Experimental Modeling and Control of Pneumatic Cylinders for Robotic Applications

Size: px
Start display at page:

Download "Experimental Modeling and Control of Pneumatic Cylinders for Robotic Applications"

Transcription

1 Experimental Modeling and Control of Pneumatic Cylinders for Robotic Applications Winnie Ngo Mechanical Engineering City College of New York 160 Convent Ave New York, NY USA Milwaukee School of Engineering 1025 N. Broadway Ave. Milwaukee, WI USA Faculty Advisor: Dr. Luis A. Rodriguez Abstract Recently, there has been growth in robotic technology designed to work more closely with humans, such as robotic support for rehabilitation and collaborative robots for production workers. According to the CDC, over 795,000 Americans experience a stroke each year resulting in impaired limb functionality, this increases the demand for robotic technology that can assist in their recovery. TechNavio, a technology and advisory company, projects a high annual growth rate in the market, which suggests an increase demand for collaborative robots in the workforce. High demand for these robots makes safety a priority for people working with them. The current literature suggests that use of compliant robots can limit damage and injury imposed on objects and humans, respectively. Robots should be capable of absorbing unexpected forces and controlling the amount of force applied. The high power to weight ratio and the natural compliance of pneumatics are appealing properties for the design of robots that closely interact with humans. Efforts have been made to control the level of compliance or stiffness in a robotic design to work with patients at different stages of rehabilitation. However, due to the compressibility of air, precise control of pneumatics has been a major challenge. This research focuses on the characterization and control of pneumatic cylinders for robotic applications. To better understand the dynamics of pneumatic cylinders, a custom testbed was developed to acquire experimental data that will be used to create more realistic mathematical models of the pneumatic system. Experimental data for the pressurization a fixed-volume was collected and agreed with observations made of the physical system. Additionally, force feedback control was implemented using an Arduino microcontroller to generate desired cylinder forces. Keywords: Pneumatic cylinder, experimental modeling, force control 1. Introduction According to the American Heart Association, on average, every 40 seconds an American has a stroke and strokes are the leading cause of long-term disability. 1 Advancements in robotics in the medical field have led to more humanrobot interaction to combat this issue. The increasing number of stroke survivors has also raised the demand of robots for rehabilitation. Robotic devices in contrast to traditional therapist are more efficient in carrying out therapy routines and storing information about patients performances and diagnosis 2. In addition, virtual simulation and games integrated into these robotic devices make the rehabilitation process more enjoyable for patients, and emerge patients in their therapy sessions 2. As more robots are designed to meet this demand, pneumatics can be incorporated to take advantage of their low initial cost, inherent compliance, simple and clean operation, and high power to weight ratio 3. Several pneumatic robotic systems, such as the ipam (University of Leeds), RUBERT (Arizona State University),

2 PNEU-WREX (University of California), and the SRE (University of Salford), were developed to train patients with upper limb disabilities 4. These devices have a gravity compensation mode that can support the weight of the patient's arm to allow the patient to move more freely 4. All these devices also include virtual simulations to engage the patients in activities to train the connection between the brain and the upper limb 4. The advantages found in most of these robotic arms are the comfort, safety, simplicity, and the lightweight quality of the device 4. These applications have demonstrated the qualities of pneumatics to be a sensible option for more safe lightweight and affordable rehabilitation devices. Figure 1. Patient using the ipam 4 Figure 2. Patient using the PNEU-WREX 4 In addition to rehabilitation devices, many companies and corporations have been adapting collaborative robots (cobots) into the work environment to boost the work efficiency of employees. From 2016 to 2021, the co-bot market is estimated to growth from $175.5 million to $ million; the compound annual growth rate is predicted to be 85.08% in that period. 5 This massive growth in the co-bot market indicate a high demand for co-bots, raising the need to further consider the safety of human-robot interaction. Pneumatics can be used to address this challenge, because it can make a co-bot system safer due to its natural compliance, but still have the high-power capabilities to perform various task. Additionally, force control and compliance are necessary to prevent a co-bot from damaging its surroundings and to allow absorption of unexpected forces. These two features have been heavily researched to expand the boundaries of robot or machine capabilities to do specific tasks and to be safer to its surroundings. Many tasks require the human touch that can be both rigid and compliant; most machines that are position based do not have the human touch capabilities and can damage their surroundings. One approach to improve compliance using other forms of actuation include adding an elastic element to the system to provide the compliant factor. 6 Other approaches compare the current command with the actual position and compensate for these unexpected external forces. 7 With the natural compliance of pneumatics, it could minimalize the effort to introduce compliance into a robotic system. It has been shown that pneumatics is beneficial in applications that require variable stiffness, because of the ability of air to compress and adjust the internal pressure; however, it is hard to control. To address the control challenges associated with pneumatics, numerous methods have been proposed in the literature. Many use controllers while others some use different hardware configurations to better control pneumatics 8. Examples of controllers that have been used to control pneumatics include linear and feedback linearization controllers, adaptive position and force controllers, backstepping controllers, twisting algorithm and sliding mode controllers. 9 These multiple efforts to advance pneumatic technology demonstrate a great inclination to further adapt pneumatics into real applications. Additional sensors and instrumentation are required that would require more special signaling, circuitry, and cost that complicates the system. 7 More studies still need to be done to more accurately identify and adjust to the nonlinearities found in pneumatic systems. Towards this goal, this research focuses on the experimental characterization and control of pneumatic cylinders for robotic applications. Experimental results will be used to improve and validate mathematical models of the system. These experiments include finding the mass flow rate in a fixed-volume chamber, calculating the force by measuring the pressure differences in the two chambers of the cylinder and implementing a force-feedback controller to manipulate the force generate by the cylinder. 1.2 Pneumatic Test Stand

3 A custom testbed was designed as a senior project advised by Dr. Daniel Williams. The purpose was to create a testbed as an educational tool for MSOE students to understand and learn more about pneumatics. The pneumatic components of the test stand consisted of an air compressor, an accumulator, a filter regulator (SMC AW20 and AFM20), two SMC electronic-pressure regulators (SMC ITV1050), two pressure switches (SMC ISE40A), two SMC flow switches (SMC PFMB7201), and a pneumatic cylinder. A diagram of the pneumatic circuit is shown in Figure 3. The test stand also included an Arduino to collect sensor data and to send control signals. 2. Methodology Figure 3. Experimental set up for the pneumatic system. 2.1 Pneumatic Model In the following, a mathematical model of the pneumatic cylinder is presented. Variables that include a or b in the subscript indicate whether the variable is representing chamber A or B as displayed in Figure 4. The pressure, area, and volume of chamber A are represented as P a or P b, A a or A b, and V a or V b, respectively. The mass flow rate is denoted as m a or m b, depending on the chamber. The bore diameter, rod diameter, stroke length, position of the piston, and thickness of the piston are represented as B, d, S, x, and t piston, respectively. Figure 4. Model of a Pneumatic Cylinder. The volume of Chamber A and B is given by equation (1) and (2), respectively.

