Incompressible Flow over Airfoils

Size: px
Start display at page:

Download "Incompressible Flow over Airfoils"

Transcription

1 Road map for Chap. 4 Incompressible Flow over Airfoils Aerodynamics 2015 fall - 1 -

2 < 4.1 Introduction > Incompressible Flow over Airfoils Incompressible flow over airfoils Prandtl (20C 초 ) Airfoil (2D) Wind (3D) Body Airfoil : any section of the wing cut by a plane normal to y-axis Aerodynamics 2015 fall - 2 -

3 < 4.2 Airfoil Nomenclature > NACA (National Advisory Committee for Aeronautics) series Thickness Mean camber line Chord line Camber Upper surface Leading edge Lower surface Trailing edge Aerodynamics 2015 fall - 3 -

4 < 4.2 Airfoil Nomenclature > NACA (National Advisory Committee for Aeronautics) series NACA 4-digit series Incompressible Flow over Airfoils * NACA : max. camber = 2% of the chord 4 : the location of max. camber = 40% of the chord 12 : max. thickness = 12% of the chord If the airfoil is symmetric, it becomes NACA00XX NACA 5-digit series * NACA : 2*0.3/2 = 0.3 design C L 30 : 30/2 % = the location of max. camber 12 : max. thickness = 12% of the chord Aerodynamics 2015 fall - 4 -

5 < 4.2 Airfoil Nomenclature > NACA (National Advisory Committee for Aeronautics) series 6-digit series laminar flow airfoil * NACA : series designation 5 : min. pressure location = 50% of the chord 2 : design C L = : max. thickness = 18% of the chord Other notations * SC0195 * VR12 Aerodynamics 2015 fall - 5 -

6 < 4.3 Airfoil Characteristics > * 1930~40 NASA carried numerous experiments on NACA airfoil characteristics (Measured C l, C d, C m 2-D data) * In the future, new airfoils should be designed and tested (consideration of aerodynamic, dynamic & acoustic limitation) * Typical lift characteristics of an airfoil Stall Sepatation Dynamic stall Maximum lift coefficient How to measure C l, C d, C m? a 0 = Zero lift angle Aerodynamics 2015 fall Stall angle (12~18deg) : angle of attack

7 < 4.3 Airfoil Characteristics > [Def.] a, angle of attack : the angle between the freestream velocity and the chord [Note] 1. a 0 is not usually a function of Re. 2. C l,max is dependent on Re. Aerodynamics 2015 fall - 7 -

8 < 4.3 Airfoil Characteristics > Typical drag & pitching moment characteristics * Aerodynamic drag = Pressure drag Sensitive to Re. (form drag) + Skin friction drag Profile drag * AC (Aerodynamic Center) [Def.] The point about which the moment is independent of AOA Subsonic : AC=c/4 Supersonic : AC=c/2 Aerodynamics 2015 fall - 8 -

9 < 4.4 Vortex Sheet > Kutta-Joukowski Theorem * Kutta (German), Joukowski(Russia) * Incompressible, inviscid flow L = r v G * G : positive clockwise Lift G G Vortex filament of strength G Aerodynamics 2015 fall - 9 -

10 < 4.4 Vortex Sheet > * g(s) = the strength of vortex sheet per unit length along s * From Biot-Savart Law * Velocity potential for vortex flow * Velocity potential at P Aerodynamics 2015 fall

11 < 4.4 Vortex Sheet > Incompressible Flow over Airfoils * Circulation around the dashed path * If (Note) The local strength of the vortex sheet is equal to the difference (jump) in tangential velocity across the vortex sheet Aerodynamics 2015 fall

12 < 4.4 Vortex Sheet > Incompressible Flow over Airfoils * Vortex Sheet - Application for inviscid, incompressible flow * Calculate g(s) to form the streamlines with a give airfoil shape (Note) Vortex sheet method is more than just a mathematical device; it also has a physical meaning ex. : Replacing the boundary layer ( ) with a vortex sheet Aerodynamics 2015 fall

13 < 4.5 The Kutta Condition > * For a circular cylinder, Incompressible Flow over Airfoils * For a given a, should have only one solution? Aerodynamics 2015 fall

