chamber Gas System Controls Development for the CEBAF Large Acceptance Spectrometer

Drift-Chamber Gas System Controls Development for the CEBAF Large Acceptance Spectrometer Drift-Chamber Gas System Controls Development for the CEBAF Large Acceptance Spectrometer M. F. Vineyard, T. J. Carroll, and M. N. Lack Department of Physics University of Richmond, VA 23173 ABSTRACT The

More information

Float Operated Level Controllers

Float Operated Level Controllers CONTENTS Float Operated Level Controllers IM0015 Nov. 2014 PAGE Introduction 1 Scope 1 Description 1 Specification 1 Control Installation 2 INTRODUCTION Side Mount Back Mount Prior to installing, the instructions

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 5-3 Wet Reference Leg EXERCISE OBJECTIVE Learn to measure the level in a vessel using a wet reference leg. DISCUSSION OUTLINE The Discussion of this exercise covers the following points: Measuring

More information

1.2 Example 1: A simple hydraulic system

1.2 Example 1: A simple hydraulic system Note: It is possible to use more than one fluid in the Hydraulic library. This is important because you can model combined cooling and lubrication systems of a library. The hydraulic library assumes a

More information

Hydraulic pressure balance Model CPB5800

Hydraulic pressure balance Model CPB5800 Calibration technology Hydraulic pressure balance Model CPB5800 WIKA data sheet CT 31.11 for further approvals see page 8 Applications Primary standard for calibrating the pressure scale in a hydraulic

More information

Per Section I of the ASME

Per Section I of the ASME notifies the control room or other Maintenance Safer & Easier remote locations that a probe column The system s intelligence can BOILER INSPECTION GUIDELINES FOR distinguish dirty probes from BOILER INSPECTION

More information

General Specifications

General Specifications General Specifications GS 34P02P31-02E Gas Flow Calculation Portfolio (FCN-RTU) GENERAL This general specification document describes the Gas Flow Calculation Portfolio on FCN-RTU low power autonomous

More information

product manual HM-4140, HM-4150, HM-4160 HM-4160A HM-4150 Humboldt FlexPanels

product manual HM-4140, HM-4150, HM-4160 HM-4160A HM-4150 Humboldt FlexPanels 12.09 product manual HM-4140, HM-4150, HM-4160 HM-4160A HM-4150 Humboldt FlexPanels Introduction: This manual covers the installation and operation of Humboldt FlexPanels for Triaxial and Permeability

More information

Series Ruska Digital Pressure Indicator. GE Sensing & Inspection Technologies. Features

Series Ruska Digital Pressure Indicator. GE Sensing & Inspection Technologies. Features GE Sensing & Inspection Technologies Series 7050 Ruska Digital Pressure Indicator Features Pressure ranges from 0 to 10 inh2o and 0 to 1500 psi (0 to 25 mbar and 0 to 100 bar) Choose from three models:

More information

Temperature Determination Liquid-in-Glass Thermometers

Temperature Determination Liquid-in-Glass Thermometers This document is not an API Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API Standard. It shall not be reproduced or circulated

More information

* Analysis of TCG ( Total Combustible Gas ) and 6 kinds of Gases * High Sensitivity for C 2

* Analysis of TCG ( Total Combustible Gas ) and 6 kinds of Gases * High Sensitivity for C 2 Portable DGA Dissolved Gas Analyzer MITSUBISHI Portable Dissolved Gas Analyzer (PGA-300) is used to analyze 6 kinds of dissolved gases in transformer oil, thereby improving prompt action

More information

REVIEW OF LPG FLOW MEASUREMENT TECHNOLOGIES AND MEASUREMENT ISSUES

REVIEW OF LPG FLOW MEASUREMENT TECHNOLOGIES AND MEASUREMENT ISSUES Executive Summary REVIEW OF LPG FLOW MEASUREMENT TECHNOLOGIES AND MEASUREMENT ISSUES A Report for National Measurement System Programme Unit Department of Trade & Industry 151 Buckingham Palace Road London

More information

COMMITTEE DRAFT. API 520 Part I 10 th Edition Ballot Item 2.1. This ballot covers the following item:

COMMITTEE DRAFT. API 520 Part I 10 th Edition Ballot Item 2.1. This ballot covers the following item: This ballot covers the following item: API 520 Part I 10 th Edition Ballot Item 2.1 2008 12 Modify guidance to PRV datasheets (Line 17) to assist user s with determining the temperature to use for selecting

More information

TROUBLESHOOTING GUIDELINES

TROUBLESHOOTING GUIDELINES TROUBLESHOOTING GUIDELINES PROBLEM: Performance 1. The most common problem in this area comes from inadequate flow to the LAKOS Separator(s). All LAKOS Separators operate within a prescribed flow range

More information

Mass Flow Controller (MFC) for Gases

Mass Flow Controller (MFC) for Gases Mass Flow Controller (MFC) for Gases Bypass MFC with capillary technology for nominal flow rates from 5 ml N /min to 15 l N /min Applicable for aggressive gases Compact design and digital communication

More information

INTRODUCTION. The Quantum Technology system has the following advantages:, as it does not need plastic gas-bags which are volume-consuming,

INTRODUCTION. The Quantum Technology system has the following advantages:, as it does not need plastic gas-bags which are volume-consuming, 1 INTRODUCTION Quantum Technology is a leading scientific equipment supplier. For the last thirty years we served our customers by tailoring our products to each customer s unique requirements. Quantum

More information

South-Tek Systems - Nitrogen Generation Corrosion Inhibiting System. Designed for: Dry or Preaction Fire Protection Systems (FPS)

South-Tek Systems - Nitrogen Generation Corrosion Inhibiting System. Designed for: Dry or Preaction Fire Protection Systems (FPS) South-Tek Systems - Nitrogen Generation Corrosion Inhibiting System Designed for: Dry or Preaction Fire Protection Systems (FPS) 1.0 Description of Work 1.1 The Fire Sprinkler Contractor shall provide

More information

IWCF Equipment Sample Questions (Combination of Surface and Subsea Stack)

IWCF Equipment Sample Questions (Combination of Surface and Subsea Stack) IWCF Equipment Sample Questions (Combination of Surface and Subsea Stack) 1. Given the volumes below, how much hydraulic fluid will be required to carry out the following operations (no safety margin)?

More information

Subparts AA and BB - The Other RCRA Air Rules. Beginners aabb

Subparts AA and BB - The Other RCRA Air Rules. Beginners aabb Subparts AA and BB - The Other RCRA Air Rules Beginners aabb 1 Background Subpart AA - Process vents Subpart BB - Equipment leaks Subpart CC - Tanks, surface impoundments, containers. Also includes Subpart

More information

7000 Series OPTIMASS Mass Flowmeters. Titanium Hastelloy Stainless Steel

7000 Series OPTIMASS Mass Flowmeters. Titanium Hastelloy Stainless Steel KROHNE 04/2003 7.02445.71.00 GR 7000 Series OPTIMASS Mass Flowmeters with single straight measuring tube Titanium Hastelloy Stainless Steel One tube no limits No limits with tube material No limits with

More information

Technical Manual. Liquid Level Transmitter CT801-LB/S

Technical Manual. Liquid Level Transmitter CT801-LB/S CT801-LB/S Technical Manual SAS au Capital de 2 158 244-444 871 933 R.C.S. Bourges - APE : 2651B Headquarter : 9, rue Isaac Newton - 18000 Bourges - France Technical Manual CT801-LB/S 1 st Edition Released

More information