4 V a = π 4 (B2 d 2 ) (S x t piston ) 2 (1) V b = π 4 B2 (x t piston 2 ) (2) From an energy balance, equation (3) and (4) were derived by Bobrow and McDonell 8. The known variables include the temperature of the supplied air as T s = 300 K, and the universal gas constant, R = 287 m 2 /s 2 K. The ratio of specific heat at a constant pressure and constant volume is given as k = (c p / ) = 1.4. P a = R ( c p ) T s m a V a P b = R ( c p ) T s m b P av a ( c p ) V a V b P bv b V b ( c p ) (3) (4) The force of the stroke can be found from equation (5) where P atm is the atmospheric pressure, A s is the cross-sectional area of the stroke, A a and A b are the area of the piston with respect to chamber A and chamber B. F c = P b A b P a A a P atm A s (5) 2.2 Pneumatic Actuator Characterization Fixed Volume Experiment The first experiment involved measuring the pressure with a fixed volume to help determine the mass flow rate of the system. The amount of pressure entering the chambers of the pneumatic cylinder was controlled by the electronicpressure regulators. By keeping the volume constant, equation (3) and (4) becomes equation (6) and (7). These two equations helped determine the mass flow rate of the system by observing that the mass flow is directionally proportional to the rate of change of the chamber pressure. P a = R ( c p ) T s V a m a P b = R ( c p ) T s V b m b (6) (7) Force Feedback Control Experiment A second experiment was performed to determine the force output based on the pressure difference of each chamber. The pressure regulators were used to input and measure the pressure of each chamber and a feedback control algorithm was implemented to maintain the desired force. The force feedback control loop utilized equation (5) to track the force generated by the pneumatic cylinder and followed the procedure shown in Figure 5. To track the force generated from the pneumatic cylinder and to help implement force control equation (8) was used to calculate the error, e, by taking the difference between the desired force and the force generated, denoted as F D and F C, respectively. The controller will use the error and a tuning constant, K p, to make the necessary adjustment. The adjustment sent to the plant to achieve the desired force is proportional to the product of K p and the current error.

5 e = F D F C (8) Figure 5. Force Feedback Control Loop. 3. Results and Discussion Fixed Volume Results For the fixed volume experiment three different pressure values were tested to pressurize chamber B with the cylinder fully extended (V B at max volume). The pressure values used included 5, 10, 15, and 20 psi and were sent to the pressure regulator in a square wave pattern as shown in Figure 6. Sending a square wave helped identify the start and end of the pressure input. Figure 6. Square wave input of a specified pressure value, P. To find the rate of pressure change, the derivative of the pressure data was taken through the numerical central differentiation method. After taking the derivative, the rate of pressure change was applied to equation (7). Figure 7 shows the pressure value collected from the sensor and the mass flow rate calculated taken from the data values. In each experiment with different pressure value, similar trends were found in all experiments. In each experiment, the mass flow rate peaked when the regulator began to pressurize as shown in Figure 7 between 1-2 and seconds. When the chamber depressurized the mass flows back out of the chamber as shown between 6-7 and seconds in Figure 7. After the peak, the mass flow rate would settle to roughly 0 kg/s when the chamber is filled.

6 Pressure (psi) Pressure (psi) Mass Flow (kg/s) Pressure of Chamber and Mass Flow Pressure of Chamber B Mass Flow from Pressure Time (seconds) Figure 7. Graph illustrates the measured pressure value and mass flow rate when rod is fully extended and a pressure of 5 psi is sent to the cylinder. Force Feedback Control Results A simple force feedback control was implemented to generate the desired force. As the pneumatic system was cycling through the control loop, data of the measured pressure values in each chamber was collected using an oscilloscope. Multiple desired forces, that included 5, 10, and 15 psi, were tested through this control loop and all had similar trends. Figure 8 is the pressure data collected under a control loop that aimed to generate 10 lb. of force with a tuning constant of K p = 0.9. Since the time of piston travel was approximately one second, it was difficult to implement multiple force control cycles between the start and end of travel Pressure A Pressure B Pressure of Chambers Time (seconds) Figure 8. Graph displays the measured pressure values of each chambers during force feedback loop with tuning constant of K p = 0.9 and desired force F = 10 lb. These pressure values were then used to find the force by using equation (5) to generate the graph shown in Figure 9. When observing the Figure 9, the control loop did maintain a force close to the desired force between seconds,

7 Force (lb) seconds, seconds. However, once the piston had reached the end of the travel the force value doubled because there was no longer a back pressure in chamber A. When the piston could no longer travel any further, chamber B and A was depressurized and pressurized, respectively, to return the rod to the retracted state. Force Generated Time (seconds) Figure 9. Graph displays the calculated force values based on pressure values in Figure Conclusion and Future Work Experimental data for the pressurization a fixed-volume was collected and agreed with observations made of the physical system. This data will be used in the future to validate simulated results from a mathematical model. One of the problems that was observed in experiments was the large amount of sensor noise that skewed the measured values; further work will include the development of a filter to limit the sensor noise. Additionally, through multiple attempts to control the pneumatic cylinder with an Arduino microcontroller, a consistent force was generated for each cycle. Due to the response time of the pressure regulator and the limited travel of the piston, it was difficult to have the Arduino keep up with the rapid motion. A pneumatic cylinder with a longer stroke length would be beneficial to test force control over a longer period of travel in future experiments. Further experiments are needed to completely characterize the dynamics of the pneumatic cylinder and will be addressed in future studies. 5. Acknowledgements The author would like to thank the National Science Foundation for the grant provided to this research and SMC for the generous donation of components for the pneumatic test stand. A special thanks to Dr. Luis A. Rodriguez (Advisor), Dr. Subha Kumpaty PE (Principal Investigator), Betty Albrecht, and all MSOE staff and REU participants for their support. The material is based upon work supported by The National Science Foundation under Grant No. EEC Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of The National Science Foundation. The material is based upon work using pneumatic components donated by SMC. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of SMC. 6. References [1] E. J. Benjamin and On behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee et al., Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart

8 Association, Circulation, 01-Jan [Online]. Available: [Accessed: 06-Jul-2017]. [2] K. D. O. Andrade, J. Martins, G. A. P. Caurin, R. C. Joaquim, and G. Fernandes, Relative performance analysis for robot rehabilitation procedure with two simultaneous users, th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), [3] B. Trinkel, CHAPTER 5: Pneumatic and hydraulic systems, Hydraulics & Pneumatics, 15-Oct [Online]. Available: [Accessed: 06-Jul-2017]. [4] R. Morales et al, Pneumatic robotic systems for upper limb rehabilitation, Medical & Biological Engineering & Computing, vol. 49, no. 10, pp , Aug [5] "Research and Markets; Global Cobots Market Growth at CAGR of 85.08%, with ABB, Bionic Robotics, Blue Ocean Robotics and Omron Adept Technologies Dominating the $3.81 Billion Market - Research and Markets,"Journal of Engineering, pp. 465, Available: [6] W. Roozing, Z. Li, D. G. Caldwell, and N. G. Tsagarakis, Design Optimisation and Control of Compliant Actuation Arrangements in Articulated Robots for Improved Energy Efficiency, IEEE Robotics and Automation Letters, vol. 1, no. 2, pp , [7] C. Trakarnchaiyo and A. M. S. Abeykoon, Vibration suppression design for virtual compliance control in bilateral teleoperation, nd International Conference on Control and Robotics Engineering (ICCRE), [8] J. E. Bobrow and B. W. McDonell, Modeling, identification, and control of a pneumatically actuated, force controllable robot, IEEE Transactions on Robotics and Automation, vol. 14, no. 6, pp , [9] T. Driver and X. Shen, Pressure Estimation-Based Robust Force Control of Pneumatic Actuators, International Journal of Fluid Power, vol. 14, no. 1, pp , 2013.

Fail Operational Controls for an Independent Metering Valve

Fail Operational Controls for an Independent Metering Valve Group 14 - System Intergration and Safety Paper 14-3 465 Fail Operational Controls for an Independent Metering Valve Michael Rannow Eaton Corporation, 7945 Wallace Rd., Eden Prairie, MN, 55347, email:

More information

CFD Simulation and Experimental Validation of a Diaphragm Pressure Wave Generator

CFD Simulation and Experimental Validation of a Diaphragm Pressure Wave Generator CFD Simulation and Experimental Validation of a Diaphragm Pressure Wave Generator T. Huang 1, A. Caughley 2, R. Young 2 and V. Chamritski 1 1 HTS-110 Ltd Lower Hutt, New Zealand 2 Industrial Research Ltd

More information

Programmable Valves Enable Both Precision Motion Control and Energy Saving

Programmable Valves Enable Both Precision Motion Control and Energy Saving Programmable Valves Enable Both Precision Motion Control and Energy Saving Dr. Bin Yao Purdue University West Lafayette, IN 47907, USA 1 Outline Development of Programmable Valves Control of Programmable

More information

AC : MEASUREMENT OF HYDROGEN IN HELIUM FLOW

AC : MEASUREMENT OF HYDROGEN IN HELIUM FLOW AC 2010-2145: MEASUREMENT OF HYDROGEN IN HELIUM FLOW Randy Buchanan, University of Southern Mississippi Christopher Winstead, University of Southern Mississippi Anton Netchaev, University of Southern Mississippi

More information

STIFFNESS INVESTIGATION OF PNEUMATIC CYLINDERS. A. Czmerk, A. Bojtos ABSTRACT

STIFFNESS INVESTIGATION OF PNEUMATIC CYLINDERS. A. Czmerk, A. Bojtos ABSTRACT 59 th ILMENAU SCIENTIFIC COLLOQUIUM Technische Universität Ilmenau, 11 15 September 2017 URN: urn:nbn:de:gbv:ilm1-2017iwk-148:6 STIFFNESS INVESTIGATION OF PNEUMATIC CYLINDERS A. Czmerk, A. Bojtos Budapest

More information

Motion Control of a Bipedal Walking Robot

Motion Control of a Bipedal Walking Robot Motion Control of a Bipedal Walking Robot Lai Wei Ying, Tang Howe Hing, Mohamed bin Hussein Faculty of Mechanical Engineering Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia. Wylai2@live.my

More information

2600T Series Pressure Transmitters Plugged Impulse Line Detection Diagnostic. Pressure Measurement Engineered solutions for all applications

2600T Series Pressure Transmitters Plugged Impulse Line Detection Diagnostic. Pressure Measurement Engineered solutions for all applications Application Description AG/266PILD-EN Rev. C 2600T Series Pressure Transmitters Plugged Impulse Line Detection Diagnostic Pressure Measurement Engineered solutions for all applications Increase plant productivity

More information

ZIPWAKE DYNAMIC TRIM CONTROL SYSTEM OUTLINE OF OPERATING PRINCIPLES BEHIND THE AUTOMATIC MOTION CONTROL FEATURES

ZIPWAKE DYNAMIC TRIM CONTROL SYSTEM OUTLINE OF OPERATING PRINCIPLES BEHIND THE AUTOMATIC MOTION CONTROL FEATURES ZIPWAKE DYNAMIC TRIM CONTROL SYSTEM OUTLINE OF OPERATING PRINCIPLES BEHIND THE AUTOMATIC MOTION CONTROL FEATURES TABLE OF CONTENTS 1 INTRODUCTION 3 2 SYSTEM COMPONENTS 3 3 PITCH AND ROLL ANGLES 4 4 AUTOMATIC

More information

The benefits of the extended diagnostics feature. Compact, well-proven, and flexible

The benefits of the extended diagnostics feature. Compact, well-proven, and flexible ABB MEASUREMENT & ANALYTICS TECHNICAL INFORMATION PositionMaster EDP300 Extended Diagnostics Compact, well-proven, and flexible The benefits of the extended diagnostics feature The PositionMaster EDP300

More information

Fail operational controls for an independent metering valve

Fail operational controls for an independent metering valve Failure mode and CMA valves Fail operational controls for an independent metering valve By: Michael Rannow email: michaelrannow@eaton.com Eaton Corporation, 7945 Wallace Rd. Eden Prairie, MN, 55347 As

More information

Project Title: Pneumatic Exercise Machine

Project Title: Pneumatic Exercise Machine EEL 4924 Electrical Engineering Design (Senior Design) Preliminary Design Report 27 January 2011 Project Title: Pneumatic Exercise Machine Team Members: Name: Gino Tozzi Name: Seok Hyun (John) Yun Email:

More information

Novelty of Mechanical Surface Aerator Using Flexible Beam to Generate Dissolved Oxygen in Water

Novelty of Mechanical Surface Aerator Using Flexible Beam to Generate Dissolved Oxygen in Water 79 UMTAS 2013 Novelty of Mechanical Surface Aerator Using Flexible Beam to Generate Dissolved Oxygen in Water Muhammad Amir Mat Shah 1,* and Badrul Aisham Md Zain 2 Faculty of Mechanical and Manufacturing

More information

YAN GU. Assistant Professor, University of Massachusetts Lowell. Frederick N. Andrews Fellowship, Graduate School, Purdue University ( )

YAN GU. Assistant Professor, University of Massachusetts Lowell. Frederick N. Andrews Fellowship, Graduate School, Purdue University ( ) YAN GU Assistant Professor, University of Massachusetts Lowell CONTACT INFORMATION 31 University Avenue Cumnock 4E Lowell, MA 01854 yan_gu@uml.edu 765-421-5092 http://www.locomotionandcontrolslab.com RESEARCH

More information

Simplicity in VRU by using a Beam Gas Compressor

Simplicity in VRU by using a Beam Gas Compressor Simplicity in VRU by using a Beam Gas Compressor By Charlie D. McCoy and Mark Lancaster Abstract: Vapor Recovery Units are often expensive, complicated to operate and unable to deal with High H2S and liquids.