14 < 4.5 The Kutta Condition > * From the experiments, we know that the velocity at the trailing-edge in finite. Kutta Condition g(te)=v 1 -V 2 =0 V(TE)=finite * The circulation around the airfoil is the value to ensure that the flow smoothly leaves the trailing edge. Aerodynamics 2015 fall

15 < 4.6 Kelvin s Circulation Theorem > * Assume) 1. Inviscid 2. Incompressible 3. No body forces Ex) Starting vortex The time rate of change of circulation around a closed curve consisting of the same fluid elements is zero [ at rest ] [ after the start ] Aerodynamics 2015 fall

16 < 4.7 Classical Thin Airfoil Theory > The Symmetric Airfoil * Assumptions Incompressible Flow over Airfoils i) The camber line is one of the streamlines ii) Small maximum camber and thickness relative to the chord iii) Small angle of attack * Purposes i) Find g(s) ii) Use Kutta-Joukowski theorem, L =rvg Aerodynamics 2015 fall - 1 -

17 < 4.7 Classical Thin Airfoil Theory > The Symmetric Airfoil * The component of free-stream velocity normal to the mean camber line at P From small angle assumption Aerodynamics 2015 fall - 2 -

18 < 4.7 Classical Thin Airfoil Theory > The Symmetric Airfoil * If the airfoil is thin, : velocity normal to the camber line induced by the vortex sheet : velocity normal to the chord line induced by the vortex sheet * The velocity at point x by the elemental vortex at point x * The velocity at point x by all the elemental vortices along the chord line Aerodynamics 2015 fall - 3 -

19 < 4.7 Classical Thin Airfoil Theory > The Symmetric Airfoil * The sum of the velocity components normal to the surface at all point along the vortex sheet is zero The fundamental equation of thin airfoil theory Aerodynamics 2015 fall - 4 -

20 < 4.7 Classical Thin Airfoil Theory > The Symmetric Airfoil * Sysmmetric airfoil no camber, * Transform variable x into q,, Aerodynamics 2015 fall - 5 -

21 < 4.7 Classical Thin Airfoil Theory > The Symmetric Airfoil * Check Kutta condition Indeterminant form By L Hospital s rule Aerodynamics 2015 fall - 6 -

22 < 4.7 Classical Thin Airfoil Theory > The Symmetric Airfoil * Since we get g(q), now calculate G, L * Lift : * Lift coefficient : * Lift slope : Lift coefficient is linearly proportional to angle of attack. Aerodynamics 2015 fall - 7 -

23 < 4.7 Classical Thin Airfoil Theory > The Symmetric Airfoil * The moment about the leading edge Aerodynamics 2015 fall - 8 -

24 < 4.7 Classical Thin Airfoil Theory > The Symmetric Airfoil * The moment coefficient * Aerodynamic center is located at c/4 for incompressible, inviscid and symmetric airfoil (true in real world) * Center of pressure : the point at which the moment is zero Aerodynamic center : the point at which the moment is independent of aoa Aerodynamics 2015 fall - 9 -

25 < 4.8 The Cambered Airfoil > * From thin airfoil theory, Incompressible Flow over Airfoils (a) * For cambered airfoil, Transform x into q (b) * The solution becomes (c) Leading term for symmetric airfoil Fourier series term due to camber Aerodynamics 2015 fall

26 < 4.8 The Cambered Airfoil > * Substitute (c) into (b) Incompressible Flow over Airfoils By using the integral standard form Aerodynamics 2015 fall

27 < 4.8 The Cambered Airfoil > For Fourier cosine series, Incompressible Flow over Airfoils [Note] given Determine g(q) to make the camber line a streamline with A 0, A n + Kutta condition, g(p)=0 Aerodynamics 2015 fall

28 < 4.8 The Cambered Airfoil > * The total circulation due to the entire vortex sheet By using, Aerodynamics 2015 fall

29 < 4.8 The Cambered Airfoil > * Lift coefficient for a cambered thin airfoil Lift slope, Aerodynamics 2015 fall

30 < 4.8 The Cambered Airfoil > * Lift coefficient for a cambered thin airfoil [Note] * Lift slope is 2p for any shape airfoil * Zero lift angle : Aerodynamics 2015 fall

