Computational Investigation of Airfoils with Miniature Trailing Edge Control Surfaces

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Computational Investigation of Airfoils with Miniature Trailing Edge Control Surfaces"

Transcription

1 AIAA-24-5 Computational Investigation of Airfoils with Miniature Trailing Edge Control Surfaces Hak-Tae Lee, Ilan M. Kroo Stanford University, Stanford, CA 9435 Abstract Miniature trailing edge effectors (MiTEs) are small flaps (typically % to 5% chord) actuated with deflection angles of up to 9 degrees. The small size, combined with little required power and good control authority, enables the device to be used for high bandwidth control. Recently, there have been attempts to use MiTEs as aeroelastic control devices, mainly to stabilize a wing operating beyond its flutter speed. However, the detailed aerodynamic characteristics of these devices are relatively unknown. The present study investigates the steady and unsteady aerodynamics of MiTEs. In order to understand the flow structure and establish a parametric database, steady state incompressible Navier-Stokes computations are performed on MiTEs with various geometries using INS2D flow solver. In addition, to resolve the dynamic characteristics, time accurate computation is implemented. Introduction The Gurney flap is a small flap used to increase the lift of a wing. It was developed and applied to race cars by Robert Liebeck and Dan Gurney in the 96 s. Numerous wind-tunnel tests and numerical computations have been performed on airfoils with Gurney flaps., 3 5, 8, 9 These studies confirm that despite their small size, Gurney flaps can significantly increase the maximum lift or the lift produced at a given angle of attack. The aerodynamic force alteration is produced by a small region of separated flow directly upstream of the flap, with two counterrotating vortices downstream of the flap effectively modifying the trailing edge Kutta condition. This Doctoral Candidate, Department of Aeronautics and Astronautics, AIAA Student Member Professor, Department of Aeronautics and Astronautics, AIAA Fellow Copyright c 24 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. mechanism was first proposed by Liebeck and later verified via flow visualization 8 and CFD 3 simulations. Miniature Trailing edge Effectors (MiTEs) are small movable control surfaces similar to Gurney flaps, at or near the trailing edge. MiTEs are deflected to large angles to produce control forces and moments that may be used for general flight control or aeroelastic control. Recently, Lee and Bieniawski 2 designed an aeroelastic control system to suppress flutter using a simple linear aerodynamic model of MiTEs. However, the experiments done by Solovitz and Bieniawski 2 suggest that significant nonlinear characteristics such as vortex shedding exists in the aerodynamics of MiTEs and more sophisticated aerodynamic models are required for higher performance control. Most of the previous work on Gurney flaps 3 6, 8 has concentrated on studying lift and drag, while varying the size of the flap and the angle of attack. As a control device, the focus of the current study is on the change in lift, drag, and pitching moment with fully deployed MiTEs as compared to the clean configuration. A blunt trailing edge is needed to provide a space behind the trailing edge to store the flap. For the present study, which involves a sliding rectangular plate behind the trailing edge, a blunt trailing edge with the thickness at least the same as the flap height is required. For steady state computations, the height, h, of the flap is varied for both sharp and blunt trailing edge airfoil as well as Reynolds number and angle of attack. For unsteady computations, time accurate simulation is performed for a fully deployed flap with the flow started impulsively. With this fixed grid time accurate computation, transient force response and vortex shedding frequencies are investigated. Time history of lift and moment coefficients are then computed with the flap sliding up and down in a harmonic motion over a range of frequencies. The latter results are obtained with moving grid computations.

2 h f = h w f t TE h f h l TE w f Figure 2: C-Grid used for sharp NACA2 airfoil Figure : Geometry of MiTEs attached to sharp and blunt trailing edge airfoils Flow Solver A two dimensional Reynolds-averaged Incompressible Navier-Stokes code, INS2D 2 is used. INS2D utilizes an artificial compressibility scheme that requires subiterations in the pseudo time domain to ensure a divergence free velocity field at the end of each physical time step. An upwind differencing scheme based upon flux-difference splitting is used for the convective terms, while a second-order central differencing is used for the viscous fluxes. The equations are solved using an implicit line relaxation scheme or generalized minimum residual method. The flow is assumed to be fully turbulent and the Spalart-Allmaras turbulence model is used, since this model is well known for its good performance in separated regions away from the wall. Geometry and Grid Figure shows the geometric parameters for the flaps attached to both sharp and blunt trailing edges. h f and w f are height and chordwise thickness of the flap respectively. For a blunt trailing edge airfoil, t T E is the trailing edge thickness and l T E is the overall projection thickness of the trailing edge including the flap. For both cases, h is the height of the flap measured from the airfoil surface. For a sharp trailing edge airfoil, h = h f = l T E, t T E =. () For a blunt trailing edge airfoil, t T E, l T E = t T E + h. (2) h is equal to h f for a sharp trailing edge airfoil but not necessarily the same as h f for a blunt trailing edge airfoil. In the later section, the significance of these geometric parameters, especially for the blunt trailing edge case, is explained. For the present study, NACA2 is chosen for the baseline airfoil and an airfoil with.5% thick trailing edge is constructed by linearly shearing the thickness distribution of the baseline airfoil using Equation 3. t blunt () = t sharp () +.5() (3) For sharp NACA2 airfoil, computations were performed using a single zone C-grid as shown in Figure 2. Far field boundaries are located 5c from the airfoil in upstream, downstream, top, and bottom where c is the chord length. Minimum grid size in the direction normal to the solid wal is set to. 5 c to ensure acceptable value of y +. The flaps are represented in the computational domain using the iblank function of INS2D. With iblank, any point in the grid can be specified as a no slip surface or blanked out to be a hole region. Figure 3 shows the grid around the trailing edge and the flap. Chordwise thickness of the flap, w f, is set to have the minimum possible value which is determined by the minimum grid point requirement for using iblank. 2

3 ξ η ξ η ξ η A B ξ η Figure 3: Grid near the sharp trailing edge N f Coarse Medium Fine 339 x (59+N f) 53 x (88+N f) 749 x (32+N f) C l C d C l C d C l C d C l C d Figure 4: Schematic diagram of G-Grid Table : C l and C d computed using grids of various resolution (R e =.5 6 ) A grid refinement study is performed on a baseline design of h =.5% at a zero angle of attack and a Reynolds number of.5 6 to find the proper number of grid points N ξ in ξ direction and N η in η direction as well as N f inside the flap region. Table shows the C l and C d values computed from twelve different grid resolutions. From the coarsest grid of 339 by 93 to the finest one of 749 by 25, the difference is less than %. Medium density with N f = 78 is selected as the baseline resolution for steady state computations. For a flap size other than.5%, N f is scaled linearly according to the flap height, h. To reduce computational time, all time accurate computations are completed with the coarse resolution and a baseline N f of 52 for the.5% flap. A new gridding scheme called G-grid is devised to represent a blunt trailing edge airfoil with MiTEs. A G-grid is similar to a C-grid but, η = grid line meets part of ξ = grid line at the wake cut surface which is perpendicular to the chord line. Figure 4 shows the schematic diagram of a G-grid. The boundary condition for MiTEs can be easily implemented by specifying no slip wall condition to both A and B segment. Figure 5: The actual G-Grid used for blunt trailing edge airfoil Figure 5 shows the actual G-grid used for the computations and Figure 6 shows the detailed grid structure around the trailing edge. Mesh resolution for this G-grid is chosen to be similar to that of C-grid and ranges from 387 by 27 for.5% flap to 553 by 257 for 3.% flap. A three-zone overset grid is used for the moving grid computations. As can be seen from Figure 7, zone I is a C-grid surrounding only the airfoil without the wake. Zone II is a rectangular region downstream of the trailing edge and contains the flap where the grid points on the flap surface are specified as solid wall boundaries and the points inside the flap are blanked out using iblank. Zone III is a small rectangular grid needed to define the solid 3