More information

Unit 24: Applications of Pneumatics and Hydraulics

Unit 24: Applications of Pneumatics and Hydraulics Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 9 ACCUMULATORS The material needed for outcome 2 is very extensive so there are

More information

SPH 4C Unit 4 Hydraulics and Pneumatic Systems

SPH 4C Unit 4 Hydraulics and Pneumatic Systems SPH 4C Unit 4 Hydraulics and Pneumatic Systems Properties of Fluids and Pressure Learning Goal: I can explain the properties of fluids and identify associated units. Definitions: Fluid: A substance that

More information

67. Sectional normalization and recognization on the PV-Diagram of reciprocating compressor

67. Sectional normalization and recognization on the PV-Diagram of reciprocating compressor 67. Sectional normalization and recognization on the PV-Diagram of reciprocating compressor Jin-dong Wang 1, Yi-qi Gao 2, Hai-yang Zhao 3, Rui Cong 4 School of Mechanical Science and Engineering, Northeast

More information

Analysis of Pressure Rise During Internal Arc Faults in Switchgear

Analysis of Pressure Rise During Internal Arc Faults in Switchgear Analysis of Pressure Rise During Internal Arc Faults in Switchgear ASANUMA, Gaku ONCHI, Toshiyuki TOYAMA, Kentaro ABSTRACT Switchgear include devices that play an important role in operations such as electric

More information

Auto-Zero Calibration Technique for Pressure Sensors

Auto-Zero Calibration Technique for Pressure Sensors Auto-Zero Calibration Technique for Pressure Sensors A Technical Note 1.0 INTRODUCTION This technical note describes how to implement Auto-Zero, a calibration technique for pressure sensors based on sampling

More information

A New Way to Handle Changing Fluid Viscosity and the Full-to-empty Effect

A New Way to Handle Changing Fluid Viscosity and the Full-to-empty Effect A New Way to Handle Changing Fluid Viscosity and the Full-to-empty Effect Nordson EFD, 40 Catamore Blvd., East Providence RI 02914 www.nordsonefd.com A New Way to Handle Changing Fluid Viscosity And the

More information

Investigation of Suction Process of Scroll Compressors

Investigation of Suction Process of Scroll Compressors Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2006 Investigation of Suction Process of Scroll Compressors Michael M. Cui Trane Jack Sauls

More information

Gerald D. Anderson. Education Technical Specialist

Gerald D. Anderson. Education Technical Specialist Gerald D. Anderson Education Technical Specialist The factors which influence selection of equipment for a liquid level control loop interact significantly. Analyses of these factors and their interactions

More information

Figure 1 Schematic of opposing air bearing concept

Figure 1 Schematic of opposing air bearing concept Theoretical Analysis of Opposing Air Bearing Concept This concept utilizes air bearings to constrain five degrees of freedom of the optic as shown in the figure below. Three pairs of inherently compensated

More information

Controlling Walking Behavior of Passive Dynamic Walker utilizing Passive Joint Compliance

Controlling Walking Behavior of Passive Dynamic Walker utilizing Passive Joint Compliance Controlling Walking Behavior of Passive Dynamic Walker utilizing Passive Joint Compliance Takashi TAKUMA, Koh HOSODA Department of Adaptive Machine Systems, Graduate School of Engineering Osaka University

More information

PositionMaster EDP300 Extended Diagnostics. Compact, well-proven, and flexible

PositionMaster EDP300 Extended Diagnostics. Compact, well-proven, and flexible Change from one to two columns Technical Information TI/EDP300_ED-EN Rev. A PositionMaster EDP300 Extended Diagnostics Compact, well-proven, and flexible The benefits of the extended diagnostics feature

More information

Author s Name Name of the Paper Session. Positioning Committee. Marine Technology Society. DYNAMIC POSITIONING CONFERENCE September 18-19, 2001

Author s Name Name of the Paper Session. Positioning Committee. Marine Technology Society. DYNAMIC POSITIONING CONFERENCE September 18-19, 2001 Author s Name Name of the Paper Session PDynamic Positioning Committee Marine Technology Society DYNAMIC POSITIONING CONFERENCE September 18-19, 2001 POWER PLANT SESSION A New Concept for Fuel Tight DP

More information

Investigation of failure in performance of linear compressor & its rectifications

Investigation of failure in performance of linear compressor & its rectifications Investigation of failure in performance of linear compressor & its rectifications #1 M.B.Nirali, #2 Dr.V.K.Bhojwani #1 mechanical Engineering, Jscoe, Savitribai Phule Pune University, Pune India #2 mechanical

More information

Animal Ventilator for Gated Hyperpolarized Helium MRI

Animal Ventilator for Gated Hyperpolarized Helium MRI Animal Ventilator for Gated Hyperpolarized Helium MRI Team Members Ashley Anderson III Micah Brown Matt Smith Chris Wegener Advisor Dr. Willis Tompkins Department of Biomedical Engineering University of

More information

ACCURATE PRESSURE MEASUREMENT FOR STEAM TURBINE PERFORMANCE TESTING

ACCURATE PRESSURE MEASUREMENT FOR STEAM TURBINE PERFORMANCE TESTING ACCURATE PRESSURE MEASUREMENT FOR STEAM TURBINE PERFORMANCE TESTING Blair Chalpin Charles A. Matthews Mechanical Design Engineer Product Support Manager Scanivalve Corp Scanivalve Corp Liberty Lake, WA

More information

OIL & GAS. 20th APPLICATION REPORT. SOLUTIONS for FLUID MOVEMENT, MEASUREMENT & CONTAINMENT. Q&A: OPEC Responds to SHALE BOOM

OIL & GAS. 20th APPLICATION REPORT. SOLUTIONS for FLUID MOVEMENT, MEASUREMENT & CONTAINMENT. Q&A: OPEC Responds to SHALE BOOM Process VARIABILITY & Equipment RELIABILITY Are PROCESS SAFETY & CYBERSECURITY Related? Q&A: OPEC Responds to SHALE BOOM 20th 1995-2015 SOLUTIONS for FLUID MOVEMENT, MEASUREMENT & CONTAINMENT special section