31 < 4.8 The Cambered Airfoil > * The total moment about the leading edge * Moment coefficient Aerodynamics 2015 fall A 1 & A 2 both are independent of aoa The quarter-chord is the aerodynamic center for a cambered airfoil

32 < 4.8 The Cambered Airfoil > * The center of pressure Incompressible Flow over Airfoils Not a convenient point Aerodynamics 2015 fall

33 < 4.8 The Cambered Airfoil > The influence of camber on the thin airfoil * The cambered airfoil * The symmetric airfoil Aerodynamics 2015 fall

34 < 4.10 The Vortex Panel Method > * Thin airfoil theory - Closed form - Limited to thin airfoil, * Panel method - Vortex panel - Source panel non-lifting cases * Exactly same idea of thin airfoil theory, but no closed form g(s) solve numerically Aerodynamics 2015 fall - 1 -

35 < 4.10 The Vortex Panel Method > Boundary point J-1 j y q j x P(x,y) Control point (x j,y j ) J+1 * The velocity potential at P due to j-th panel * Let s put point P at the control point of i-th panel Aerodynamics 2015 fall - 2 -

36 < 4.10 The Vortex Panel Method > * At the control points, the normal component of velocity is zero. - The component of V normal to i-th panel - The normal component of induced velocity at (x i, y i ) = : f (panel geometry) Aerodynamics 2015 fall - 3 -

37 < 4.10 The Vortex Panel Method > * Boundary condition : + Kutta condition : i i+1 * Now, we have (n+1) eq. with n unknowns ignore one of control points * The flow velocity tangent to the surface = g u i,1 u i,2 * Total circulation : * Lift : Inside the solid surface Aerodynamics 2015 fall - 4 -

38 < 4.12 The Flow over an Airfoil the Real Case > Stall Leading-edge stall Flow separation takes place over the entire top surface of the airfoil after occurring at the leading edge Aerodynamics 2015 fall - 5 -

39 < 4.12 The Flow over an Airfoil the Real Case > Stall Trailing-edge stall α = 5 α = 10 α = 15 α =22.5 Flow separation takes place from the trailing edge at thicker airfoils than leading-edge stall Aerodynamics 2015 fall - 6 -

40 < 4.12 The Flow over an Airfoil the Real Case > Stall Thin airfoil stall Leading-edge stall Flow separation takes place over the entire surface of the airfoil after occurring at the leading edge Aerodynamics 2015 fall - 7 -

41 Lift coefficient Incompressible Flow over Airfoils < 4.12 The Flow over an Airfoil the Real Case > Stall Lift-coefficient curves 1.5 Leading-edge stall 1.0 Trailing-edge stall 0.5 Thin airfoil stall α, degrees Aerodynamics 2015 fall - 8 -

42 < 4.12 The Flow over an Airfoil the Real Case > High-lift devices Leading edge slat Trailing edge flap Aerodynamics 2015 fall - 9 -

43 < 4.12 The Flow over an Airfoil the Real Case > High-lift devices Trailing-edge flap (plain type) More camber Higher lift Aerodynamics 2015 fall

44 < 4.12 The Flow over an Airfoil the Real Case > High-lift devices Effect of slats and flaps Aerodynamics 2015 fall

Incompressible Flow over Airfoils

Incompressible Flow over Airfoils < 4.7 Classical Thin Airfoil Theory > The Symmetric Airfoil * Assumptions Incompressible Flow over Airfoils i) The camber line is one of the streamlines ii) Small maximum camber and thickness relative

More information

AE Dept., KFUPM. Dr. Abdullah M. Al-Garni. Fuel Economy. Emissions Maximum Speed Acceleration Directional Stability Stability.

AE Dept., KFUPM. Dr. Abdullah M. Al-Garni. Fuel Economy. Emissions Maximum Speed Acceleration Directional Stability Stability. Aerodynamics: Introduction Aerodynamics deals with the motion of objects in air. These objects can be airplanes, missiles or road vehicles. The Table below summarizes the aspects of vehicle performance

More information

OUTLINE FOR Chapter 4

OUTLINE FOR Chapter 4 16/8/3 OUTLINE FOR Chapter AIRFOIL NOMENCLATURE The leaing ege circle: (usually raius =. chor length c) The trailing ege: The chor line: Straight line connecting the center of leaing ege circle an the

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodynamics I UNIT C: 2-D Airfoils C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory AE301 Aerodynamics I : List of Subjects

More information

The effect of back spin on a table tennis ball moving in a viscous fluid.

