SOME ASPECTS OF THE MECHANICS OF MAMMALIAN LOCOMOTION

Size: px
Start display at page:

Download "SOME ASPECTS OF THE MECHANICS OF MAMMALIAN LOCOMOTION"

Transcription

1 SOME ASPECTS OF THE MECHANICS OF MAMMALIAN LOCOMOTION BY OLIVER R. BARCLAY Department of Zoology, University of Cambridge (Received 28 August 195a) Gray (1944) analysed the pattern of muscular activity in mammals, but there is practically no published experimental data which could be used to check this analysis. Elftman (1938, 1939a, b, c) working with man, and Manter (1938), working with the cat, developed various types of apparatus for recording the forces exerted on the ground, but Manter's published results give adequate data for the calculation of patterns of muscular activity for a single stride only. Following similar work on the Amphibia (Barclay, 1946), an attempt was therefore made to record the forces exerted on the ground by various mammals and to obtain synchronous photographs of the limb positions with a view to calculating the activity in the main groups of limb muscles. The apparatus used was a development of that employed with Amphibia (Barclay, 1946) and is shown in Fig. 1. Its main advantage over previous types of apparatus is that it practically eliminates rotation and tilt, and there is therefore no need to ensure that the feet are placed centrally on the platform. The experiments were carried out on three dogs of different types, two goats and two sheep. All the records conformed generally to the same type, and although some variation was found in detail in individual strides, the general pattern of forces at the feet was constant. In a normal stride only one limb at a time was actually on the platform. An example is given in Fig. 2, where the axis of the limb was taken as the line drawn between the centre of the part of the foot applied to the ground and the centre of articulation of the limb with the body. In the hindlimb the centre of articulaticm is the centre of the acetabulum, and its position was easily fixed in photographs in relation to bony prominences on the body. In the forelimb the glenoid cavity moves considerably because the scapula moves against the body; here the centre of articulation was taken to be the centre of rotation of the scapula, and this was harder to fix exactly in the photographs. The photographic records showed the position of the limbs and the forces exerted on the ground at the same moment in three axes at right angles. From the angle of inclination of the limb and the vertical force (i.e. proportion of the weight) exerted on the ground at any stage it is possible to calculate the longitudinal forces which would be exerted on the ground if the limb were a rigid strut and the extrinsic limb muscles were not active. This horizontal force may be called the horizontal strut effect or horizontal effect of the weight. In this series of experiments the photographs did not show the angle of inclination of the limbs laterally

2 Mechanics of mammalian locomotion 117 Dut only longitudinally. Calculations could therefore only be made on the horizontal forces in the longitudinal axis, and the horizontal forces referred to in the discussion are all longitudinal horizontal forces. Fig. 1. The wooden platform ABCD is let into a larger platform (not shown), over which the animal walks. ABCD is fixed rigidly to a pair of steel bars QR and ST, i in. x ii in. X 3 ft. These in turn are bolted to a pair of similar steel bars WX and YZ. These are welded to a metal base which is screwed to the floor. The movements of ABCD in three axes at right angles are recorded, by means of three straw levers, on a smoke drum. By means of a mirror this is placed in the same photographic plane as the animal so that photographs of the animal taken from die side include a record of the forces at the same moment. ~ Angle of inclination of limbs Fig. 3. Force records for a normal stride in a dog weighing 92 lb. The line AB represents the forces exerted on die ground by the left forelimb and the line CD those exerted by the left hindlimb. The angle of inclination is the angle made by the limb as a whole with the ground, negative when the foot is in front and positive when it is behind die centre of articulation of the limb. Negative longitudinal forces are forces contrary to the direction of movement.

3 n8 OLIVER R. BARCLAY _ The difference between the calculated horizontal effect of the weight (H w ) anff the horizontal force actually recorded at the foot (H R ) is the horizontal effect of the activity of the extrinsic limb muscles (H M ) or, as it has been called, the horizontal lever effect. Clearly H R =H w +H M. The force records when co-ordinated with the photographs of the limb positions therefore give a measure of the activity in the extrinsic limb muscles. Since the height above the ground of the centres of articula- Table i. ForeHmb Angle made by limb with the ground = oc protraction + retraction Weight resting J 1- TTT on LunD W inlb. TT.1 Horizontal component of weight H w = Wxcotanoc Recorded uonzonm force = Hg Horizontal force due to extrinsic muscles H M H B H W Postive = retractor Negative = protractor * + 7 t * * -86* Dog ZO'O I4O i + II-O - Goat Sheep -ii-4 -a -14 -i "3 '8 -o o-3 I-I -4 2-O z-o 2-2 -i-6 -o-8 z-o -o-6 Z z tion of the limbs with the body did not vary greatly, H M is a fairly accurate measure of the total exerted on the limb by its extrinsic muscles. A series of typical calculations of this type on the fore and hind limbs of a dog, sheep and goat are shown in the Tables below. In both the fore and the hind limbs a constant pattern of muscular activity was observed, except that the exact point at which the change took place from a retractor to a protractor varied within narrow limits, probably in accordance with the degree of acceleration or deceleration of the animal; it was, however, always shortly after the foot had moved to be behind the centre of articulation of the limb. The records are for normal walking.

4 Mechanics of mammalian locomotion 119 A few records were also obtained with goats standing with one foot on the platform. Normally the goat always stands with its two fore feet in front of the scapula and the two hind feet behind the acetabulum. In this position the horizontal Table 2. HindUmb Angle made by limb with the ground = a -protraction + retraction Weight resting inlb. Horizontal component of weight H w = Wx cotana Recorded UU11ZU11 Uu force=h B Horizontal force due to extrinsic muscles TT Z X2^ Positive = retractor Negative = protractor * * i J * * * + 74* + 7i Dog i Goat s-2-3' IO Sheep i' : a "o o-i " i* O' ' So -3 -o '3 forces at the feet were smaller than the horizontal component of the weight (H w ) and demonstrated a small retractor on the forelimbs and a small protractor on the hindlimbs. This is the same pattern of muscular activity as that shown in walking.