More information

Lab 4: Root Locus Based Control Design

Lab 4: Root Locus Based Control Design Lab 4: Root Locus Based Control Design References: Franklin, Powell and Emami-Naeini. Feedback Control of Dynamic Systems, 3 rd ed. Addison-Wesley, Massachusetts: 1994. Ogata, Katsuhiko. Modern Control

More information

Using PV Diagram Synchronized With the Valve Functioning to Increase the Efficiency on the Reciprocating Hermetic Compressors

Using PV Diagram Synchronized With the Valve Functioning to Increase the Efficiency on the Reciprocating Hermetic Compressors Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 21 Using PV Diagram Synchronized With the Valve Functioning to Increase the Efficiency on

More information

FLUID POWER FLUID POWER EQUIPMENT TUTORIAL ACCUMULATORS. This work covers part of outcome 2 of the Edexcel standard module:

FLUID POWER FLUID POWER EQUIPMENT TUTORIAL ACCUMULATORS. This work covers part of outcome 2 of the Edexcel standard module: FLUID POWER FLUID POWER EQUIPMENT TUTORIAL ACCUMULATORS This work covers part of outcome 2 of the Edexcel standard module: UNIT 21746P APPLIED PNEUMATICS AND HYDRAULICS The material needed for outcome

More information

Drilling Efficiency Utilizing Coriolis Flow Technology

Drilling Efficiency Utilizing Coriolis Flow Technology Session 12: Drilling Efficiency Utilizing Coriolis Flow Technology Clement Cabanayan Emerson Process Management Abstract Continuous, accurate and reliable measurement of drilling fluid volumes and densities

More information

Future Trends Internet of Things, Automated Welding and Additive Manufacturing in India. Friction Stir Welding

Future Trends Internet of Things, Automated Welding and Additive Manufacturing in India. Friction Stir Welding Future Trends Internet of Things, Automated Welding and Additive Manufacturing in India Friction Stir Welding Friction Stir Welding in Action Take-up of FSW by Industry 300 280 260 240 220 200 180 160

More information

Inflatable Standing Aid Device

Inflatable Standing Aid Device Inflatable Standing Aid Device Design Team Travis Fulton, Megan McGuire James O Keefe, Justin Tichy, David Venturoso Design Advisor Prof. Andrew Gouldstone Abstract The purpose of this project is to design

More information

Exercise 2-2. Second-Order Interacting Processes EXERCISE OBJECTIVE DISCUSSION OUTLINE. The actual setup DISCUSSION

Exercise 2-2. Second-Order Interacting Processes EXERCISE OBJECTIVE DISCUSSION OUTLINE. The actual setup DISCUSSION Exercise 2-2 Second-Order Interacting Processes EXERCISE OBJECTIVE Familiarize yourself with second-order interacting processes and experiment with the finer points of controller tuning to gain a deeper

More information

Experimental Investigation on Transient Response of Two Stage Pressure Relief Valve

Experimental Investigation on Transient Response of Two Stage Pressure Relief Valve Experimental Investigation on Transient Response of Two Stage Pressure Relief Valve Prof. Basavaraj V.HUBBALLI 1, Dr. Vilas B.SONDUR 2 1 Jain College of Engineering, Belagavi Karnataka, India, bvhubliabhi@gmail.com

More information

Hydronic Systems Balance

Hydronic Systems Balance Hydronic Systems Balance Balancing Is Misunderstood Balancing is application of fundamental hydronic system math Balance Adjustment of friction loss location Adjustment of pump to requirements By definition:

More information

Speed Control System Design in Bicycle Robot by Low Power Method. Abstract

Speed Control System Design in Bicycle Robot by Low Power Method. Abstract The 2 nd RMUTP International Conference 2010 Page 195 Speed Control System Design in Bicycle Robot by Low Power Method Sunthorn Wiriya, Nikom Distaklu and Suppachai Howimanporn*. Department of Electrical

More information

PI control for regulating pressure inside a hypersonic wind tunnel

PI control for regulating pressure inside a hypersonic wind tunnel PI control for regulating pressure inside a hypersonic wind tunnel Sameer U. Ranade Dept of Electrical engineering, Walchand College of Engineering, Vishrambag, Sangli.416415. State- Maharshtra Email:

More information

Digital Level Control One and Two Loops Proportional and Integral Control Single-Loop and Cascade Control

Digital Level Control One and Two Loops Proportional and Integral Control Single-Loop and Cascade Control Digital Level Control One and Two Loops Proportional and Integral Control Single-Loop and Cascade Control Introduction This experiment offers a look into the broad field of process control. This area of

More information

Optimization of Air compressor Motor speed for Reducing Power Consumption

Optimization of Air compressor Motor speed for Reducing Power Consumption Optimization of Air compressor Motor speed for Reducing Power Consumption Amit Bahekar 1, Dr. Sanjeev Yadav 2 1 Research Scholar, Department of Mechanical Engineering, Sunrise University, Alwar(Raj). 2

More information

GP1 & GP2. Electropneumatic Regulators FOR PRESSURE CONTROL TO 1,000 PSI

GP1 & GP2. Electropneumatic Regulators FOR PRESSURE CONTROL TO 1,000 PSI GP1 & GP2 Electropneumatic Regulators FOR PRESSURE CONTROL TO 1, PSI GP1 & GP2 Functional Description The GP series control valve is an electronic pressure regulator designed to precisely control the pressure

More information

Correlation Between the Fluid Structure Interaction Method and Experimental Analysis of Bending Stress of a Variable Capacity Compressor Suction Valve

Correlation Between the Fluid Structure Interaction Method and Experimental Analysis of Bending Stress of a Variable Capacity Compressor Suction Valve Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 24 Correlation Between the Fluid Structure Interaction Method and Experimental Analysis

More information

PEAPOD. Pneumatically Energized Auto-throttled Pump Operated for a Developmental Upperstage. Test Readiness Review

PEAPOD. Pneumatically Energized Auto-throttled Pump Operated for a Developmental Upperstage. Test Readiness Review PEAPOD Pneumatically Energized Auto-throttled Pump Operated for a Developmental Upperstage Test Readiness Review Customer: Special Aerospace Services Chris Webber and Tim Bulk 1 Overview Project Overview

More information

Automated design of a ship mooring system

Automated design of a ship mooring system Automated design of a ship mooring system The challenge: To investigate a mechanism to control and automate a mooring system between two ships at sea Maplesoft, a division of Waterloo Maple Inc., 29 Editor's