The effect of back spin on a table tennis ball moving in a viscous fluid. How can planes fly? The phenomenon of lift can be produced in an ideal (non-viscous) fluid by the addition of a free vortex (circulation) around a cylinder in a rectilinear flow stream. This is known as

More information

Incompressible Potential Flow. Panel Methods (3)

Incompressible Potential Flow. Panel Methods (3) Incompressible Potential Flow Panel Methods (3) Outline Some Potential Theory Derivation of the Integral Equation for the Potential Classic Panel Method Program PANEL Subsonic Airfoil Aerodynamics Issues

More information

Basic Fluid Mechanics

Basic Fluid Mechanics Basic Fluid Mechanics Chapter 7B: Forces on Submerged Bodies 7/26/2018 C7B: Forces on Submerged Bodies 1 Forces on Submerged Bodies Lift and Drag are forces exerted on an immersed body by the surrounding

More information

Jet Propulsion. Lecture-17. Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati

Jet Propulsion. Lecture-17. Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati Lecture-17 Prepared under QIP-CD Cell Project Jet Propulsion Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Lift: is used to support the weight of

More information

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool)

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool) Unit D-1: Aerodynamics of 3-D Wings Page 1 of 5 AE301 Aerodynamics I UNIT D: Applied Aerodynamics ROAD MAP... D-1: Aerodynamics of 3-D Wings D-: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics

More information

CFD ANALYSIS OF FLOW AROUND AEROFOIL FOR DIFFERENT ANGLE OF ATTACKS

CFD ANALYSIS OF FLOW AROUND AEROFOIL FOR DIFFERENT ANGLE OF ATTACKS www.mechieprojects.com CFD ANALYSIS OF FLOW AROUND AEROFOIL FOR DIFFERENT ANGLE OF ATTACKS PRESENTATION OUTLINE AIM INTRODUCTION LITERATURE SURVEY CFD ANALYSIS OF AEROFOIL RESULTS CONCLUSIONS www.mechieprojects.com

More information

Aerodynamic Forces on a Wing in a Subsonic Wind Tunnel. Learning Objectives

Aerodynamic Forces on a Wing in a Subsonic Wind Tunnel. Learning Objectives Aerodynamic Forces on a Wing in a Subsonic Wind Tunnel AerodynamicForces Lab -1 Learning Objectives 1. Familiarization with aerodynamic forces 2. Introduction to airfoil/wing basics 3. Use and operation

More information

AF101 to AF109. Subsonic Wind Tunnel Models AERODYNAMICS. A selection of optional models for use with TecQuipment s Subsonic Wind Tunnel (AF100)

AF101 to AF109. Subsonic Wind Tunnel Models AERODYNAMICS. A selection of optional models for use with TecQuipment s Subsonic Wind Tunnel (AF100) Page 1 of 4 A selection of optional models for use with TecQuipment s Subsonic Wind Tunnel (AF100) Dimpled Sphere Drag Model (from AF109) shown inside the TecQuipment AF100 Wind Tunnel. Cylinder, aerofoils,

More information

CHAPTER-1 INTRODUCTION

CHAPTER-1 INTRODUCTION CHAPTER-1 INTRODUCTION 1 1.1 Introduction This investigation documents the aerodynamic characteristics of four profiles, as cylinder, sphere, symmetrical aerofoil (NACA 0015) and cambered aerofoil (NACA

More information

It should be noted that the symmetrical airfoil at zero lift has no pitching moment about the aerodynamic center because the upper and

It should be noted that the symmetrical airfoil at zero lift has no pitching moment about the aerodynamic center because the upper and NAVWEPS -81-8 and high power, the dynamic pressure in the shaded area can be much greater than the free stream and this causes considerably greater lift than at zero thrust. At high power conditions the