5 12 OLIVER R. BARCLAY The lateral forces were generally less than the longitudinal forces, but since there was no record of the lateral inclination of the limbs, no calculations could be made of the pattern of adductor or abductor muscle activity. These results could be summarized by saying that a group of extrinsic muscles is active (i.e. exerts a greater than its antagonists) when the foot is on the opposite side of the proximal limb joint to the origin of the muscles concerned. The exception to this is that for a short time after the feet are behind the joint the retractors are still active in both fore- and hindlimb. This, however, only lasts while the feet are so nearly vertical that the actual horizontal forces remain low. The pattern of muscular activity is therefore always such as to maintain the horizontal forces at the feet at a very low level. Usually it reduces them to a figure very considerably below the horizontal component of the weight or the horizontal force which would be developed by any other pattern of muscular activity. These generalizations are not affected by certain erratic readings such as those shown in the tables for the dog and sheep. Calculation on results given by Manter (1938) for the cat, and Elftman (194) for man, show the same pattern of extrinsic muscular activity. It is also the same as that shown to be present in the toad and newt (Barclay, 1946) and demonstrated by Gray (1944) and Barclay (1946) to be in almost every respect the most efficient possible mechanically. SUMMARY 1. An apparatus is described for measuring the forces exerted on the ground by mammals in three axes at right angles. 2. Analysis of these force records and synchronous photographs of the limb positions shows a constant pattern of activity in the protractor and retractor muscles of both limbs. 3. This pattern of activity is basically the same as that previously demonstrated in the toad and newt and shown to be mechanically in most respects the most efficient possible. I wish to thank Prof. J. Gray for constant advice and help and Mr K. Williamson for technical assistance. The work was done while holding a Coutts-Trotter Research Studentship at Trinity College, Cambridge. REFERENCES BARCLAY, O. R. (1946). The mechanics of amphibian locomotion. J. Exp. Biol. 23, ELFTMAN, H. (1938). The measurement of the external force in walking. Science, 88, 2-3. ELFTMAN, H. (1939a). Forces and energy changes in the leg during walking. Amer. J. Phytiol. 125, 5 6 ELFTMAN, H. (1939A). The rotation of the body in walking. Arbeitipkynologie, 1, ELFTMAN, H. (1939c). The force exerted by the ground in walking. ArbeiUpkysiologie, 1, ELFTMAN, H. (194). The work done by muscles in running. Amer. J. Phytiol. 129, GRAY, J. (1944). Studies in the mechanics of the tetrapod skeleton. J. Exp. Biol. 3, 88-n6. MANTER, J. T. (1938). The dynamics of quadrupedal walking. J. Exp. Biol.,

THE MECHANICS OF AMPHIBIAN LOCOMOTION

THE MECHANICS OF AMPHIBIAN LOCOMOTION THE MECHANICS OF AMPHIBIAN LOCOMOTION BY OLIVER R. BARCLAY (Coutts- Trotter Student at Trinity College, Cambridge), Department of Zoology, University of Cambridge (Received 10 April 1946) (With Sixteen

More information

Function of the extrinsic hindlimb muscles in trotting dogs

Function of the extrinsic hindlimb muscles in trotting dogs 1036 The Journal of Experimental Biology 212, 1036-1052 Published by The Company of Biologists 2009 doi:10.1242/jeb.020255 Function of the extrinsic hindlimb muscles in trotting dogs Nadja Schilling 1,

More information

Locomotor Function of Forelimb Protractor and Retractor Muscles of Dogs: Evidence of Strut-like Behavior at the Shoulder

Locomotor Function of Forelimb Protractor and Retractor Muscles of Dogs: Evidence of Strut-like Behavior at the Shoulder University of South Florida Scholar Commons Integrative Biology Faculty and Staff Publications Integrative Biology 1-2008 Locomotor Function of Forelimb Protractor and Retractor Muscles of Dogs: Evidence

More information

-Elastic strain energy (duty factor decreases at higher speeds). Higher forces act on feet. More tendon stretch. More energy stored in tendon.

-Elastic strain energy (duty factor decreases at higher speeds). Higher forces act on feet. More tendon stretch. More energy stored in tendon. As velocity increases ( ) (i.e. increasing Froude number v 2 / gl) the component of the energy cost of transport associated with: -Internal kinetic energy (limbs accelerated to higher angular velocity).

More information

THE DYNAMICS OF QUADRUPEDAL WALKING BY JOHN T. MANTER

THE DYNAMICS OF QUADRUPEDAL WALKING BY JOHN T. MANTER 522 THE DYNAMICS OF QUADRUPEDAL WALKING BY JOHN T. MANTER Department of Zoology, Columbia University and Department of Anatomy, University of South Dakota (Received 22 April 1938) (With Twelve Text-figures)

More information

CHANGES OF INTERNAL HYDROSTATIC PRESSURE AND BODY SHAPE IN ACANTHOCEPHALUS RANAE

CHANGES OF INTERNAL HYDROSTATIC PRESSURE AND BODY SHAPE IN ACANTHOCEPHALUS RANAE J. Exp. Biol. (1966), 45, 197-204 197 With 5 text-figures Printed in Great Britain CHANGES OF INTERNAL HYDROSTATIC PRESSURE AND BODY SHAPE IN ACANTHOCEPHALUS RANAE BY R. A. HAMMOND Department of Zoology,