More information

CHARACTERISTICS OF LEAK DETECTION BASED ON DIFERENTIAL PRESSURE MEASUREMENT

CHARACTERISTICS OF LEAK DETECTION BASED ON DIFERENTIAL PRESSURE MEASUREMENT CHARACTERISTICS OF LEAK DETECTION BASED ON DIFERENTIAL PRESSURE MEASUREMENT Harus L.G..*, Maolin CAI**, Kenji KAWASHIMA** and Toshiharu KAGAWA** * Graduate student of Mechano-Micro Engineering Dept., Tokyo

More information

Introduction to Pneumatics

Introduction to Pneumatics Introduction to Pneumatics Pneumatics Symbols Air generation and distribution Table 1: Symbols use in energy conversion and preparation ITEM SYMBOL MEANING Compressor SUPPLY Pressure Source Pneumatic Pressure

More information

PREDICTION OF TOTAL PRESSURE CHARACTERISTICS IN THE SETTLING CHAMBER OF A SUPERSONIC BLOWDOWN WIND TUNNEL

PREDICTION OF TOTAL PRESSURE CHARACTERISTICS IN THE SETTLING CHAMBER OF A SUPERSONIC BLOWDOWN WIND TUNNEL PREDICTION OF TOTAL PRESSURE CHARACTERISTICS IN THE SETTLING CHAMBER OF A SUPERSONIC BLOWDOWN WIND TUNNEL S R Bhoi and G K Suryanarayana National Trisonic Aerodynamic Facilities, National Aerospace Laboratories,

More information

Exercise 2-3. Flow Rate and Velocity EXERCISE OBJECTIVE C C C

Exercise 2-3. Flow Rate and Velocity EXERCISE OBJECTIVE C C C Exercise 2-3 EXERCISE OBJECTIVE C C C To describe the operation of a flow control valve; To establish the relationship between flow rate and velocity; To operate meter-in, meter-out, and bypass flow control

More information

Emergent walking stop using 3-D ZMP modification criteria map for humanoid robot

Emergent walking stop using 3-D ZMP modification criteria map for humanoid robot 2007 IEEE International Conference on Robotics and Automation Roma, Italy, 10-14 April 2007 ThC9.3 Emergent walking stop using 3-D ZMP modification criteria map for humanoid robot Tomohito Takubo, Takeshi

More information

Basic Hydraulics. Module 4: Flow Control Valves & Pressure Relief Valves. Academic Services PREPARED BY. January 2012

Basic Hydraulics. Module 4: Flow Control Valves & Pressure Relief Valves. Academic Services PREPARED BY. January 2012 Basic Hydraulics Module 4: Flow Control Valves & Pressure Relief Valves PREPARED BY Academic Services January 2012 Applied Technology High Schools, 2011 ATM 1122 Basic Hydraulics Module 4: Flow control

More information

Flotation Control & Optimisation

Flotation Control & Optimisation Flotation Control & Optimisation A global leader in mineral and metallurgical innovation FlowStar Overview Flotation is a complex process that is affected by a multitude of factors. These factors may be

More information

Autodesk Moldflow Communicator Process settings

Autodesk Moldflow Communicator Process settings Autodesk Moldflow Communicator 212 Process settings Revision 1, 3 March 211. Contents Chapter 1 Process settings....................................... 1 Profiles.................................................

More information

AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE

AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE - 247 - AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE J D Castro a, C W Pope a and R D Matthews b a Mott MacDonald Ltd, St Anne House,

More information

Inertial compensation for belt acceleration in an instrumented treadmill

Inertial compensation for belt acceleration in an instrumented treadmill Inertial compensation for belt acceleration in an instrumented treadmill Sandra K. Hnat, Antonie J. van den Bogert Department of Mechanical Engineering, Cleveland State University Cleveland, OH 44115,

More information

A Chiller Control Algorithm for Multiple Variablespeed Centrifugal Compressors

A Chiller Control Algorithm for Multiple Variablespeed Centrifugal Compressors Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2014 A Chiller Control Algorithm for Multiple Variablespeed Centrifugal Compressors Piero

More information

International Journal of Advance Engineering and Research Development DESIGN CALCULATIONS TO EVALUATE PERFORMANCE PARAMETERS OF COMPRESSOR VALVE

International Journal of Advance Engineering and Research Development DESIGN CALCULATIONS TO EVALUATE PERFORMANCE PARAMETERS OF COMPRESSOR VALVE Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 4, Issue 7, July -2017 e-issn (O): 2348-4470 p-issn (P): 2348-6406 DESIGN CALCULATIONS

More information

Technical Data Sheet TI-F50 Locking Units series KFH

Technical Data Sheet TI-F50 Locking Units series KFH English translation of German original Locking Units series KF Further important practical advice is given in Operating Manual BA-F50., Rod diameter 18 mm 50 mm øz 8 L 2 6 x 6 0 min. 4x30 KF 18 to KF 32,

More information

WORKHOLDING APPLICATION BOOKLET

WORKHOLDING APPLICATION BOOKLET WORKHOLDING APPLICATION BOOKLET Applications and advantages of using minibooster hydraulic pressure intensifiers MINIMUM SIZE MAXIMUM POWER B-GB Workholding 2018.04 1 of 20 2 of 20 B-GB Workholding 2018.04

More information

A NEW GOLF-SWING ROBOT MODEL UTILIZING SHAFT ELASTICITY

A NEW GOLF-SWING ROBOT MODEL UTILIZING SHAFT ELASTICITY Journal of Sound and Vibration (1998) 17(1), 17 31 Article No. sv981733 A NEW GOLF-SWING ROBOT MODEL UTILIZING SHAFT ELASTICITY S. SUZUKI Department of Mechanical System Engineering, Kitami Institute of

More information

Transient Analyses In Relief Systems

Transient Analyses In Relief Systems Transient Analyses In Relief Systems Dirk Deboer, Brady Haneman and Quoc-Khanh Tran Kaiser Engineers Pty Ltd ABSTRACT Analyses of pressure relief systems are concerned with transient process disturbances

More information

Acoustical Modeling of Reciprocating Compressors With Stepless Valve Unloaders

Acoustical Modeling of Reciprocating Compressors With Stepless Valve Unloaders Acoustical Modeling of Reciprocating Compressors With Stepless Valve Unloaders Kelly Eberle, P.Eng. Principal Engineer keberle@betamachinery.com Brian C. Howes, M.Sc., P.Eng. Chief Engineer bhowes@betamachinery.com

More information

CHAPTER 7: THE FEEDBACK LOOP

CHAPTER 7: THE FEEDBACK LOOP When I complete this chapter, I want to be able to do the following. Identify the major elements in the feedback loop Select appropriate candidate variables to be controlled and manipulated Evaluate the

More information

Simulator For Performance Prediction Of Reciprocating Compressor Considering Various Losses