More information

AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK

AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK SUPREETH NARASIMHAMURTHY GRADUATE STUDENT 1327291 Table of Contents 1) Introduction...1 2) Methodology.3 3) Results...5

More information

STUDY OF VARIOUS NACA SERIES AEROFOIL SECTIONS AND WING CONTOUR GENERATION USING CATIA V5

STUDY OF VARIOUS NACA SERIES AEROFOIL SECTIONS AND WING CONTOUR GENERATION USING CATIA V5 STUDY OF VARIOUS NACA SERIES AEROFOIL SECTIONS AND WING CONTOUR GENERATION USING CATIA V5 Pawan Kumar Department of Aeronautical Engineering, Desh Bhagat University, Punjab, India ABSTRACT Aerofoil is

More information

AERODYNAMICS I LECTURE 7 SELECTED TOPICS IN THE LOW-SPEED AERODYNAMICS

AERODYNAMICS I LECTURE 7 SELECTED TOPICS IN THE LOW-SPEED AERODYNAMICS LECTURE 7 SELECTED TOPICS IN THE LOW-SPEED AERODYNAMICS The sources of a graphical material used in this lecture are: [UA] D. McLean, Understanding Aerodynamics. Arguing from the Real Physics. Wiley, 2013.

More information

A COMPUTATIONAL STUDY ON THE DESIGN OF AIRFOILS FOR A FIXED WING MAV AND THE AERODYNAMIC CHARACTERISTIC OF THE VEHICLE

A COMPUTATIONAL STUDY ON THE DESIGN OF AIRFOILS FOR A FIXED WING MAV AND THE AERODYNAMIC CHARACTERISTIC OF THE VEHICLE 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES A COMPUTATIONAL STUDY ON THE DESIGN OF AIRFOILS FOR A FIXED WING MAV AND THE AERODYNAMIC CHARACTERISTIC OF THE VEHICLE Jung-Hyun Kim*, Kyu-Hong

More information

J. Szantyr Lecture No. 21 Aerodynamics of the lifting foils Lifting foils are important parts of many products of contemporary technology.

J. Szantyr Lecture No. 21 Aerodynamics of the lifting foils Lifting foils are important parts of many products of contemporary technology. J. Szantyr Lecture No. 21 Aerodynamics of the lifting foils Lifting foils are important parts of many products of contemporary technology. < Helicopters Aircraft Gliders Sails > < Keels and rudders Hydrofoils

More information

Flow Over Bodies: Drag and Lift

Flow Over Bodies: Drag and Lift Fluid Mechanics (0905241) Flow Over Bodies: Drag and Lift Dr.-Eng. Zayed dal-hamamre 1 Content Overview Drag and Lift Flow Past Objects Boundary Layers Laminar Boundary Layers Transitional and Turbulent

More information

Subsonic wind tunnel models

Subsonic wind tunnel models aerodynamics AF1300a to AF1300l A selection of optional models for use with TecQuipment s Subsonic Wind Tunnel (AF1300) Dimpled Sphere Drag Model (from AF1300j) shown inside the TecQuipment AF1300 Wind

More information

ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT

ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT P.Sethunathan 1, M.Niventhran 2, V.Siva 2, R.Sadhan Kumar 2 1 Asst.Professor, Department of Aeronautical Engineering,

More information

Aerodynamic Analysis of a Symmetric Aerofoil

Aerodynamic Analysis of a Symmetric Aerofoil 214 IJEDR Volume 2, Issue 4 ISSN: 2321-9939 Aerodynamic Analysis of a Symmetric Aerofoil Narayan U Rathod Department of Mechanical Engineering, BMS college of Engineering, Bangalore, India Abstract - The

More information

Helicopters / Vortex theory. Filipe Szolnoky Cunha

Helicopters / Vortex theory. Filipe Szolnoky Cunha Vortex Theory Slide 1 Vortex Theory Slide 2 Vortex Theory µ=0.2 Slide 3 Vortex Theory µ=0.4 Slide 4 Vortex Theory Slide 5 Tip Vortex Trajectories Top view Slide 6 Definition Wake Age Slide 7 Assumptions:

More information

Reynolds Number Effects on Leading Edge Vortices

Reynolds Number Effects on Leading Edge Vortices Reynolds Number Effects on Leading Edge Vortices Taken From AIAA-2002-2839 Paper Reynolds Numbers Considerations for Supersonic Flight Brenda M. Kulfan 32nd AIAA Fluid Dynamics Conference and Exhibit St.