4 Zone I Leak blocking tap Zone III Solid walls Figure 6: Grid near the blunt trailing edge Zone I Airfoil Zone III Zone II Figure 7: Three zone overset grid used for moving flap computation wall for the blunt trailing edge. Detailed view near the trailing edge is given in Figure 8. The boundary values are updated from linear interpolation between zone I and II, and zone III and II. Note that the interfaces between zone I and III are solid wall boundaries and these two small taps block the flow between the trailing edge and the flap. Zone II slides up and down as a rigid body translation according to the motion of the flap. Grids are generated at each time step as well as the interface file that gives the information for updating the boundaries. Steady State Computation Results Steady state force coefficients were computed for various configurations. For a sharp NACA2 airfoil, the flap size, h, ranges from.5% to 3.% and for blunt NACA2 airfoil with trailing edge thickness of.5%, h ranges from.5% to 2.5%. The computations were also completed at three different Reynolds Zone I Moving flap Zone II Figure 8: Enlarged view of the overset grid near the trailing edge Airfoil NACA2 TE thickness, t T E (%).,.5 Flap size, h (%).5,.,.5, 2., 2.5, (3.) Reynolds number ( 6 ).,.5, 2. Angle of attack ( ) 5., 2.5,., 2.5, 5. Table 2: Conditions for the steady state computations numbers and five angles of attack summarized in Table 2. Figure 9 and Figure show the color maps of stagnation pressure and streamlines near the trailing edge for sharp and blunt NACA2 airfoils, respectively. As can be seen from both streamlines, the basic flow structures are the same. 4, 6, 8, Previous research suggests that the C l and C m remain more or less constant for moderate angles of attack. C l is plotted with respect to angle of attack, α, in Figure for both trailing edge thicknesses to closely examine the effect of angle of attack on C l. The Reynolds number is set to.5 6. C l increases as α increases for every flap size for both airfoils. The variations are, however, relatively minor compared to the values of C l. When the angle of attack is negative, the boundary layer thickens at the lower surface where the flap is attached and it is known that thick boundary layers reduce the effectiveness of Gurney flaps, thus reducing the C l. Conversely, thinner boundary layers enhanc the flap effectiveness at positive angles of attack. Figure also shows that C l is less sensitive to the angle of attack for the blunt trailing edge airfoil. For all the 4

5 h =.5% h =.% h =.5% h = 2.% h = 2.5% h = 3.% α (degree) (a) Sharp trailing edge Figure 9: Streamline and stagnation pressure map near the trailing edge of a NACA2 airfoil(h =.5%, α =, Re =.5 6 ). h =.5% h =.% h =.5% h = 2.% h = 2.5% α (degree) (b) Blunt trailing edge (t T E =.5%) Figure : C l with respect to α (R e =.5 6 ) subsequent results, zero angle of attack is assumed unless mentioned specifically. Figure : Streamline and stagnation pressure map near the trailing edge of a blunt NACA2 airfoil(t T E =.5%, h =.5%, α =, Re =.5 6 ) C l is plotted with respect to flap height, h, in Figure 2 for both airfoils and is compared to experimental data. C l increases monotonically 4, 6, 8 as h increases while the blunt trailing edge airfoil results closely follow the values from the sharp trailing edge ones. However the efficiency, defined as C l /(h/c), consistently decreases as h increases, as given in Figure 3. Although the blunt trailing edge results generally match the sharp one closely, the efficiencies for.5% and.% flap are notably higher than those for the sharp trailing edge. For the pitching moments, the ratio, C m / C l is nearly constant and close to 4, the value expected from the thin airfoil theory as the size of the flap approaches zero (Figure 4). The pressure profile given in Figure 5, computed at zero angle of attack to show the net effect of the flap, indicates that the increase in lift is relatively flat along the chord, which also confirms the trend for the relation between C m and C l. It is demonstrated throughout the results that the value of C l, and consequently the C m for both the sharp and blunt trailing edges match very well if the flap height is defined as the distance between the 5

6 .2.2 Thin airfoil theory Sharp trailng edge Blunt trailing edge.22 C m / (α= deg) Flap size (%) (a) Cm C l Thin airfoil theory Sharp trailng edge Blunt trailing edge with respect to h.4 Sharp trailing edge. Blunt trailing edge Jeffrey (Re = x e6, E423) Storms (Re = 2 x e6, NACA442) Moyse (Re = 2.2 x e6, NACA2) flap height, h (%) C m / Figure 2: Change in the C l at zero angle of attack with respect to flap height, h. Experimental data are plotted for comparison (Re =.5 6 ) Flap size (%, log scale) (b) Cm compared to the Thin airfoil C l theory Figure 4: C m C l with respect to h (Re =.5 6 ) /(h/c) (Re=.5 x 6, α= deg) Figure 3: height, h Sharp trailing edge Blunt trailing edge flap height, h (%) Flap efficiency, C l h/c with respect to flap airfoil surface and the end of the flap as indicated in Figure. This comparison suggests that the proper definition for the flap height should be measuring the distance from the airfoil surface rather than from any other reference line such as the chord line. Figure 6 illustrates the change in flap efficiency with respect to the Reynolds number for different flap heights. As can be seen, the efficiency monotonically increases with the Reynolds number regardless of the flap size although the variation is very small. As stated previously, smaller flaps have higher efficiency, but at the same time, Figure 6 shows that smaller flaps are more sensitive to the Reynolds number. Figure 7 provides the drag polar for a sharp NACA2 with.5% flap compared to the clean configuration. At low lift coefficients, the drag penalty of the flap is apparent, but at high C l values, the delay in the upper surface separation induced by the flap causes the airfoil with a flap to have lower drag. Drag increment, C d with respect to h is plotted at Figure 8 for a sharp NACA2 airfoil. C d increases steeply as h increases. At h = 3.%, C d is similar to the drag of clean NACA2 airfoil. 6

7 ..8.6 Sharp trailing edge Blunt trailing edge (.5%) C d (Re=.5 x 6,α= deg) flap height, h (%) Figure 5: Pressure profile for sharp and blunt NACA2 airfoils with a.5% flap Figure 8: C d vs h curve for a sharp NACA2 airfoil (Re =.5 6 ) INS2D (h=.5%, Re=.5e6) Wagner (C l =.34) 35 3 Sharp trailing edge h =.5% h =.% h =.5% h = 2.% h = 2.5% h = 3.% 35 3 Blunt trailing edge /(h/c) Ut/c Re (x 6 ) Re (x 6 ) Figure 9: Time history of C l for an impulsively started NACA2 airfoil with a.5% flap attached Figure 6: number Flap efficiency with respect to Reynolds Time Accurate Computation Results C d h=.5% clean Re=.5e6, h=.5%c, NACA C l Figure 7: C d vs C l curve for an airfoil with h =.5%c flap and a clean airfoil (Re =.5 6 ) Time accurate computations were performed to capture the unsteady effect. First, the flow was assumed to be started impulsively for an NACA2 airfoil with a.5% flap attached to its trailing edge. The Reynolds number is.5 6 and the angle of attack is. Figure 9 shows the time history of the lift coefficient along with the result expected from linear theory where the final C l is set to.34 obtained from the steady state computation. The mean value for the C l follows the Wagner curve closely, although a high frequency fluctuation exists. The high frequency oscillation suggests vortex shedding, as can be seen in Figure 2. Figure 2 presents a sequence of stagnation pressure maps and profiles during a single oscillation. 7