More information

RESEARCH MEMORANDUM. WASHINGTON December 3, AERODYNl$MIC CHARACTERISTICS OF A MODEL? OF AN ESCAPE ...,

RESEARCH MEMORANDUM. WASHINGTON December 3, AERODYNl$MIC CHARACTERISTICS OF A MODEL? OF AN ESCAPE ..., .". -.%. ;& RESEARCH MEMORANDUM AERODYNl$MIC CHARACTERISTICS OF A MODEL? OF AN ESCAPE 1 \ < :. By John G. Presnell, Jr. w'..., '.., 3... This material contains information affecting the National Bfense

More information

[ THE FORCES EXERTED BY THE TUBE FEET OF THE STARFISH DURING LOCOMOTION

[ THE FORCES EXERTED BY THE TUBE FEET OF THE STARFISH DURING LOCOMOTION [ 575 1 THE FORCES EXERTED BY THE TUBE FEET OF THE STARFISH DURING LOCOMOTION BY G. A. KERKUT Department of Zoology, University of Cambridge (Received 21 April 1953) I. INTRODUCTION The nineteenth-century

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAndMathsTutor.com 6. Figure 2 3 m 0.5 m A D B June 2005 C 30 A uniform pole AB, of mass 30 kg and length 3 m, is smoothly hinged to a vertical wall at one end A. The pole is held in equilibrium

More information

Complex movement patterns of a bipedal walk

Complex movement patterns of a bipedal walk 1 Complex movement patterns of a bipedal walk Objectives After completing this lesson, you will be able to: Describe the complex movement patterns of a bipedal walk. Describe the biomechanics of walking

More information

Coaching the Hurdles

Coaching the Hurdles Coaching the Hurdles Monica Gary, Sprints & Hurdles Coach Purdue University Important components to consider in hurdle training: a. Rhythm for the hurdler is the primary concern for the coach -short rhythm

More information

THE IMPULSE-STEP IN THE JAVELIN THROW

THE IMPULSE-STEP IN THE JAVELIN THROW THE IMPULSE-STEP IN THE JAVELIN THROW Terseus Liebenberg North-West University Potchefstroom South Africa The most important biomechanical principle ultimately determining throwing distance is the release

More information

THE OHIO JOURNAL OF SCIENCE

THE OHIO JOURNAL OF SCIENCE THE OHIO JOURNAL OF SCIENCE Vol. 72 JULY, 1972 No. 4 BODY FORM AND GAIT IN TERRESTRIAL VERTEBRATES 1 WARREN F. WALKER, JR. Department of Biology, Oberlin College, Oberlin, Ohio 44074 One appeal of pure

More information

The Starting Point. Prosthetic Alignment in the Transtibial Amputee. Outline. COM Motion in the Coronal Plane

The Starting Point. Prosthetic Alignment in the Transtibial Amputee. Outline. COM Motion in the Coronal Plane Prosthetic Alignment in the Transtibial Amputee The Starting Point David C. Morgenroth, MD, Department of Rehabilitation Medicine University of Washington VAPSHCS Outline COM Motion in the Coronal Plane

More information

RUNNING SPRINGS: SPEED AND ANIMAL SIZE

RUNNING SPRINGS: SPEED AND ANIMAL SIZE J. exp. Biol. 185, 71 86 (1993) Printed in Great Britain The Company of Biologists Limited 1993 71 RUNNING SPRINGS: SPEED AND ANIMAL SIZE CLAIRE T. FARLEY 1, *, JAMES GLASHEEN 2 AND THOMAS A. MCMAHON 3

More information

Equine Cannon Angle System

Equine Cannon Angle System Equine Cannon System How to interpret the results December 2010 Page 1 of 14 Table of Contents Introduction... 3 The Sagittal Plane... 4 The Coronal Plane... 5 Results Format... 6 How to Interpret the

More information

Lab 7 Rotational Equilibrium - Torques

Lab 7 Rotational Equilibrium - Torques Lab 7 Rotational Equilibrium - Torques Objective: < To test the hypothesis that a body in rotational equilibrium is subject to a net zero torque and to determine the typical tension force that the biceps

More information

Improvement of the Cheetah Locomotion Control

Improvement of the Cheetah Locomotion Control Improvement of the Cheetah Locomotion Control Master Project - Midterm Presentation 3 rd November 2009 Student : Supervisor : Alexander Sproewitz Professor : Auke Jan Ijspeert Presentation of the Cheetah

More information

METHODS EMPLOYED IN LOCATING SOUNDINGS

METHODS EMPLOYED IN LOCATING SOUNDINGS METHODS EMPLOYED IN LOCATING SOUNDINGS The soundings are located with reference to the shore traverse by observations made (i) entirely from the boat, (ii) entirely from the shore or (iii) from both. The

More information

1. The graph below shows how the velocity of a toy train moving in a straight line varies over a period of time.

1. The graph below shows how the velocity of a toy train moving in a straight line varies over a period of time. 1. The graph below shows how the velocity of a toy train moving in a straight line varies over a period of time. v/m s 1 B C 0 A D E H t/s F G (a) Describe the motion of the train in the following regions

More information

(2) BIOMECHANICS of TERRESTRIAL LOCOMOTION

(2) BIOMECHANICS of TERRESTRIAL LOCOMOTION (2) BIOMECHANICS of TERRESTRIAL LOCOMOTION Questions: - How does size influence the mode and speed of locomotion? - What determines the energy cost of locomotion? - Why do humans walk and run the way we

More information

CPCS renewal test factsheet

CPCS renewal test factsheet CPCS renewal test factsheet Introduction to the CPCS renewal test The industry-led CPCS Management Committee has determined that key safety-related knowledge must be checked on each category prior to the

More information

Motor control of locomotor hindlimb posture in the American alligator (Alligator mississippiensis)