More information

Lift for a Finite Wing. all real wings are finite in span (airfoils are considered as infinite in the span)

Lift for a Finite Wing. all real wings are finite in span (airfoils are considered as infinite in the span) Lift for a Finite Wing all real wings are finite in span (airfoils are considered as infinite in the span) The lift coefficient differs from that of an airfoil because there are strong vortices produced

More information

CFD Analysis of Effect of Variation in Angle of Attack over NACA 2412 Airfoil through the Shear Stress Transport Turbulence Model

CFD Analysis of Effect of Variation in Angle of Attack over NACA 2412 Airfoil through the Shear Stress Transport Turbulence Model IJSRD - International Journal for Scientific Research & Development Vol. 5, Issue 02, 2017 ISSN (online): 2321-0613 CFD Analysis of Effect of Variation in Angle of Attack over NACA 2412 Airfoil through

More information

BUILD AND TEST A WIND TUNNEL

BUILD AND TEST A WIND TUNNEL LAUNCHING INTO AVIATION 9 2018 Aircraft Owners and Pilots Association. All Rights Reserved. UNIT 2 SECTION D LESSON 2 PRESENTATION BUILD AND TEST A WIND TUNNEL LEARNING OBJECTIVES By the end of this lesson,

More information

EXPERIMENTAL ANALYSIS OF FLOW OVER SYMMETRICAL AEROFOIL Mayank Pawar 1, Zankhan Sonara 2 1,2

EXPERIMENTAL ANALYSIS OF FLOW OVER SYMMETRICAL AEROFOIL Mayank Pawar 1, Zankhan Sonara 2 1,2 EXPERIMENTAL ANALYSIS OF FLOW OVER SYMMETRICAL AEROFOIL Mayank Pawar 1, Zankhan Sonara 2 1,2 Assistant Professor,Chandubhai S. Patel Institute of Technology, CHARUSAT, Changa, Gujarat, India Abstract The

More information

Avai 193 Fall 2016 Laboratory Greensheet

Avai 193 Fall 2016 Laboratory Greensheet Avai 193 Fall 2016 Laboratory Greensheet Lab Report 1 Title: Instrumentation Test Technique Research Process: Break into groups of 4 people. These groups will be the same for all of the experiments performed

More information

Reduction of Skin Friction Drag in Wings by Employing Riblets

Reduction of Skin Friction Drag in Wings by Employing Riblets Reduction of Skin Friction Drag in Wings by Employing Riblets Kousik Kumaar. R 1 Assistant Professor Department of Aeronautical Engineering Nehru Institute of Engineering and Technology Coimbatore, India

More information

Lecture # 08: Boundary Layer Flows and Controls

Lecture # 08: Boundary Layer Flows and Controls AerE 344 Lecture Notes Lecture # 8: Boundary Layer Flows and Controls Dr. Hui Hu Department of Aerospace Engineering Iowa State University Ames, Iowa 511, U.S.A Flow Separation on an Airfoil Quantification

More information

Flight Corridor. The speed-altitude band where flight sustained by aerodynamic forces is technically possible is called the flight corridor.

Flight Corridor. The speed-altitude band where flight sustained by aerodynamic forces is technically possible is called the flight corridor. Flight Corridor The speed-altitude band where flight sustained by aerodynamic forces is technically possible is called the flight corridor. The subsonic Boeing 747 and supersonic Concorde have flight corridors

More information

DEVELOPMENT OF A THREE-DIMENSIONAL INVERSE SAIL DESIGN METHOD

DEVELOPMENT OF A THREE-DIMENSIONAL INVERSE SAIL DESIGN METHOD rd High Performance Yacht Design Conference Auckland, 2- December, 2008 DEVELOPMENT OF A THREE-DIMENSIONAL INVERSE SAIL DESIGN METHOD Julien Pilate, julien_pilate@hotmail.com Frederik C. Gerhardt 2, fger00@aucklanduni.ac.nz