8 (a) U t c = (b) case case 2 case 3 t T E (%)...5 h (%) l T E (%) Re (based on l T E ) 22,5 45, 45, frequency, f Strouhal number, St Table 3: Summary of vortex shedding frequencies (c) U t c =.65 (d) C l Ut/c (e) U t c = (f) Figure 2: Time history, k = π/27.8 (g) U t c =.69 (i) U t c =.7 (k) U t c = (h) (j) (l) The frequency of this oscillation is about.5 Hz, which translates to the Strouhal number of.58 based on the height of the flap. For the flap height based Reynolds number of 22, 5, this Strouhal number agrees well with the experimental results. 8 To further investigate how the vortex shedding frequency changes with the geometry, time accurate computations were performed for a sharp trailing edge airfoil with a 3% flap and a.5% thick trailing edge airfoil with a.5% flap. As summarized in Table 3, the vortex shedding frequencies for both cases are the same, while this frequency is roughly half the value from the sharp trailing edge with a.5% flap. This result suggests that the proper characteristic length for the vortex shedding frequency should be defined as the distance between the bottom end of the flap and the upper end of the trailing edge, l T E, as seen in Figure. For the moving grid computation, trailing edge thickness of.% and flap height of.% were selected. All computations were completed at zero angle of attack and Reynolds number of.5 6 using a three-zone overset grid. Grid resolutions were set at 87 by 43 for zone I, 82 by 5 for zone II, and 9 by 3 for zone III. A time step of. was used Figure 2: Vortex shedding 8

9 C l.4 C l (a) Flap is near the neutral position Ut/c Ut/c Figure 22: Time history, enlarged view (a) U t c = 3. (b) U t c = C l.5 (c) U t c = 3.3 (d) U t c = Ut/c Figure 23: Time history, k = π/3 (b) Flap is near the top position to capture the vortex shedding and the grid file was generated at every time step to represent the flap sliding up and down in a harmonic motion. Figure 2 shows the time history of the lift coefficient for reduced frequency of k =.6. As can be seen from the enlarged view in Figure 22, at low reduced frequencies, the vortex shedding occurs constantly regardless of the position of the flap but the intensity is higher when the flap is nearly stationary at the top or bottom end. The vortex shedding frequency decreases as the flap moves away from the neutral position and increases as the flap moves towards the neutral position. For a high reduced frequency of k =.5 (Figure 23) a slight vortex shedding is observed only when the flap is at the up or down position where the velocity of the flap is close to zero. Figure 24 presents the sequence of streamlines and the stagnation pressure map of the flap moving from neutral to down position with k =.5. The magnitude and phase delay of the response at actuation frequency is computed at five reduced frequencies (k =.6,.75,.349,.524,.5). The resulting magnitude and phase delay are plotted with respect to reduced frequency in Figure 25. For comparison purpose, the magnitude and phase of the Magnitude (C l ) Phase (deg) (e) U t c = 3.6 (f) U t c = 3.75 Figure 24: Moving flap reduced frequency, k moving grid computation Theodorsen C(k) Figure 25: Frequency response compared to the magnitude and phase of the Theodorsen s function, C(k) 9

10 Theodorsen function, C(k), are plotted together. As can be seen from Figure 25, the general trend in the magnitude and phase follow the results from the linear theory. Conclusions Steady and time accurate CFD simulations are performed on airfoils with miniature trailing edge flaps. Steady state computations show that the lift increases as the flap height increases, but the efficiency decreases. Results for sharp and blunt trailing edge airfoils are compared and the proper convention for the miniature flap sizing is suggested. Computations for the impulsive starting case confirmed the vortex shedding phenomenon, which the Strouhal number show good agreement with experiments. Finally, frequency response results are presented, resolving the dynamics of the miniature flap. Results presented in this study can provide a guideline for designing both attitude and vibration control systems using these devices. References [7] Kroo, I. M., Eaton, J., and Prinz, F., UAV Aeroelastic Control Using Redundant Microflaps, AFOSR Program Review for Year I, 999. [8] Jeffrey, D., Zhang X., and Hurst, D. W., Aerodynamics of Gurney Flaps on a Single-Element High-Lift Wing, Journal of Aircraft, Vol. 37, No. 2, 2, pp [9] Zerihan, J., Zhang X., Aerodynamics of Gurney Flaps on a Wing in Ground Effect, AIAA Journal, Vol. 39, No. 5, May 2, pp [] Solovitz, S. A., Experimental Aerodynamics of Mesoscale Trailing-Edge Actuators, PhD Thesis, Stanford University, December 22. [] Lee, H., Kroo, I. M., and Bieniawski, S., Flutter Suppression for High Aspect Ratio Flexib Wings Using Microflaps, AIAA 22-77, April 22. [2] Bieniawski, S., Kroo, I. M. Development and Testing of an Experimental Aeroelastic Model with Micro-Trailing Edge Effectors, AIAA 23-22, January 23. [] Liebeck, R. H., Design of Subsonic Airfoils for High Lift, Journal of Aircraft, Vol. 5, No. 9, September 978. [2] Rogers, S. E., and Kwak, D., An Upwind Differencing Scheme for the Time Accurate Incompressible Navier-Stokes Equations, AIAA Paper , June 988 [3] Jang, C. S., Ross, J. C., and Cummings, R. M., Computational Evaluation of an Airfoil with a Gurney Flap, AIAA Paper , June 992. [4] Storms, B. L. and Jang, C. S., Lift Enhancement of an Airfoil Using a Gurney Flap and Vortex Generators, Journal of Aircraft, Vol. 3, No. 3, June 994. [5] Giguere, P., Lemay, J., and Dumas, G., Gurney Flap Effects and Scaling for Low-Speed Airfoils, AIAA Paper 95-88, June 995. [6] Myose, R., Papadakis, M., and Heron, I., Gurney Flap Experiments on Airfoils, Wings, and Reflection Plane Model,, Journal of Aircraft, Vol. 35, No. 2, March-April 998.

NUMERICAL INVESTIGATION OF AERODYNAMIC CHARACTERISTICS OF NACA AIRFOIL WITH A GURNEY FLAP

NUMERICAL INVESTIGATION OF AERODYNAMIC CHARACTERISTICS OF NACA AIRFOIL WITH A GURNEY FLAP Int. J. Mech. Eng. & Rob. Res. 2012 MasoudJahanmorad Nouri et al., 2012 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 1, No. 3, October 2012 2012 IJMERR. All Rights Reserved NUMERICAL INVESTIGATION

More information

Experimental and Theoretical Investigation for the Improvement of the Aerodynamic Characteristic of NACA 0012 airfoil

Experimental and Theoretical Investigation for the Improvement of the Aerodynamic Characteristic of NACA 0012 airfoil International Journal of Mining, Metallurgy & Mechanical Engineering (IJMMME) Volume 2, Issue 1 (214) ISSN 232 46 (Online) Experimental and Theoretical Investigation for the Improvement of the Aerodynamic

More information

EXPERIMENTAL AND NUMERICAL STUDY OF A TWO- ELEMENT WING WITH GURNEY FLAP

EXPERIMENTAL AND NUMERICAL STUDY OF A TWO- ELEMENT WING WITH GURNEY FLAP 25 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES EXPERIMENTAL AND NUMERICAL STUDY OF A TWO- ELEMENT WING WITH GURNEY FLAP F.M. Catalano PhD.( catalano@sc.usp.br ) *, G. L. Brand * * Aerodynamic

More information

Navier Stokes analysis of lift-enhancing tabs on multi-element airfoils

Navier Stokes analysis of lift-enhancing tabs on multi-element airfoils Navier Stokes analysis of lift-enhancing tabs on multi-element airfoils Paul G. Carrannanto, Bruce L. Storms, James C. Ross, Russell M. Cummings Ford Motor Company, Dearborn, MI 48121, USA Aerospace Computing,

More information

AE Dept., KFUPM. Dr. Abdullah M. Al-Garni. Fuel Economy. Emissions Maximum Speed Acceleration Directional Stability Stability.