Motor control of locomotor hindlimb posture in the American alligator (Alligator mississippiensis) The Journal of Experimental Biology 206, 4327-4340 2003 The Company of Biologists Ltd doi:10.1242/jeb.00688 4327 Motor control of locomotor hindlimb posture in the American alligator (Alligator mississippiensis)

More information

STABILITY OF MULTIHULLS Author: Jean Sans

STABILITY OF MULTIHULLS Author: Jean Sans STABILITY OF MULTIHULLS Author: Jean Sans (Translation of a paper dated 10/05/2006 by Simon Forbes) Introduction: The capsize of Multihulls requires a more exhaustive analysis than monohulls, even those

More information

Motion is a function of both direction and speed. The direction may

Motion is a function of both direction and speed. The direction may BIOMECHANICS Ahmed.J. Kawoosh Osmania university P.M.Ed 7207832127 T24 890716856 Airtel 07802309769 Zain abc_d871@yahoo.com A body is said to be in motion when it changes its position or location in respect

More information

Operating instructions Pitot Static Tube

Operating instructions Pitot Static Tube Operating instructions Pitot Static Tube halstrup-walcher GmbH Stegener Straße 10 D-79199 Kirchzarten, Germany Phone: +49 (0) 76 61/39 63-0 Fax: +49 (0) 76 61/39 63-99 E-mail: info@halstrup-walcher.de

More information

Equine Results Interpretation Guide For Cannon Angles May 2013

Equine Results Interpretation Guide For Cannon Angles May 2013 Equine Results Interpretation Guide For Cannon Angles May 2013 Page 1 of 20 Table of Contents 1. Introduction... 3 2. Options for all plots... 7 3. Tables of data... 8 4. Gaits... 10 5. Walk... 10 6. Trot...

More information

Stability and Flight Controls

Stability and Flight Controls Stability and Flight Controls Three Axes of Flight Longitudinal (green) Nose to tail Lateral (blue) Wing tip to Wing tip Vertical (red) Top to bottom Arm Moment Force Controls The Flight Controls Pitch

More information

Hydrostatic Force on a Submerged Surface

Hydrostatic Force on a Submerged Surface Experiment 3 Hydrostatic Force on a Submerged Surface Purpose The purpose of this experiment is to experimentally locate the center of pressure of a vertical, submerged, plane surface. The experimental

More information

GEA FOR ADVANCED STRUCTURAL DYNAMIC ANALYSIS

GEA FOR ADVANCED STRUCTURAL DYNAMIC ANALYSIS SMART SOLUTIONS FOR VIBRATION MONITORING GEA FOR ADVANCED STRUCTURAL DYNAMIC ANALYSIS ANALYSIS OF CIVIL STRUCTURES - EXPO MERLATA PEDESTRIAN BRIDGE ABSTRACT Civil structures and in particular bridges and

More information

BIOMECHANICAL MOVEMENT

BIOMECHANICAL MOVEMENT SECTION PART 5 5 CHAPTER 12 13 CHAPTER 12: Biomechanical movement Practice questions - text book pages 169-172 1) For which of the following is the athlete s centre of mass most likely to lie outside of

More information

Advanced Subsidiary / Advanced Level

Advanced Subsidiary / Advanced Level GCE Examinations Mechanics Module M1 Advanced Subsidiary / Advanced Level Paper K Time: 1 hour 30 minutes Instructions and Information Candidates may use any calculator except those with a facility for

More information

LocoMorph Deliverable 4.4 part 2.4

LocoMorph Deliverable 4.4 part 2.4 LocoMorph Deliverable 4.4 part 2.4 Kinematics in healthy and morphosed long-tailed lizards (Takydromus sexlineatus): comparison of a simulation model with experimental animal data. Aim D Août K, Karakasiliotis

More information

6.6 Gradually Varied Flow

6.6 Gradually Varied Flow 6.6 Gradually Varied Flow Non-uniform flow is a flow for which the depth of flow is varied. This varied flow can be either Gradually varied flow (GVF) or Rapidly varied flow (RVF). uch situations occur

More information

Body Stabilization of PDW toward Humanoid Walking

Body Stabilization of PDW toward Humanoid Walking Body Stabilization of PDW toward Humanoid Walking Masaki Haruna, Masaki Ogino, Koh Hosoda, Minoru Asada Dept. of Adaptive Machine Systems, Osaka University, Suita, Osaka, 565-0871, Japan ABSTRACT Passive

More information

DEFINITIONS. Aerofoil

DEFINITIONS. Aerofoil Aerofoil DEFINITIONS An aerofoil is a device designed to produce more lift (or thrust) than drag when air flows over it. Angle of Attack This is the angle between the chord line of the aerofoil and the

More information

(fig. 3) must be at the same temperature as the water in this chamber CALORIMETRIC STUDIES OF THE EXTREMITIES

(fig. 3) must be at the same temperature as the water in this chamber CALORIMETRIC STUDIES OF THE EXTREMITIES CALORIMETRIC STUDIES OF THE EXTREMITIES II. EXPERIMENTAL APPARATUS AND PROCEDURES' By ROY KEGERREIS (Received for publication July 1, 1926) The calorimeter used in these experiments is a modification of

More information

Structural Design of Tank Weighing Systems

Structural Design of Tank Weighing Systems Structural Design of Tank Weighing Systems 1. Initial observations Some essential rules must be followed when installing load cells in tanks. For example, tanks are frequently subject to weather conditions

More information

SECTION 4 - POSITIVE CASTING

SECTION 4 - POSITIVE CASTING 4-1 SECTION 4 - POSITIVE CASTING THE SHAPE OF THE SHELL IS DERIVED FROM THE SHAPE OF THE CAST Thermo-forming plastic for orthopedic intervention was originally developed at the University of California

More information

Appointed person Note: It is recommended that you read the Supporting Information page before you read this factsheet.