More information

Effect of Co-Flow Jet over an Airfoil: Numerical Approach

Effect of Co-Flow Jet over an Airfoil: Numerical Approach Contemporary Engineering Sciences, Vol. 7, 2014, no. 17, 845-851 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ces.2014.4655 Effect of Co-Flow Jet over an Airfoil: Numerical Approach Md. Riajun

More information

INTERFERENCE EFFECT AND FLOW PATTERN OF FOUR BIPLANE CONFIGURATIONS USING NACA 0024 PROFILE

INTERFERENCE EFFECT AND FLOW PATTERN OF FOUR BIPLANE CONFIGURATIONS USING NACA 0024 PROFILE Proceedings of the International Conference on Mechanical Engineering 211 (ICME211) 18-2 December 211, Dhaka, Bangladesh ICME11-FL-1 INTERFERENCE EFFECT AND FLOW PATTERN OF FOUR BIPLANE CONFIGURATIONS

More information

Chapter 3 Lecture 9. Drag polar 4. Topics. Chapter-3

Chapter 3 Lecture 9. Drag polar 4. Topics. Chapter-3 Chapter 3 Lecture 9 Drag polar 4 Topics 3..11 Presentation of aerodynamic characteristics of airfoils 3..1 Geometric characteristics of airfoils 3..13 Airfoil nomenclature\designation 3..14 Induced drag

More information

EFFECT OF GURNEY FLAPS AND WINGLETS ON THE PERFORMANCE OF THE HAWT

EFFECT OF GURNEY FLAPS AND WINGLETS ON THE PERFORMANCE OF THE HAWT Chapter-6 EFFECT OF GURNEY FLAPS AND WINGLETS ON THE PERFORMANCE OF THE HAWT 6.1 Introduction The gurney flap (wicker bill) was a small flat tab projecting from the trailing edge of a wing. Typically it

More information

Welcome to Aerospace Engineering

Welcome to Aerospace Engineering Welcome to Aerospace Engineering DESIGN-CENTERED INTRODUCTION TO AEROSPACE ENGINEERING Notes 4 Topics 1. Course Organization 2. Today's Dreams in Various Speed Ranges 3. Designing a Flight Vehicle: Route

More information

Investigation on 3-D Wing of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent

Investigation on 3-D Wing of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent Investigation on 3-D of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent Rohit Jain 1, Mr. Sandeep Jain 2, Mr. Lokesh Bajpai 3 1PG Student, 2 Associate Professor, 3 Professor & Head 1 2 3

More information

Experimental and Theoretical Investigation for the Improvement of the Aerodynamic Characteristic of NACA 0012 airfoil

Experimental and Theoretical Investigation for the Improvement of the Aerodynamic Characteristic of NACA 0012 airfoil International Journal of Mining, Metallurgy & Mechanical Engineering (IJMMME) Volume 2, Issue 1 (214) ISSN 232 46 (Online) Experimental and Theoretical Investigation for the Improvement of the Aerodynamic

More information

Lecture # 08: Boundary Layer Flows and Drag

Lecture # 08: Boundary Layer Flows and Drag AerE 311L & AerE343L Lecture Notes Lecture # 8: Boundary Layer Flows and Drag Dr. Hui H Hu Department of Aerospace Engineering Iowa State University Ames, Iowa 511, U.S.A y AerE343L #4: Hot wire measurements

More information

Low Speed Wind Tunnel Wing Performance

Low Speed Wind Tunnel Wing Performance Low Speed Wind Tunnel Wing Performance ARO 101L Introduction to Aeronautics Section 01 Group 13 20 November 2015 Aerospace Engineering Department California Polytechnic University, Pomona Team Leader:

More information

NUMERICAL INVESTIGATION OF AERODYNAMIC CHARACTERISTICS OF NACA AIRFOIL WITH A GURNEY FLAP

NUMERICAL INVESTIGATION OF AERODYNAMIC CHARACTERISTICS OF NACA AIRFOIL WITH A GURNEY FLAP Int. J. Mech. Eng. & Rob. Res. 2012 MasoudJahanmorad Nouri et al., 2012 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 1, No. 3, October 2012 2012 IJMERR. All Rights Reserved NUMERICAL INVESTIGATION