Simulator For Performance Prediction Of Reciprocating Compressor Considering Various Losses Simulator For Performance Prediction Of Reciprocating Considering Various Losses Aditya S. Bawane 1, Dr. V.K. Bhojwani 2, Mitali B. Deshmukh 3 1 (Mechanical Engineering Department, JSCOE, S.P. Pune University,

More information

Mitos Fluika Pressure and Vacuum Pumps Datasheet

Mitos Fluika Pressure and Vacuum Pumps Datasheet Unit 1, Anglian Business Park, Orchard Road, Royston, Hertfordshire, SG8 5TW, UK T: +44 (0)1763 242491 F: +44 (0)1763 246125 E: sales@dolomite-microfluidics.com W: www.dolomite-microfluidics.com Dolomite

More information

Modeling of Hydraulic Hose Paths

Modeling of Hydraulic Hose Paths Mechanical Engineering Conference Presentations, Papers, and Proceedings Mechanical Engineering 9-2002 Modeling of Hydraulic Hose Paths Kurt A. Chipperfield Iowa State University Judy M. Vance Iowa State

More information

DESIGN OF SPECIALIST BAROCHAMBERS FOR THE STUDY OF BAROTRAUMA

DESIGN OF SPECIALIST BAROCHAMBERS FOR THE STUDY OF BAROTRAUMA Full Paper 11 th ISE 2016, Melbourne, Australia DESIGN OF SPECIALIST BAROCHAMBERS FOR THE STUDY OF BAROTRAUMA BRETT MILLER UNSW - Water Research Laboratory Manly Vale, Sydney, NSW, Australia CRAIG BOYS

More information

Selecting the right pressure sensor for your application

Selecting the right pressure sensor for your application Selecting the right pressure sensor for your application This guide from Acal BFi details the key factors that you must consider when selecting a pressure sensor for your application. Selecting the best

More information

Kochi University of Technology Aca Study on Dynamic Analysis and Wea Title stem for Golf Swing Author(s) LI, Zhiwei Citation 高知工科大学, 博士論文. Date of 2015-03 issue URL http://hdl.handle.net/10173/1281 Rights

More information

A Neuromuscular Model of Human Locomotion and its Applications to Robotic Devices

A Neuromuscular Model of Human Locomotion and its Applications to Robotic Devices A Neuromuscular Model of Human Locomotion and its Applications to Robotic Devices The 10th Workshop on Humanoid Soccer Robots at 15th IEEE-RAS International Conference on Humanoid Robots Nov 3, 2015 Seungmoon

More information

Process Control Loops

Process Control Loops In this section, you will learn about how control components and control algorithms are integrated to create a process control system. Because in some processes many variables must be controlled, and each

More information

Development of an End-Effector for a Tomato Cluster Harvesting Robot*

Development of an End-Effector for a Tomato Cluster Harvesting Robot* Research Paper EAEF 3(1) : 20-24, 2010 Development of an End-Effector for a Tomato Cluster Harvesting Robot* Naoshi KONDO *1, Koki YATA *2, Michihisa IIDA *3, Tomoo SHIIGI *1, Mitsuji MONTA *4, Mitsutaka

More information

Incorporating 3D Suction or Discharge Plenum Geometry into a 1D Compressor Simulation Program to Calculate Compressor Pulsations

Incorporating 3D Suction or Discharge Plenum Geometry into a 1D Compressor Simulation Program to Calculate Compressor Pulsations Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2012 Incorporating 3D Suction or Discharge Plenum Geometry into a 1D Compressor Simulation

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 6 Table of Contents 1. PURPOSE...2 2. PARAMETERS...2 2.1 General Considerations...2 3 DESCRIPTION OF PROCEDURE...2 3.1 Model Design and Construction...2 3.2 Measurements...3 3.5 Execution of

More information

Novel empirical correlations for estimation of bubble point pressure, saturated viscosity and gas solubility of crude oils

Novel empirical correlations for estimation of bubble point pressure, saturated viscosity and gas solubility of crude oils 86 Pet.Sci.(29)6:86-9 DOI 1.17/s12182-9-16-x Novel empirical correlations for estimation of bubble point pressure, saturated viscosity and gas solubility of crude oils Ehsan Khamehchi 1, Fariborz Rashidi

More information

Golf Ball Impact: Material Characterization and Transient Simulation

Golf Ball Impact: Material Characterization and Transient Simulation 12 th International LS-DYNA Users Conference Blast/Impact(1) Golf Ball Impact: Material Characterization and Transient Simulation Xiaohu Liu, David Quinn and Jorgen Bergström Veryst Engineering, LLC 47A

More information

Lifespan Improvements Available in the Industry

Lifespan Improvements Available in the Industry Refining Actuator Systems and Their Reliability, Lifespan Improvements Available in the Industry League City, TX, April 12-15, 2010 Philip Black, Director pbblack@earthlink.net 1 Extending the Lifespan

More information

Best Practices Pneumatics Machine & Design. Written by Richard F. Bullers, CFPPS as published in Fluid Power Journal, July/August 2016

Best Practices Pneumatics Machine & Design. Written by Richard F. Bullers, CFPPS as published in Fluid Power Journal, July/August 2016 Pneumatics Machine & Design Written by Richard F. Bullers, CFPPS as published in Fluid Power Journal, July/August 2016 Contents at Atmospheric Air The air at a compressor s intake contains about 78% nitrogen,

More information

Algorithm for Line Follower Robots to Follow Critical Paths with Minimum Number of Sensors

Algorithm for Line Follower Robots to Follow Critical Paths with Minimum Number of Sensors International Journal of Computer (IJC) ISSN 2307-4523 (Print & Online) Global Society of Scientific Research and Researchers http://ijcjournal.org/ Algorithm for Line Follower Robots to Follow Critical

More information

Numerical Simulation of Fluid-Structure Interaction in the Design Process for a New Axial Hydraulic Pump

Numerical Simulation of Fluid-Structure Interaction in the Design Process for a New Axial Hydraulic Pump Numerical Simulation of Fluid-Structure Interaction in the Design Process for a New Axial Hydraulic Pump Bettina Landvogt¹, Leszek Osiecki², Tomasz Zawistowski³, Bartek Zylinski 4 1 Fraunhofer SCAI, Germany,

More information

Development of a High Pressure, Oil Free, Rolling Piston Compressor

Development of a High Pressure, Oil Free, Rolling Piston Compressor Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 1994 Development of a High Pressure, Oil Free, Rolling Piston Compressor S. J. Delmotte

More information

The Compact, Portable, Efficient and Economical Solution to boost Shop Compressed Air Pressure by 2 or 3 times

The Compact, Portable, Efficient and Economical Solution to boost Shop Compressed Air Pressure by 2 or 3 times Tseries Series AB AB Air Air Boosters Boosters The Compact, Portable, Efficient and Economical Solution to boost Shop Compressed Air Pressure by 2 or 3 times.01/1 MANIFOLD MOUNTED VALVES FOR EASY SERVICING