Appointed person Note: It is recommended that you read the Supporting Information page before you read this factsheet. Appointed person Note: It is recommended that you read the Supporting Information page before you read this factsheet. Planning and regulatory requirements (Regulatory requirements) The role or duties

More information

Putting Report Details: Key and Diagrams: This section provides a visual diagram of the. information is saved in the client s database

Putting Report Details: Key and Diagrams: This section provides a visual diagram of the. information is saved in the client s database Quintic Putting Report Information Guide Putting Report Details: Enter personal details of the client or individual who is being analysed; name, email address, date, mass, height and handicap. This information

More information

STUDIES IN ANIMAL LOCOMOTION

STUDIES IN ANIMAL LOCOMOTION 39 1 STUDIES IN ANIMAL LOCOMOTION III. THE PROPULSIVE MECHANISM OF THE WHITING (GADUS MERLANGUS) BY J. GRAY. (From the Laboratory of Experimental Zoology, Cambridge.) {Received ^th February, 1933.) (With

More information

J. Physiol. (I957) I38, I65-I7I. McCance (1955) added figures for marching. With few exceptions these observations

J. Physiol. (I957) I38, I65-I7I. McCance (1955) added figures for marching. With few exceptions these observations 165 J. Physiol. (I957) I38, I65-I7I THE EXPENDITURE OF ENERGY BY MEN AND WOMEN WALKING BY J. BOOYENS AND W. R. KEATINGE From the Medical Research Council Department of Experimental Medicine, University

More information

Walking and Running BACKGROUND REVIEW. Planar Pendulum. BIO-39 October 30, From Oct. 25, Equation of motion (for small θ) Solution is

Walking and Running BACKGROUND REVIEW. Planar Pendulum. BIO-39 October 30, From Oct. 25, Equation of motion (for small θ) Solution is Walking and Running BIO-39 October 30, 2018 BACKGROUND REVIEW From Oct. 25, 2018 Planar Pendulum Equation of motion (for small θ) 2 d g 0 2 dt Solution is Where: g is acceleration due to gravity l is pendulum

More information

II.E. Airplane Flight Controls

II.E. Airplane Flight Controls References: FAA-H-8083-3; FAA-8083-3-25 Objectives Key Elements Elements Schedule Equipment IP s Actions SP s Actions Completion Standards The student should develop knowledge of the elements related to

More information

Corrugated Hose Loop Calculations

Corrugated Hose Loop Calculations Corrugated Hose Loop Calculations The loop installation is one of the most common application for metal hoses. It allows the flexible hose assembly to work properly. Care must always be exercised to ensure

More information

1. Outline of the newly developed control technologies

1. Outline of the newly developed control technologies This paper describes a vertical lifting control and level luffing control design for newly developed, fully hydraulicdriven floating cranes. Unlike lattice boom crawler cranes for land use, the floating

More information

Name of product: Gripper of FTV panels for horizontal façades Types: PHF (60, 80, 100, 120, 133, 150, 172,200, 240) INSTRUCTIONS FOR USE

Name of product: Gripper of FTV panels for horizontal façades Types: PHF (60, 80, 100, 120, 133, 150, 172,200, 240) INSTRUCTIONS FOR USE Name of product: Gripper of FTV panels for horizontal façades Types: PHF (60, 80, 100, 120, 133, 150, 172,200, 240) INSTRUCTIONS FOR USE CONTENTS TABLE OF CONTENTS 3 INTRODUCTION - General information

More information

Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825/05873 Unit 3: Principles of mechanical engineering

Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825/05873 Unit 3: Principles of mechanical engineering Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825/05873 Unit 3: Principles of mechanical engineering Monday 16 January 2017 Afternoon Time allowed: 1 hour 30 minutes You must have: the

More information

Describing a journey made by an object is very boring if you just use words. As with much of science, graphs are more revealing.

Describing a journey made by an object is very boring if you just use words. As with much of science, graphs are more revealing. Distance vs. Time Describing a journey made by an object is very boring if you just use words. As with much of science, graphs are more revealing. Plotting distance against time can tell you a lot about

More information

Module 8 Coils and Threads

Module 8 Coils and Threads Inventor Self-paced ecourse Autodesk Inventor Module 8 Coils and Threads Advanced Learning Outcomes When you have completed this module, you will be able to: 1 Describe a coil and a thread. 2 Apply the

More information

ACCELERATION AND BALANCE IN TROTTING DOGS

ACCELERATION AND BALANCE IN TROTTING DOGS The Journal of Experimental iology 22, 35653573 (1999) Printed in Great ritain The Company of iologists Limited 1999 JE259 3565 CCELERTION ND LNCE IN TROTTING DOGS DVID V. LEE*, JOHN E.. ERTRM ND RORY

More information

Irrigation &Hydraulics Department lb / ft to kg/lit.

Irrigation &Hydraulics Department lb / ft to kg/lit. CAIRO UNIVERSITY FLUID MECHANICS Faculty of Engineering nd Year CIVIL ENG. Irrigation &Hydraulics Department 010-011 1. FLUID PROPERTIES 1. Identify the dimensions and units for the following engineering

More information

RESEARCH ARTICLE Activity of extrinsic limb muscles in dogs at walk, trot and gallop

RESEARCH ARTICLE Activity of extrinsic limb muscles in dogs at walk, trot and gallop 287 he Journal of Experimental Biology 21, 287-00 2012. Published by he Company of Biologists Ltd doi:10.122/jeb.0620 RESEARCH ARICLE Activity of extrinsic limb muscles in dogs at walk, trot and gallop

More information

LAB 7. ROTATION. 7.1 Problem. 7.2 Equipment. 7.3 Activities

LAB 7. ROTATION. 7.1 Problem. 7.2 Equipment. 7.3 Activities LAB 7. ROTATION 7.1 Problem How are quantities of rotational motion defined? What sort of influence changes an object s rotation? How do the quantities of rotational motion operate? 7.2 Equipment plumb

More information

and its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2.

and its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2. 1.26. A certain object weighs 300 N at the earth's surface. Determine the mass of the object (in kilograms) and its weight (in newtons) when located on a planet with an acceleration of gravity equal to

More information

Positive running posture sums up the right technique for top speed

Positive running posture sums up the right technique for top speed Positive running, a model for high speed running Frans Bosch positive running posture sums up the right technique for top speed building blocks in running: Pelvic rotation for- and backward and hamstring

More information

(From the Physiological and Biochemical Laboratories, Cambridge.)