AE Dept., KFUPM. Dr. Abdullah M. Al-Garni. Fuel Economy. Emissions Maximum Speed Acceleration Directional Stability Stability. Aerodynamics: Introduction Aerodynamics deals with the motion of objects in air. These objects can be airplanes, missiles or road vehicles. The Table below summarizes the aspects of vehicle performance

More information

TRAILING EDGE TREATMENT TO ENHANCE HIGH LIFT SYSTEM PERFORMANCE

TRAILING EDGE TREATMENT TO ENHANCE HIGH LIFT SYSTEM PERFORMANCE 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES TRAILING EDGE TREATMENT TO ENHANCE HIGH LIFT SYSTEM PERFORMANCE Catalano F.M.*, Ceròn E.D.* Greco P.C. * Laboratory of Aerodynamics EESC-USP Brazil

More information

NUMERICAL INVESTIGATION FOR THE ENHANCEMENT OF THE AERODYNAMIC CHARACTERISTICS OF AN AEROFOIL BY USING A GURNEY FLAP

NUMERICAL INVESTIGATION FOR THE ENHANCEMENT OF THE AERODYNAMIC CHARACTERISTICS OF AN AEROFOIL BY USING A GURNEY FLAP Geotec., Const. Mat. & Env., ISSN:2186-2990, Japan, DOI: http://dx.doi.org/10.21660/2017.34.2650 NUMERICAL INVESTIGATION FOR THE ENHANCEMENT OF THE AERODYNAMIC CHARACTERISTICS OF AN AEROFOIL BY USING A

More information

NUMERICAL INVESTIGATION OF FLOW OVER MULTI- ELEMENT AIRFOILS WITH LIFT-ENHANCING TABS

NUMERICAL INVESTIGATION OF FLOW OVER MULTI- ELEMENT AIRFOILS WITH LIFT-ENHANCING TABS 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES NUMERICAL INVESTIGATION OF FLOW OVER MULTI- ELEMENT AIRFOILS WITH LIFT-ENHANCING TABS Zhenhui Zhang, Dong Li National Key Laboratory of Science

More information

Influence of wing span on the aerodynamics of wings in ground effect

Influence of wing span on the aerodynamics of wings in ground effect Influence of wing span on the aerodynamics of wings in ground effect Sammy Diasinos 1, Tracie J Barber 2 and Graham Doig 2 Abstract A computational fluid dynamics study of the influence of wing span has

More information

Aerodynamic Analysis of Blended Winglet for Low Speed Aircraft

Aerodynamic Analysis of Blended Winglet for Low Speed Aircraft , July 1-3, 2015, London, U.K. Aerodynamic Analysis of Blended Winglet for Low Speed Aircraft Pooja Pragati, Sudarsan Baskar Abstract This paper provides a practical design of a new concept of massive

More information

Investigation on 3-D Wing of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent

Investigation on 3-D Wing of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent Investigation on 3-D of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent Rohit Jain 1, Mr. Sandeep Jain 2, Mr. Lokesh Bajpai 3 1PG Student, 2 Associate Professor, 3 Professor & Head 1 2 3

More information

Incompressible Potential Flow. Panel Methods (3)

Incompressible Potential Flow. Panel Methods (3) Incompressible Potential Flow Panel Methods (3) Outline Some Potential Theory Derivation of the Integral Equation for the Potential Classic Panel Method Program PANEL Subsonic Airfoil Aerodynamics Issues

More information

EXPERIMENTAL ANALYSIS OF THE CONFLUENT BOUNDARY LAYER BETWEEN A FLAP AND A MAIN ELEMENT WITH SAW-TOOTHED TRAILING EDGE

EXPERIMENTAL ANALYSIS OF THE CONFLUENT BOUNDARY LAYER BETWEEN A FLAP AND A MAIN ELEMENT WITH SAW-TOOTHED TRAILING EDGE 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES EXPERIMENTAL ANALYSIS OF THE CONFLUENT BOUNDARY LAYER BETWEEN A FLAP AND A MAIN ELEMENT WITH SAW-TOOTHED TRAILING EDGE Lemes, Rodrigo Cristian,

More information

Computational Analysis of the S Airfoil Aerodynamic Performance

Computational Analysis of the S Airfoil Aerodynamic Performance Computational Analysis of the 245-3S Airfoil Aerodynamic Performance Luis Velazquez-Araque and Jiří Nožička 2 Department of Mechanical Engineering National University of Táchira, San Cristóbal 5, Venezuela

More information

ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT

ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT P.Sethunathan 1, M.Niventhran 2, V.Siva 2, R.Sadhan Kumar 2 1 Asst.Professor, Department of Aeronautical Engineering,

More information

Unsteady airfoil experiments

Unsteady airfoil experiments Unsteady airfoil experiments M.F. Platzer & K.D. Jones AeroHydro Research & Technology Associates, Pebble Beach, CA, USA. Abstract This paper describes experiments that elucidate the dynamic stall phenomenon

More information

The effect of back spin on a table tennis ball moving in a viscous fluid.

The effect of back spin on a table tennis ball moving in a viscous fluid. How can planes fly? The phenomenon of lift can be produced in an ideal (non-viscous) fluid by the addition of a free vortex (circulation) around a cylinder in a rectilinear flow stream. This is known as

More information

AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK

AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK SUPREETH NARASIMHAMURTHY GRADUATE STUDENT 1327291 Table of Contents 1) Introduction...1 2) Methodology.3 3) Results...5

More information

Numerical and Experimental Investigations of Lift and Drag Performances of NACA 0015 Wind Turbine Airfoil

Numerical and Experimental Investigations of Lift and Drag Performances of NACA 0015 Wind Turbine Airfoil International Journal of Materials, Mechanics and Manufacturing, Vol. 3, No., February 2 Numerical and Experimental Investigations of Lift and Drag Performances of NACA Wind Turbine Airfoil İzzet Şahin

More information

Design & Analysis of Natural Laminar Flow Supercritical Aerofoil for Increasing L/D Ratio Using Gurney Flap

Design & Analysis of Natural Laminar Flow Supercritical Aerofoil for Increasing L/D Ratio Using Gurney Flap Design & Analysis of Natural Laminar Flow Supercritical Aerofoil for Increasing L/D Ratio Using Gurney Flap U.Praveenkumar 1, E.T.Chullai 2 M.Tech Student, School of Aeronautical Science, Hindustan University,

More information

CFD ANALYSIS OF FLOW AROUND AEROFOIL FOR DIFFERENT ANGLE OF ATTACKS

CFD ANALYSIS OF FLOW AROUND AEROFOIL FOR DIFFERENT ANGLE OF ATTACKS www.mechieprojects.com CFD ANALYSIS OF FLOW AROUND AEROFOIL FOR DIFFERENT ANGLE OF ATTACKS PRESENTATION OUTLINE AIM INTRODUCTION LITERATURE SURVEY CFD ANALYSIS OF AEROFOIL RESULTS CONCLUSIONS www.mechieprojects.com

More information

A COMPUTATIONAL STUDY ON THE DESIGN OF AIRFOILS FOR A FIXED WING MAV AND THE AERODYNAMIC CHARACTERISTIC OF THE VEHICLE

A COMPUTATIONAL STUDY ON THE DESIGN OF AIRFOILS FOR A FIXED WING MAV AND THE AERODYNAMIC CHARACTERISTIC OF THE VEHICLE 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES A COMPUTATIONAL STUDY ON THE DESIGN OF AIRFOILS FOR A FIXED WING MAV AND THE AERODYNAMIC CHARACTERISTIC OF THE VEHICLE Jung-Hyun Kim*, Kyu-Hong