More information

AN ANALYSIS ON HIGH PRESSURE DYNAMIC CALIBRATORS USED IN THE DEFENSE AREAS

AN ANALYSIS ON HIGH PRESSURE DYNAMIC CALIBRATORS USED IN THE DEFENSE AREAS AN ANALYSIS ON HIGH PRESSURE DYNAMIC CALIBRATORS USED IN THE DEFENSE AREAS Sung Soo HongPresenter Agency for Defense Development, Taean, 357-942, South Korea sungsoo@add.re.kr Abstract Up to now, there

More information

TR Electronic Pressure Regulator. User s Manual

TR Electronic Pressure Regulator. User s Manual TR Electronic Pressure Regulator Page 2 of 13 Table of Contents Warnings, Cautions & Notices... 3 Factory Default Setting... 4 Quick Start Procedure... 5 Configuration Tab... 8 Setup Tab... 9 Internal

More information

Computer Integrated Manufacturing (PLTW) TEKS/LINKS Student Objectives One Credit

Computer Integrated Manufacturing (PLTW) TEKS/LINKS Student Objectives One Credit Computer Integrated Manufacturing (PLTW) TEKS/LINKS Student Objectives One Credit Suggested Time Ranges First Six Weeks History of Manufacturing PFD 1.1(A) The student will describe why and how manufacturing

More information

EXPERIMENTAL STUDY OF EXOSKELETON FOR ANKLE AND KNEE JOINT

EXPERIMENTAL STUDY OF EXOSKELETON FOR ANKLE AND KNEE JOINT EXPERIMENTAL STUDY OF EXOSKELETON FOR ANKLE AND KNEE JOINT PROJECT REFERENCE NO. : 37S0925 COLLEGE : NEW HORIZON COLLEGE OF ENGINEERING, BANGALORE BRANCH : MECHANICAL ENGINEERING GUIDES : DR GANESHA PRASAD

More information

LQG Based Robust Tracking Control of Blood Gases during Extracorporeal Membrane Oxygenation

LQG Based Robust Tracking Control of Blood Gases during Extracorporeal Membrane Oxygenation 2011 American Control Conference on O'Farrell Street, San Francisco, CA, USA June 29 - July 01, 2011 LQG Based Robust Tracking Control of Blood Gases during Extracorporeal Membrane Oxygenation David J.

More information

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Dynamic Model of Pressure Regulating Valve Ahmed Abed *

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Dynamic Model of Pressure Regulating Valve Ahmed Abed * IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Dynamic Model of Pressure Regulating Valve Ahmed Abed * Automotive and Marine Engineering Department/ Collage of Technological

More information

Series 7250 Ruska High-Speed Digital Pressure Controller. GE Sensing. Features

Series 7250 Ruska High-Speed Digital Pressure Controller. GE Sensing. Features Features Pressure ranges from 0 to 5 and 0 to 3000 psi (0 to 400 mbar and 0 to 210 bar) xi and 7250i provide advanced precision of 0.005% of reading provides 0.003% of full scale precision Stability: 0.0075%

More information

WATER HYDRAULIC SYSTEM FOR HIGH SPEED CYLINDER DRIVE

WATER HYDRAULIC SYSTEM FOR HIGH SPEED CYLINDER DRIVE OS3-3 Proceedings of the 7th JFPS International Symposium on Fluid Power, TOYAMA 2008 September 15-18, 2008 WATER HYDRAULIC SYSTEM FOR HIGH SPEED CYLINDER DRIVE Shigeru IKEO*, Hirotaka NAKASHIMA** and

More information

Data Sheet T 8389 EN. Series 3730 and 3731 Types , , , and. EXPERTplus Valve Diagnostic

Data Sheet T 8389 EN. Series 3730 and 3731 Types , , , and. EXPERTplus Valve Diagnostic Data Sheet T 8389 EN Series 3730 and 3731 Types 3730-2, 3730-3, 3730-4, 3730-5 and Type 3731-3 Electropneumatic Positioners EXPERTplus Valve Diagnostic Application Positioner firmware to detect potential

More information

Linear Compressor Suction Valve Optimization

Linear Compressor Suction Valve Optimization Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2016 Linear Compressor Suction Valve Optimization Rinaldo Puff Embraco, Brazil, rinaldo.puff@embraco.com

More information

An Investigation of Liquid Injection in Refrigeration Screw Compressors

An Investigation of Liquid Injection in Refrigeration Screw Compressors An Investigation of Liquid Injection in Refrigeration Screw Compressors Nikola Stosic, Ahmed Kovacevic and Ian K. Smith Centre for Positive Displacement Compressor Technology, City University, London EC1V

More information

WATER HYDRAULIC HIGH SPEED SOLENOID VALVE AND ITS APPLICATION

WATER HYDRAULIC HIGH SPEED SOLENOID VALVE AND ITS APPLICATION WATER HYDRAULIC HIGH SPEED SOLENOID VALVE AND ITS APPLICATION Akihito MITSUHATA *, Canghai LIU *, Ato KITAGAWA * and Masato KAWASHIMA ** * Department of Mechanical and Control Engineering, Graduate school

More information

Pressure on Demand. Air Pressure Amplifiers

Pressure on Demand. Air Pressure Amplifiers Pressure on Demand Air Pressure Amplifiers Introduction Haskel air pressure amplifiers offer the most comprehensive range in the industry combining simple principles of operation with rugged construction

More information

A NEW PROCESS FOR IMPROVED LIQUEFACTION EFFICIENCY

A NEW PROCESS FOR IMPROVED LIQUEFACTION EFFICIENCY WHITE PAPER A NEW PROCESS FOR IMPROVED LIQUEFACTION EFFICIENCY Author(s): Adam Jones and Grant Johnson, Costain Natural Resources First published: GPAE, September 2014 www.costain.com A New Process for

More information

Adaptive Pushover Analysis of Irregular RC Moment Resisting Frames

Adaptive Pushover Analysis of Irregular RC Moment Resisting Frames Kalpa Publications in Civil Engineering Volume 1, 2017, Pages 132 136 ICRISET2017. International Conference on Research and Innovations in Science, Engineering &Technology. Selected papers in Civil Engineering

More information

ZMP Trajectory Generation for Reduced Trunk Motions of Biped Robots

ZMP Trajectory Generation for Reduced Trunk Motions of Biped Robots ZMP Trajectory Generation for Reduced Trunk Motions of Biped Robots Jong H. Park School of Mechanical Engineering Hanyang University Seoul, 33-79, Korea email:jong.park@ieee.org Yong K. Rhee School of

More information