(From the Physiological and Biochemical Laboratories, Cambridge.) CREATINE FORMATION DURING TONIC MUSCLE CONTRACTION. BY K. UYENO AND T. MITSUDA. (From the Physiological and Biochemical Laboratories, Cambridge.) Creatine of the amphibition muscles in the breeding season.

More information

Biomechanics Sample Problems

Biomechanics Sample Problems Biomechanics Sample Problems Forces 1) A 90 kg ice hockey player collides head on with an 80 kg ice hockey player. If the first person exerts a force of 450 N on the second player, how much force does

More information

Gait. Kinesiology RHS 341 Lecture 12 Dr. Einas Al-Eisa

Gait. Kinesiology RHS 341 Lecture 12 Dr. Einas Al-Eisa Gait Kinesiology RHS 341 Lecture 12 Dr. Einas Al-Eisa Definitions Locomotion = the act of moving from one place to the other Gait = the manner of walking Definitions Walking = a smooth, highly coordinated,

More information

Phys 101 College Physics I ` Student Name: Additional Exercises on Chapter 3

Phys 101 College Physics I ` Student Name: Additional Exercises on Chapter 3 Phys 0 College Physics I ` Student Name: Additional Exercises on Chapter ) A displacement vector is.0 m in length and is directed 60.0 east of north. What are the components of this vector? Choice Northward

More information

CHAPTER IV FINITE ELEMENT ANALYSIS OF THE KNEE JOINT WITHOUT A MEDICAL IMPLANT

CHAPTER IV FINITE ELEMENT ANALYSIS OF THE KNEE JOINT WITHOUT A MEDICAL IMPLANT 39 CHAPTER IV FINITE ELEMENT ANALYSIS OF THE KNEE JOINT WITHOUT A MEDICAL IMPLANT 4.1 Modeling in Biomechanics The human body, apart of all its other functions is a mechanical mechanism and a structure,

More information

THE CENTER OF PRESSURE EXPERIMENT

THE CENTER OF PRESSURE EXPERIMENT THE CENTER OF PRESSURE EXPERIMENT 1. INTRODUCTION The apparatus permits the moment due to the total fluid thrust on a wholly or partially submerged plane surface to be measured directly and compared with

More information

LEG DESIGN IN HEXAPEDAL RUNNERS

LEG DESIGN IN HEXAPEDAL RUNNERS J. exp. Biol. 158, 369-390 (1991) 369 Primed in Great Britain The Company of Biologists Limited 1991 LEG DESIGN IN HEXAPEDAL RUNNERS BY R. J. FULL 1, R. BLICKHAN 2 AND L. H. TING 1 1 Department of Integrative

More information

Scissor Mechanisms. Figure 1 Torero Cabin Service Truck. Scissor Mechanism was chassis mounted and lifted the cabin to service aircraft

Scissor Mechanisms. Figure 1 Torero Cabin Service Truck. Scissor Mechanism was chassis mounted and lifted the cabin to service aircraft Scissor Mechanisms Scissor mechanisms are very common for lifting and stabilizing platforms. A variety of manlifts, service platforms and cargo lifts utilize this visually simple but structurally complex

More information

REVIEW : KINEMATICS

REVIEW : KINEMATICS 1 REVIEW 5-4-16: KINEMATICS Kinematics-Defining Motion 1 A student on her way to school walks four blocks east, three blocks north, and another four blocks east, as shown in the diagram. Compared to the

More information

The Variation of Muscle Oxygen Consumption With Velocity of Shortening

The Variation of Muscle Oxygen Consumption With Velocity of Shortening The Variation of Muscle Oxygen Consumption With Velocity of Shortening R.J. BASKIN From the Department of Zoology, University of California, Davis ABSTRACT Total oxygen consumption following contraction

More information

EFFECTS OF INCLINE AND SPEED ON THE THREE-DIMENSIONAL HINDLIMB KINEMATICS OF A GENERALIZED IGUANIAN LIZARD (DIPSOSAURUS DORSALIS)

EFFECTS OF INCLINE AND SPEED ON THE THREE-DIMENSIONAL HINDLIMB KINEMATICS OF A GENERALIZED IGUANIAN LIZARD (DIPSOSAURUS DORSALIS) The Journal of Experimental Biology 22, 143 159 (1999) Printed in Great Britain The Company of Biologists Limited 1998 JEB172 143 EFFECTS OF INCLINE AND SPEED ON THE THREE-DIMENSIONAL HINDLIMB KINEMATICS

More information

Winnipeg Headingley Aero Modellers. Things About Airplanes.