More information

EFFECT OF GURNEY FLAPS AND WINGLETS ON THE PERFORMANCE OF THE HAWT

EFFECT OF GURNEY FLAPS AND WINGLETS ON THE PERFORMANCE OF THE HAWT Chapter-6 EFFECT OF GURNEY FLAPS AND WINGLETS ON THE PERFORMANCE OF THE HAWT 6.1 Introduction The gurney flap (wicker bill) was a small flat tab projecting from the trailing edge of a wing. Typically it

More information

Aerodynamic Analysis of a Symmetric Aerofoil

Aerodynamic Analysis of a Symmetric Aerofoil 214 IJEDR Volume 2, Issue 4 ISSN: 2321-9939 Aerodynamic Analysis of a Symmetric Aerofoil Narayan U Rathod Department of Mechanical Engineering, BMS college of Engineering, Bangalore, India Abstract - The

More information

Effect of Co-Flow Jet over an Airfoil: Numerical Approach

Effect of Co-Flow Jet over an Airfoil: Numerical Approach Contemporary Engineering Sciences, Vol. 7, 2014, no. 17, 845-851 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ces.2014.4655 Effect of Co-Flow Jet over an Airfoil: Numerical Approach Md. Riajun

More information

Numerical Analysis of Wings for UAV based on High-Lift Airfoils

Numerical Analysis of Wings for UAV based on High-Lift Airfoils Numerical Analysis of Wings for UAV based on High-Lift Airfoils Sachin Srivastava Department of Aeronautical Engineering Malla Reddy College of Engineering & Technology, Hyderabad, Telangana, India Swetha

More information

High fidelity gust simulations around a transonic airfoil

High fidelity gust simulations around a transonic airfoil High fidelity gust simulations around a transonic airfoil AEROGUST Workshop 27 th - 28 th April 2017, University of Liverpool Presented by B. Tartinville (Numeca) Outline of the presentation 1Objectives

More information

Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges

Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges T. Abbas 1 and G. Morgenthal 2 1 PhD candidate, Graduate College 1462, Department of Civil Engineering,

More information

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool)

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool) Unit D-1: Aerodynamics of 3-D Wings Page 1 of 5 AE301 Aerodynamics I UNIT D: Applied Aerodynamics ROAD MAP... D-1: Aerodynamics of 3-D Wings D-: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics

More information

Unsteady Aerodynamics of Tandem Airfoils Pitching in Phase

Unsteady Aerodynamics of Tandem Airfoils Pitching in Phase Unsteady Aerodynamics of Tandem Airfoils Pitching in Phase Ravindra A Shirsath and Rinku Mukherjee Abstract This paper presents the results of a numerical simulation of unsteady, incompressible and viscous

More information

CFD AND EXPERIMENTAL STUDY OF AERODYNAMIC DEGRADATION OF ICED AIRFOILS

CFD AND EXPERIMENTAL STUDY OF AERODYNAMIC DEGRADATION OF ICED AIRFOILS Colloquium FLUID DYNAMICS 2008 Institute of Thermomechanics AS CR, v.v.i., Prague, October 22-24, 2008 p.1 CFD AND EXPERIMENTAL STUDY OF AERODYNAMIC DEGRADATION OF ICED AIRFOILS Vladimír Horák 1, Dalibor

More information

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators Second International Symposium on Marine Propulsors smp 11, Hamburg, Germany, June 2011 Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the

More information

CFD Study of Solid Wind Tunnel Wall Effects on Wing Characteristics

CFD Study of Solid Wind Tunnel Wall Effects on Wing Characteristics Indian Journal of Science and Technology, Vol 9(45), DOI :10.17485/ijst/2016/v9i45/104585, December 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 CFD Study of Solid Wind Tunnel Wall Effects on

More information

A comparison of NACA 0012 and NACA 0021 self-noise at low Reynolds number

A comparison of NACA 0012 and NACA 0021 self-noise at low Reynolds number A comparison of NACA 12 and NACA 21 self-noise at low Reynolds number A. Laratro, M. Arjomandi, B. Cazzolato, R. Kelso Abstract The self-noise of NACA 12 and NACA 21 airfoils are recorded at a Reynolds

More information

Static Extended Trailing Edge for Lift Enhancement: Experimental and Computational Studies

Static Extended Trailing Edge for Lift Enhancement: Experimental and Computational Studies Static Extended Trailing Edge for Lift Enhancement: Experimental and Computational Studies T. Liu, J. Montefort, W. Liou Western Michigan University Kalamazoo, MI 49008 and Q. Shams NASA Langley Research

More information

CFD Analysis ofwind Turbine Airfoil at Various Angles of Attack

CFD Analysis ofwind Turbine Airfoil at Various Angles of Attack IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 4 Ver. II (Jul. - Aug. 2016), PP 18-24 www.iosrjournals.org CFD Analysis ofwind Turbine

More information

Computational Analysis of Blunt Trailing Edge NACA 0012 Airfoil

Computational Analysis of Blunt Trailing Edge NACA 0012 Airfoil Computational Analysis of Blunt Trailing Edge NACA 2 Airfoil Anusha K Department of Aerospace Engineering Madras Institute of Technology, India anusugan7@gmail.com Abstract Blunt trailing edge airfoil

More information

Unsteady Aerodynamic Forces: Experiments, Simulations, and Models. Steve Brunton & Clancy Rowley FAA/JUP Quarterly Meeting April 6, 2011

Unsteady Aerodynamic Forces: Experiments, Simulations, and Models. Steve Brunton & Clancy Rowley FAA/JUP Quarterly Meeting April 6, 2011 Unsteady Aerodynamic Forces: Experiments, Simulations, and Models Steve Brunton & Clancy Rowley FAA/JUP Quarterly Meeting April 6, Wednesday, March 8, Motivation Applications of Unsteady Models Conventional

More information

Numerical Investigation of Multi Airfoil Effect on Performance Increase of Wind Turbine

Numerical Investigation of Multi Airfoil Effect on Performance Increase of Wind Turbine International Journal of Engineering & Applied Sciences (IJEAS) International Journal of Engineering Applied Sciences (IJEAS) Vol.9, Issue 3 (2017) 75-86 Vol.x, Issue x(201x)x-xx http://dx.doi.org/10.24107/ijeas.332075

More information

Wind tunnel effects on wingtip vortices

Wind tunnel effects on wingtip vortices 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 4-7 January 2010, Orlando, Florida AIAA 2010-325 Wind tunnel effects on wingtip vortices Xin Huang 1, Hirofumi

More information

Incompressible Flow over Airfoils

Incompressible Flow over Airfoils Road map for Chap. 4 Incompressible Flow over Airfoils Aerodynamics 2015 fall - 1 - < 4.1 Introduction > Incompressible Flow over Airfoils Incompressible flow over airfoils Prandtl (20C 초 ) Airfoil (2D)

More information

5th Symposium on Integrating CFD and Experiments in Aerodynamics (Integration 2012) th Symposium on Integrating CFD and Experiments in Aerodynam

5th Symposium on Integrating CFD and Experiments in Aerodynamics (Integration 2012) th Symposium on Integrating CFD and Experiments in Aerodynam 5th Symposium on Integrating CFD and Experiments in Aerodynamics (Integration 202) 36 Multi-objective Optimization of Airfoil of Mars Exploration Aircraft using Evolutionary Algorithm Gaku Sasaki Tomoaki

More information

Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped Fuselage

Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped Fuselage International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-213 1 Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped

More information

Influence of rounding corners on unsteady flow and heat transfer around a square cylinder

Influence of rounding corners on unsteady flow and heat transfer around a square cylinder Influence of rounding corners on unsteady flow and heat transfer around a square cylinder S. K. Singh Deptt. of Mech. Engg., M. B. M. Engg. College / J. N. V. University, Jodhpur, Rajasthan, India Abstract

More information

INTERFERENCE EFFECT AND FLOW PATTERN OF FOUR BIPLANE CONFIGURATIONS USING NACA 0024 PROFILE

INTERFERENCE EFFECT AND FLOW PATTERN OF FOUR BIPLANE CONFIGURATIONS USING NACA 0024 PROFILE Proceedings of the International Conference on Mechanical Engineering 211 (ICME211) 18-2 December 211, Dhaka, Bangladesh ICME11-FL-1 INTERFERENCE EFFECT AND FLOW PATTERN OF FOUR BIPLANE CONFIGURATIONS

More information

Flow Field Phenomena about Lift and Downforce Generating Cambered Aerofoils in Ground Effect

Flow Field Phenomena about Lift and Downforce Generating Cambered Aerofoils in Ground Effect 16 th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 2007 Flow Field Phenomena about Lift and Downforce Generating Cambered Aerofoils in Ground Effect J.W. Vogt,

More information

Investigation of the flow around uncambered airfoils at 1000 Reynolds number using computational fluid dynamics for micro air vehicles

Investigation of the flow around uncambered airfoils at 1000 Reynolds number using computational fluid dynamics for micro air vehicles Investigation of the flow around uncambered airfoils at 1000 Reynolds number using computational fluid dynamics for micro air vehicles Emad Uddin 1), Muhammad Adil Naseem 2), Saif Ullah Khalid 3), Aamir

More information

Anna University Regional office Tirunelveli

Anna University Regional office Tirunelveli Effect of Tubercle Leading Edge Control Surface on the Performance of the Double Delta Wing Fighter Aircraft P Sharmila 1, S Rajakumar 2 1 P.G. Scholar, 2 Assistant Professor, Mechanical Department Anna

More information

INVESTIGATION OF PRESSURE CONTOURS AND VELOCITY VECTORS OF NACA 0015IN COMPARISON WITH OPTIMIZED NACA 0015 USING GURNEY FLAP

INVESTIGATION OF PRESSURE CONTOURS AND VELOCITY VECTORS OF NACA 0015IN COMPARISON WITH OPTIMIZED NACA 0015 USING GURNEY FLAP INVESTIGATION OF PRESSURE CONTOURS AND VELOCITY VECTORS OF NACA 0015IN COMPARISON WITH OPTIMIZED NACA 0015 USING GURNEY FLAP 1 ANANTH S SHARMA, 2 SUDHAKAR S, 3 SWATHIJAYAKUMAR, 4 B S ANIL KUMAR 1,2,3,4

More information

AERODYNAMICS I LECTURE 7 SELECTED TOPICS IN THE LOW-SPEED AERODYNAMICS

AERODYNAMICS I LECTURE 7 SELECTED TOPICS IN THE LOW-SPEED AERODYNAMICS LECTURE 7 SELECTED TOPICS IN THE LOW-SPEED AERODYNAMICS The sources of a graphical material used in this lecture are: [UA] D. McLean, Understanding Aerodynamics. Arguing from the Real Physics. Wiley, 2013.

More information

Lecture # 08: Boundary Layer Flows and Drag

Lecture # 08: Boundary Layer Flows and Drag AerE 311L & AerE343L Lecture Notes Lecture # 8: Boundary Layer Flows and Drag Dr. Hui H Hu Department of Aerospace Engineering Iowa State University Ames, Iowa 511, U.S.A y AerE343L #4: Hot wire measurements

More information

J. Szantyr Lecture No. 21 Aerodynamics of the lifting foils Lifting foils are important parts of many products of contemporary technology.

J. Szantyr Lecture No. 21 Aerodynamics of the lifting foils Lifting foils are important parts of many products of contemporary technology. J. Szantyr Lecture No. 21 Aerodynamics of the lifting foils Lifting foils are important parts of many products of contemporary technology. < Helicopters Aircraft Gliders Sails > < Keels and rudders Hydrofoils

More information

AN EXPERIMENTAL AND COMPUTATIONAL STUDY OF THE AERODYNAMIC CHARACTERISTICS AN OSCILLATORY PITCHING NACA0012 AEROFOIL

AN EXPERIMENTAL AND COMPUTATIONAL STUDY OF THE AERODYNAMIC CHARACTERISTICS AN OSCILLATORY PITCHING NACA0012 AEROFOIL AN EXPERIMENTAL AND COMPUTATIONAL STUDY OF THE AERODYNAMIC CHARACTERISTICS AN OSCILLATORY PITCHING NACA0012 AEROFOIL Ashim Yadav, Simon Prince & Jenny Holt School of Aerospace, Transport and Manufacturing,

More information

STUDIES ON THE OPTIMUM PERFORMANCE OF TAPERED VORTEX FLAPS

STUDIES ON THE OPTIMUM PERFORMANCE OF TAPERED VORTEX FLAPS ICAS 2000 CONGRESS STUDIES ON THE OPTIMUM PERFORMANCE OF TAPERED VORTEX FLAPS Kenichi RINOIE Department of Aeronautics and Astronautics, University of Tokyo, Tokyo, 113-8656, JAPAN Keywords: vortex flap,

More information

PASSIVE FLOW SEPARATION CONTROL BY STATIC EXTENDED TRAILING EDGE

PASSIVE FLOW SEPARATION CONTROL BY STATIC EXTENDED TRAILING EDGE Proceedings of the International Conference on Mechanical Engineering and Renewable Energy 25 (ICMERE25) 26 29 November, 25, Chittagong, Bangladesh ICMERE25-PI-232 PASSIVE FLOW SEPARATION CONTROL BY STATIC

More information

Lecture # 08: Boundary Layer Flows and Controls

Lecture # 08: Boundary Layer Flows and Controls AerE 344 Lecture Notes Lecture # 8: Boundary Layer Flows and Controls Dr. Hui Hu Department of Aerospace Engineering Iowa State University Ames, Iowa 511, U.S.A Flow Separation on an Airfoil Quantification

More information

AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE

AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE - 247 - AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE J D Castro a, C W Pope a and R D Matthews b a Mott MacDonald Ltd, St Anne House,

More information

It should be noted that the symmetrical airfoil at zero lift has no pitching moment about the aerodynamic center because the upper and

It should be noted that the symmetrical airfoil at zero lift has no pitching moment about the aerodynamic center because the upper and NAVWEPS -81-8 and high power, the dynamic pressure in the shaded area can be much greater than the free stream and this causes considerably greater lift than at zero thrust. At high power conditions the

More information

CFD ANALYSIS OF AIRFOIL SECTIONS

CFD ANALYSIS OF AIRFOIL SECTIONS CFD ANALYSIS OF AIRFOIL SECTIONS Vinayak Chumbre 1, T. Rushikesh 2, Sagar Umatar 3, Shirish M. Kerur 4 1,2,3 Student, Jain College of Engineering, Belagavi, Karnataka, INDIA 4Professor, Dept. of Mechanical

More information

ScienceDirect. Investigation of the aerodynamic characteristics of an aerofoil shaped fuselage UAV model

ScienceDirect. Investigation of the aerodynamic characteristics of an aerofoil shaped fuselage UAV model Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 90 (2014 ) 225 231 10th International Conference on Mechanical Engineering, ICME 2013 Investigation of the aerodynamic characteristics

More information

Air Craft Winglet Design and Performance: Cant Angle Effect

Air Craft Winglet Design and Performance: Cant Angle Effect Journal of Robotics and Mechanical Engineering Research Air Craft Winglet Design and Performance: Cant Angle Effect Eslam Said Abdelghany 1, Essam E Khalil 2*, Osama E Abdellatif 3 and Gamal elhariry 4

More information

University of Bristol - Explore Bristol Research. Publisher's PDF, also known as Version of record

University of Bristol - Explore Bristol Research. Publisher's PDF, also known as Version of record Liu, X., Azarpeyvand, M., & Joseph, P. (2015). On the acoustic and aerodynamic performance of serrated airfoils. Paper presented at The 22nd International Congress on Sound and Vibration, Florence, France.