Winnipeg Headingley Aero Modellers. Things About Airplanes. Winnipeg Headingley Aero Modellers Things About Airplanes. Table of Contents Introduction...2 The Airplane...2 How the Airplane is Controlled...3 How the Airplane Flies...6 Lift...6 Weight...8 Thrust...9

More information

Serve the only stroke in which the player has full control over its outcome. Bahamonde (2000) The higher the velocity, the smaller the margin of

Serve the only stroke in which the player has full control over its outcome. Bahamonde (2000) The higher the velocity, the smaller the margin of Lower Extremity Performance of Tennis Serve Reporter: Chin-Fu Hsu Adviser: Lin-Hwa Wang OUTLINE Introduction Kinetic Chain Serve Types Lower Extremity Movement Summary Future Work INTRODUCTION Serve the

More information

Axis of rotation is always perpendicular to the plane of movement

Axis of rotation is always perpendicular to the plane of movement Sports scientists and medical practitioners use formal terms to describe directionality, joint movement, and muscle movement. These universal terms let us use fewer words when describing movement, teaching,

More information

Sensing and Modeling of Terrain Features using Crawling Robots

Sensing and Modeling of Terrain Features using Crawling Robots Czech Technical University in Prague Sensing and Modeling of Terrain Features using Crawling Robots Jakub Mrva 1 Faculty of Electrical Engineering Agent Technology Center Computational Robotics Laboratory

More information

Numerical study on the wrist action during the golf downswing

Numerical study on the wrist action during the golf downswing Numerical study on the wrist action during the golf downswing C.C. Chen, Y. Inoue and K. Shibara Department of Intelligent Mechanical Systems Engineering, Kochi University of Technology, Kochi-prefecture,

More information

FREE VERTICAL MOMENTS AND TRANSVERSE FORCES IN HUMAN WALKING AND THEIR ROLE IN RELATION TO ARM-SWING

FREE VERTICAL MOMENTS AND TRANSVERSE FORCES IN HUMAN WALKING AND THEIR ROLE IN RELATION TO ARM-SWING The Journal of Experimental Biology 24, 47 8 (21) Printed in Great Britain The ompany of Biologists Limited 21 JEB3178 47 FREE VERTIAL MOMENTS AND TRANSVERSE FORES IN HUMAN WALKING AND THEIR ROLE IN RELATION

More information

Technical Note. Determining the surface tension of liquids by measurements on pendant drops

Technical Note. Determining the surface tension of liquids by measurements on pendant drops Technical Note Pendant Drop Measurements Technical note: TN316e Industry section: all Author: FT, TW Date: 12/2010 Method: Drop Shape Analyzer DSA100 Keywords: Methods, surface tension, interfacial tension,

More information

Acceleration: Galileo s Inclined Plane

Acceleration: Galileo s Inclined Plane Teacher s Notes Main Topic Subtopic Learning Level Technology Level Activity Type Motion Acceleration High Low Student Description: Use a water clock to measure a ball s acceleration as it rolls down an

More information

Normal and Abnormal Gait

Normal and Abnormal Gait Normal and Abnormal Gait Adrielle Fry, MD EvergreenHealth, Division of Sport and Spine University of Washington Board Review Course March 6, 2017 What are we going to cover? Definitions and key concepts

More information

The Holding Power of Anchors

The Holding Power of Anchors The Holding Power of Anchors G 1 Taylor The essential principle in the action of all anchors is that a surface set at an acute angle to the ground will dig in if pulled horizontally. In order that an anchor

More information

Aerodynamic Terms. Angle of attack is the angle between the relative wind and the wing chord line. [Figure 2-2] Leading edge. Upper camber.

Aerodynamic Terms. Angle of attack is the angle between the relative wind and the wing chord line. [Figure 2-2] Leading edge. Upper camber. Chapters 2 and 3 of the Pilot s Handbook of Aeronautical Knowledge (FAA-H-8083-25) apply to powered parachutes and are a prerequisite to reading this book. This chapter will focus on the aerodynamic fundamentals

More information

Shedding Light on Motion Episode 4: Graphing Motion

Shedding Light on Motion Episode 4: Graphing Motion Shedding Light on Motion Episode 4: Graphing Motion In a 100-metre sprint, when do athletes reach their highest speed? When do they accelerate at the highest rate and at what point, if any, do they stop

More information

Mechanics of Legged Locomotion. Running. Dr Dan Dudek

Mechanics of Legged Locomotion. Running. Dr Dan Dudek Mechanics of Legged Locomotion Running Dr Dan Dudek North Cross School dmdudek@northcross.org https://sites.google.com/a/northcross.org/dr-dan-dudek/ 1 Wheel Hypothesis Sir James Gray 2 BioWheel? Stomatopod

More information

- a set of known masses, - four weight hangers, - tape - a fulcrum upon which the meter stick can be mounted and pivoted - string - stopwatch

- a set of known masses, - four weight hangers, - tape - a fulcrum upon which the meter stick can be mounted and pivoted - string - stopwatch 1. In the laboratory, you are asked to determine the mass of a meter stick without using a scale of any kind. In addition to the meter stick, you may use any or all of the following equipment: - a set

More information

6. What net external force is required to give a 25 kg suitcase an acceleration of 2.2 m/s2 to the right? Draw a free-body diagram of the suitcase.

6. What net external force is required to give a 25 kg suitcase an acceleration of 2.2 m/s2 to the right? Draw a free-body diagram of the suitcase. HONORS PHYSICS PROBLEM SET NEWTON S LAWS & FORCES ONE DIMENSIONAL FORCES 1. The net external force on the propeller of a 0.75 kg model airplane is 17 N forward. What is the acceleration of the airplane?