More information

The Effect of Gurney Flap Height on Vortex Shedding Modes Behind Symmetric Airfoils

The Effect of Gurney Flap Height on Vortex Shedding Modes Behind Symmetric Airfoils The Effect of Gurney Flap Height on Vortex Shedding Modes Behind Symmetric Airfoils Daniel R. Troolin 1, Ellen K. Longmire 2, Wing T. Lai 3 1: TSI Incorporated, St. Paul, USA, dan.troolin@tsi.com 2: University

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodynamics I UNIT C: 2-D Airfoils C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory AE301 Aerodynamics I : List of Subjects

More information

External Tank- Drag Reduction Methods and Flow Analysis

External Tank- Drag Reduction Methods and Flow Analysis External Tank- Drag Reduction Methods and Flow Analysis Shaik Mohammed Anis M.Tech Student, MLR Institute of Technology, Hyderabad, India. G. Parthasarathy Associate Professor, MLR Institute of Technology,

More information

Experimental Investigation Of Flow Past A Rough Surfaced Cylinder

Experimental Investigation Of Flow Past A Rough Surfaced Cylinder (AET- 29th March 214) RESEARCH ARTICLE OPEN ACCESS Experimental Investigation Of Flow Past A Rough Surfaced Cylinder Monalisa Mallick 1, A. Kumar 2 1 (Department of Civil Engineering, National Institute

More information

Effect of Diameter on the Aerodynamics of Sepaktakraw Balls, A Computational Study

Effect of Diameter on the Aerodynamics of Sepaktakraw Balls, A Computational Study ISSN 1750-9823 (print) International Journal of Sports Science and Engineering Vol. 03 (2009) No. 01, pp. 017-021 Effect of Diameter on the Aerodynamics of Sepaktakraw Balls, A Computational Study Zahari

More information

Experimental investigation on the aft-element flapping of a two-element airfoil at high attack angle

Experimental investigation on the aft-element flapping of a two-element airfoil at high attack angle Experimental investigation on the aft-element flapping of a two-element airfoil at high attack angle Tan Guang-kun *, Shen Gong-xin, Su Wen-han Beijing University of Aeronautics and Astronautics (BUAA),

More information

PERFORMANCE OF A FLAPPED DUCT EXHAUSTING INTO A COMPRESSIBLE EXTERNAL FLOW

PERFORMANCE OF A FLAPPED DUCT EXHAUSTING INTO A COMPRESSIBLE EXTERNAL FLOW 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES PERFORMANCE OF A FLAPPED DUCT EXHAUSTING INTO A COMPRESSIBLE EXTERNAL FLOW P. R. Pratt, J. K. Watterson, E. Benard, S. Hall School of Aeronautical

More information

Reynolds Number Effects on Leading Edge Vortices

Reynolds Number Effects on Leading Edge Vortices Reynolds Number Effects on Leading Edge Vortices Taken From AIAA-2002-2839 Paper Reynolds Numbers Considerations for Supersonic Flight Brenda M. Kulfan 32nd AIAA Fluid Dynamics Conference and Exhibit St.

More information

Effect of High-Lift Devices on Aircraft Wing

Effect of High-Lift Devices on Aircraft Wing IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 PP 01-05 www.iosrjen.org Effect of High-Lift Devices on Aircraft Wing Gaurav B. Mungekar 1, Swapnil N. More 1, Samadhan V.

More information

Journal of Engineering Science and Technology Review 9 (5) (2016) Research Article. CFD Simulations of Flow Around Octagonal Shaped Structures

Journal of Engineering Science and Technology Review 9 (5) (2016) Research Article. CFD Simulations of Flow Around Octagonal Shaped Structures Jestr Journal of Engineering Science and Technology Review 9 (5) (2016) 72-76 Research Article JOURNAL OF Engineering Science and Technology Review www.jestr.org CFD Simulations of Flow Around Octagonal

More information

Aerodynamic behavior of an airfoil with morphing trailing edge for wind turbine applications

Aerodynamic behavior of an airfoil with morphing trailing edge for wind turbine applications Journal of Physics: Conference Series OPEN ACCESS Aerodynamic behavior of an airfoil with morphing trailing edge for wind turbine applications To cite this article: T Wolff et al 24 J. Phys.: Conf. Ser.

More information

CFD VALIDATION STUDY OF NEXST-1 NEAR MACH 1

CFD VALIDATION STUDY OF NEXST-1 NEAR MACH 1 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES CFD VALIDATION STUDY OF NEXST-1 NEAR ACH 1 Keizo Takenaka*, Kazuomi Yamamoto**, Ryoji Takaki** *itsubishi Heavy Industries, Ltd., 10 Oye-cho, inato-ku,

More information

JOURNAL PUBLICATIONS

JOURNAL PUBLICATIONS 1 JOURNAL PUBLICATIONS 71. Lee, T., Mageed, A., Siddiqui, B. and Ko, L.S., (2016) Impact of ground proximity on aerodynamic properties of an unsteady NACA 0012 airfoil, submitted to Journal of Aerospace

More information

CFD study of section characteristics of Formula Mazda race car wings

CFD study of section characteristics of Formula Mazda race car wings Mathematical and Computer Modelling 43 (2006) 1275 1287 www.elsevier.com/locate/mcm CFD study of section characteristics of Formula Mazda race car wings W. Kieffer a, S. Moujaes b,, N. Armbya b a MSME

More information

DYAMIC BEHAVIOR OF VORTEX SHEDDING FROM AN OSCILLATING THREE-DIMENSIONAL AIRFOIL

DYAMIC BEHAVIOR OF VORTEX SHEDDING FROM AN OSCILLATING THREE-DIMENSIONAL AIRFOIL 27 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES DYAMIC BEHAVIOR OF VORTEX SHEDDING FROM AN OSCILLATING THREE-DIMENSIONAL AIRFOIL Hiroaki Hasegawa*, Kennichi Nakagawa** *Department of Mechanical

More information

Reduction of Skin Friction Drag in Wings by Employing Riblets

Reduction of Skin Friction Drag in Wings by Employing Riblets Reduction of Skin Friction Drag in Wings by Employing Riblets Kousik Kumaar. R 1 Assistant Professor Department of Aeronautical Engineering Nehru Institute of Engineering and Technology Coimbatore, India

More information

COMPUTATIONAL FLOW MODEL OF WESTFALL'S LEADING TAB FLOW CONDITIONER AGM-09-R-08 Rev. B. By Kimbal A. Hall, PE

COMPUTATIONAL FLOW MODEL OF WESTFALL'S LEADING TAB FLOW CONDITIONER AGM-09-R-08 Rev. B. By Kimbal A. Hall, PE COMPUTATIONAL FLOW MODEL OF WESTFALL'S LEADING TAB FLOW CONDITIONER AGM-09-R-08 Rev. B By Kimbal A. Hall, PE Submitted to: WESTFALL MANUFACTURING COMPANY September 2009 ALDEN RESEARCH LABORATORY, INC.

More information

Aerodynamics and Vortex Structures of a Flapping Airfoil in Forward Flight in Proximity of Ground

Aerodynamics and Vortex Structures of a Flapping Airfoil in Forward Flight in Proximity of Ground Washington University in St. Louis Washington University Open Scholarship Engineering and Applied Science Theses & Dissertations Engineering and Applied Science Spring 5-19-2017 Aerodynamics and Vortex

More information

Low Speed Wind Tunnel Wing Performance

Low Speed Wind Tunnel Wing Performance Low Speed Wind Tunnel Wing Performance ARO 101L Introduction to Aeronautics Section 01 Group 13 20 November 2015 Aerospace Engineering Department California Polytechnic University, Pomona Team Leader:

More information

COMPUTATIONAL FLUID DYNAMIC ANALYSIS OF AIRFOIL NACA0015

COMPUTATIONAL FLUID DYNAMIC ANALYSIS OF AIRFOIL NACA0015 International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 2, February 2017, pp. 210 219 Article ID: IJMET_08_02_026 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=2

More information

AERODYNAMIC CHARACTERISTICS OF SPIN PHENOMENON FOR DELTA WING

AERODYNAMIC CHARACTERISTICS OF SPIN PHENOMENON FOR DELTA WING ICAS 2002 CONGRESS AERODYNAMIC CHARACTERISTICS OF SPIN PHENOMENON FOR DELTA WING Yoshiaki NAKAMURA (nakamura@nuae.nagoya-u.ac.jp) Takafumi YAMADA (yamada@nuae.nagoya-u.ac.jp) Department of Aerospace Engineering,

More information

Abstract The aim of this work is two-sided. Firstly, experimental results obtained for numerous sets of airfoil measurements (mainly intended for wind

Abstract The aim of this work is two-sided. Firstly, experimental results obtained for numerous sets of airfoil measurements (mainly intended for wind Wind Turbine Airfoil Catalogue Risfi R 8(EN) Franck Bertagnolio, Niels Sfirensen, Jeppe Johansen and Peter Fuglsang Risfi National Laboratory, Roskilde, Denmark August Abstract The aim of this work is

More information

Aerodynamics of Winglet: A Computational Fluid Dynamics Study Using Fluent

Aerodynamics of Winglet: A Computational Fluid Dynamics Study Using Fluent Aerodynamics of : A Computational Fluid Dynamics Study Using Fluent Rohit Jain 1, Mr. Sandeep Jain, Mr. Lokesh Bajpai 1PG Student, Associate Professor, Professor & Head 1 Mechanical Engineering Department

More information

A Performanced Based Angle of Attack Display

A Performanced Based Angle of Attack Display A Performanced Based Angle of Attack Display David F. Rogers, Phd, ATP www.nar-associates.com The Problem The current angle of attack displays basically warn you about the approach to stall with yellow

More information

IMPACT OF FUSELAGE CROSS SECTION ON THE STABILITY OF A GENERIC FIGHTER

IMPACT OF FUSELAGE CROSS SECTION ON THE STABILITY OF A GENERIC FIGHTER IMPACT OF FUSELAGE CROSS SECTION ON THE STABILITY OF A GENERIC FIGHTER Robert M. Hall NASA Langley Research Center Hampton, Virginia ABSTRACT Many traditional data bases, which involved smooth-sided forebodies,

More information

Optimized Natural-Laminar-Flow Airfoils

Optimized Natural-Laminar-Flow Airfoils Optimized Natural-Laminar-Flow Airfoils J. Driver and D. W. Zingg University of Toronto Institute for Aerospace Studies 4925 Dufferin Street, Toronto, Ontario Canada, M3H 5T6 A two-dimensional Newton-Krylov

More information

Tim Lee s journal publications

Tim Lee s journal publications Tim Lee s journal publications 82. Lee, T., and Tremblay-Dionne, V., (2018) Impact of wavelength and amplitude of a wavy ground on a static NACA 0012 airfoil submitted to Journal of Aircraft (paper in

More information

Part III: Airfoil Data. Philippe Giguère

Part III: Airfoil Data. Philippe Giguère Part III: Airfoil Data Philippe Giguère Former Graduate Research Assistant (now with GE Wind Energy) Department of Aerospace Engineering University of Illinois at Urbana-Champaign Steady-State Aerodynamics

More information

CFD Studies on Triangular Micro-Vortex Generators in Flow Control

CFD Studies on Triangular Micro-Vortex Generators in Flow Control IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS CFD Studies on Triangular Micro-Vortex Generators in Flow Control To cite this article: V Yashodhar et al 2017 IOP Conf. Ser.:

More information

Aerodynamics of a wind turbine

Aerodynamics of a wind turbine Aerodynamics of a wind turbine Author: Kosmacheva Anna Supervisor: Jari Hämäläinen Lappeenranta University of Technology Technomatematics Introduction Wind turbine is a device that converts kinetic energy

More information

Aerodynamic Loads Alteration by Gurney Flap on Supercritical Airfoils at Transonic Speeds

Aerodynamic Loads Alteration by Gurney Flap on Supercritical Airfoils at Transonic Speeds Aerodynamic Loads Alteration by Gurney Flap on Supercritical Airfoils at Transonic Speeds Amir Saman Rezaei. * Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA, 92617,

More information

AF101 to AF109. Subsonic Wind Tunnel Models AERODYNAMICS. A selection of optional models for use with TecQuipment s Subsonic Wind Tunnel (AF100)

AF101 to AF109. Subsonic Wind Tunnel Models AERODYNAMICS. A selection of optional models for use with TecQuipment s Subsonic Wind Tunnel (AF100) Page 1 of 4 A selection of optional models for use with TecQuipment s Subsonic Wind Tunnel (AF100) Dimpled Sphere Drag Model (from AF109) shown inside the TecQuipment AF100 Wind Tunnel. Cylinder, aerofoils,

More information

COMPARISONS OF COMPUTATIONAL FLUID DYNAMICS AND

COMPARISONS OF COMPUTATIONAL FLUID DYNAMICS AND The Seventh Asia-Pacific Conference on Wind Engineering, November 8-12, 2009, Taipei, Taiwan COMPARISONS OF COMPUTATIONAL FLUID DYNAMICS AND WIND TUNNEL EXPERIMENTS FOR PEDESTRIAN WIND ENVIRONMENTS Chin-Hsien

More information

Aerodynamic investigation of Winglets on Wind Turbine Blades using CFD

Aerodynamic investigation of Winglets on Wind Turbine Blades using CFD Risø-R-1543(EN) Aerodynamic investigation of Winglets on Wind Turbine Blades using CFD Jeppe Johansen and Niels N. Sørensen Risø National Laboratory Roskilde Denmark February 26 Author: Jeppe Johansen

More information

CFD DESIGN STUDY OF A CIRCULATION CONTROL INLET GUIDE VANE OF AN AEROFOIL

CFD DESIGN STUDY OF A CIRCULATION CONTROL INLET GUIDE VANE OF AN AEROFOIL Int. J. Mech. Eng. & Rob. Res. 2012 Manjunath Ichchangi and Manjunath H, 2012 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 1, No. 3, October 2012 2012 IJMERR. All Rights Reserved CFD DESIGN STUDY

More information

Centre for Offshore Renewable Energy Engineering, School of Energy, Environment and Agrifood, Cranfield University, Cranfield, MK43 0AL, UK 2

Centre for Offshore Renewable Energy Engineering, School of Energy, Environment and Agrifood, Cranfield University, Cranfield, MK43 0AL, UK 2 Fluid Structure Interaction Modelling of A Novel 10MW Vertical-Axis Wind Turbine Rotor Based on Computational Fluid Dynamics and Finite Element Analysis Lin Wang 1*, Athanasios Kolios 1, Pierre-Luc Delafin

More information

Design and Development of Micro Aerial Vehicle

Design and Development of Micro Aerial Vehicle Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 4, Number 1 (2014), pp. 91-98 Research India Publications http://www.ripublication.com/aasa.htm Design and Development of Micro Aerial

More information