More information

that, as a means of progression, walking is suitable for lower speeds

that, as a means of progression, walking is suitable for lower speeds 2 6I2 744.22 ENERGY EXPENDITURE IN WALKING AND RUNNING. BY M. OGASAWARA. (From the Department of Industrial Physiology, London School of Hygiene and Tropical Medicine.) (Received February 28, 1934.) IT

More information

S0300-A6-MAN-010 CHAPTER 2 STABILITY

S0300-A6-MAN-010 CHAPTER 2 STABILITY CHAPTER 2 STABILITY 2-1 INTRODUCTION This chapter discusses the stability of intact ships and how basic stability calculations are made. Definitions of the state of equilibrium and the quality of stability

More information

POWERED FLIGHT HOVERING FLIGHT

POWERED FLIGHT HOVERING FLIGHT Once a helicopter leaves the ground, it is acted upon by the four aerodynamic forces. In this chapter, we will examine these forces as they relate to flight maneuvers. POWERED FLIGHT In powered flight

More information

Page 1. ConcepTest Clicker Questions Chapter 4. Physics, 4 th Edition James S. Walker

Page 1. ConcepTest Clicker Questions Chapter 4. Physics, 4 th Edition James S. Walker 1 ConcepTest Clicker Questions Chapter 4 Physics, 4 th Edition James S. Walker Question 4.1a A small cart is rolling at constant velocity on a flat track. It fires a ball straight up into the air as it

More information

superior in performance in the 100 m dash. If these

superior in performance in the 100 m dash. If these H. Kunz Brit J. Sports Mod.- Vol. 15, No. 3, September 1981, pp. 177-181 ANNOTATION. A. Kaufmann BIOMECHANICAL ANALYSIS OF SPRINTING: DECATHLETES VERSUS CHAMPIONS H. KUNZ, DiplArbeit, and D. A. KAUFMANN,

More information

EXPERIMENTAL RESEARCH ON THE MECHANICAL SOLICITATIONS OF THE GREENHOUSES OF VEGETABLES AND FLOWERS LOCATED ON ROOFTOPS

EXPERIMENTAL RESEARCH ON THE MECHANICAL SOLICITATIONS OF THE GREENHOUSES OF VEGETABLES AND FLOWERS LOCATED ON ROOFTOPS 6 th International Conference Computational Mechanics and Virtual Engineering COMEC 2015 15-16 October 2015, Braşov, Romania EXPERIMENTAL RESEARCH ON THE MECHANICAL SOLICITATIONS OF THE GREENHOUSES OF

More information

Design of a double quadruped for the Tech United soccer robot

Design of a double quadruped for the Tech United soccer robot Design of a double quadruped for the Tech United soccer robot M.J. Naber (0571509) DCT report number: 2009.134 Master Open Space project Eindhoven, 21 December 2009 Supervisor dr.ir. P.C.J.N. Rosielle

More information

Analysis of stroke technique using acceleration sensor IC in freestyle swimming

Analysis of stroke technique using acceleration sensor IC in freestyle swimming Analysis of stroke technique using acceleration sensor IC in freestyle swimming Y. Ohgi, M. Yasumura Faculty of Environmental Information, Keio Univ., Japan H. Ichikawa Doctoral Prog. of Health and Sport

More information

The springboard diving techniques analysis

The springboard diving techniques analysis ISSN 1750-9823 (print) 185 International Journal of Sports Science and Engineering Vol. 02 (2008) No. 03, pp. 185-192 The springboard diving techniques analysis Qining Wang Nanjing sports institute, Nanjing,

More information

Immobilisation of a large animal for imaging purposes

Immobilisation of a large animal for imaging purposes Applied Bionics and Biomechanics Vol. 7, No. 2, June 2010, 143 151 Immobilisation of a large animal for imaging purposes W. Szyszkowski and Wei Cai Department of Mechanical Engineering, University of Saskatchewan,

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 3 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

FLUID MECHANICS. Fluid Statics BUOYANCY. Fig. Buoyancy CENTER OF BUOYANCY

FLUID MECHANICS. Fluid Statics BUOYANCY. Fig. Buoyancy CENTER OF BUOYANCY FLUID MECHANICS Fluid Statics BUOYANCY When a body is either wholly or partially immersed in a fluid, the hydrostatic lift due to the net vertical component of the hydrostatic pressure forces experienced

More information

Precision Rotary Ball Screw

Precision Rotary Ball Screw 57E Precision Rotary Ball Screw Models DIR and BLR Outer ring Ball screw nut Deflector Section A Screw shaft Spacer Seal Collar Ball End cap Retainer End cap Ball Screw shaft Outer ring Structure of Standard-Lead

More information

Simple Machines Problem Set. 2. What does it mean to say that a machine has a certain mechanical advantage?

Simple Machines Problem Set. 2. What does it mean to say that a machine has a certain mechanical advantage? Simple Machines Problem Set 1. In what two ways can a machine alter an input force? 2. What does it mean to say that a machine has a certain mechanical advantage? 3. Distinguish between ideal mechanical

More information

Interesting sporting examples for motivating student learning in Mechanics. Stephen Lee (MEI) Abstract. Ball straight up in the air 20/07/2012

Interesting sporting examples for motivating student learning in Mechanics. Stephen Lee (MEI) Abstract. Ball straight up in the air 20/07/2012 Stephen Lee (MEI) Interesting sporting examples for motivating student learning in Mechanics Abstract Sporting examples can be used effectively to motivate student learning in mathematics. They can be

More information

Motion, Forces, and Energy Revision (Chapters 3+4)

Motion, Forces, and Energy Revision (Chapters 3+4) Motion, Forces, and Energy Revision (Chapters 3+4) What is force? The force exerted on a surface divided by the total area over which the force is exerted. What is the link between pressure & area? Pressure

More information

RESEARCH ARTICLE Effects of fore aft body mass distribution on acceleration in dogs

RESEARCH ARTICLE Effects of fore aft body mass distribution on acceleration in dogs 1763 The Journal of Experimental Biology 214, 1763-1772 2011. Published by The Company of Biologists Ltd doi:10.1242/jeb.054791 RESEARCH ARTICLE Effects of fore aft body mass distribution on acceleration

More information