More information

Numerical Investigation of Multi Airfoil Effect on Performance Increase of Wind Turbine

Numerical Investigation of Multi Airfoil Effect on Performance Increase of Wind Turbine International Journal of Engineering & Applied Sciences (IJEAS) International Journal of Engineering Applied Sciences (IJEAS) Vol.9, Issue 3 (2017) 75-86 Vol.x, Issue x(201x)x-xx http://dx.doi.org/10.24107/ijeas.332075

More information

Aircraft Design: A Systems Engineering Approach, M. Sadraey, Wiley, Figures

Aircraft Design: A Systems Engineering Approach, M. Sadraey, Wiley, Figures Aircraft Design: A Systems Engineering Approach, M. Sadraey, Wiley, 2012 Chapter 5 Wing Design Figures 1 Identify and prioritize wing design requirements (Performance, stability, producibility, operational

More information

Drag Divergence and Wave Shock. A Path to Supersonic Flight Barriers

Drag Divergence and Wave Shock. A Path to Supersonic Flight Barriers Drag Divergence and Wave Shock A Path to Supersonic Flight Barriers Mach Effects on Coefficient of Drag The Critical Mach Number is the velocity on the airfoil at which sonic flow is first acquired If

More information

ScienceDirect. Investigation of the aerodynamic characteristics of an aerofoil shaped fuselage UAV model

ScienceDirect. Investigation of the aerodynamic characteristics of an aerofoil shaped fuselage UAV model Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 90 (2014 ) 225 231 10th International Conference on Mechanical Engineering, ICME 2013 Investigation of the aerodynamic characteristics

More information

Aerofoils, Lift, Drag and Circulation

Aerofoils, Lift, Drag and Circulation Aerofoils, Lift, Drag and Circulation 4.0 Introduction In Section 3.3 we saw that the assumption that blade elements behave as aerofoils allows the analysis of wind turbines in terms of the lift and drag

More information

ME 425: AERODYNAMICS

ME 425: AERODYNAMICS ME 45: AERODYNAMICS - Dr. A.B.M. Toufique Hasan Professor Department of Mehanial Engineering, BUET Leture # 3 4 Otober, 6 http://teaher.buet.a.bd/toufiquehasan/ourses.php ME45: Aerodynamis Airfoil Nomenlature

More information

Aerodynamic Basics Larry Bogan - Jan 2002 version MECHANICS

Aerodynamic Basics Larry Bogan - Jan 2002 version MECHANICS Aerodynamic Basics Larry Bogan - Jan 2002 version MECHANICS Vectors Force, displacement, acceleration, and velocity Inertia and Velocity Inertia is a property of mass. (When there is no force on an object,

More information

Laminar Flow Sections for Proa Boards and Rudders

Laminar Flow Sections for Proa Boards and Rudders Laminar Flow Sections for Proa Boards and Rudders Thomas E. Speer, Des Moines, Washington, USA ABSTRACT Hydrofoil section designs for proa sailboats which reverse direction in a shunt when changing tacks

More information

CFD DESIGN STUDY OF A CIRCULATION CONTROL INLET GUIDE VANE OF AN AEROFOIL

CFD DESIGN STUDY OF A CIRCULATION CONTROL INLET GUIDE VANE OF AN AEROFOIL Int. J. Mech. Eng. & Rob. Res. 2012 Manjunath Ichchangi and Manjunath H, 2012 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 1, No. 3, October 2012 2012 IJMERR. All Rights Reserved CFD DESIGN STUDY

More information

Aircraft Design Prof. A.K Ghosh Department of Aerospace Engineering Indian Institute of Technology, Kanpur

Aircraft Design Prof. A.K Ghosh Department of Aerospace Engineering Indian Institute of Technology, Kanpur Aircraft Design Prof. A.K Ghosh Department of Aerospace Engineering Indian Institute of Technology, Kanpur Lecture - 12 Design Considerations: Aerofoil Selection Good morning friends. The last lecture

More information

INVESTIGATION OF PRESSURE CONTOURS AND VELOCITY VECTORS OF NACA 0015IN COMPARISON WITH OPTIMIZED NACA 0015 USING GURNEY FLAP

INVESTIGATION OF PRESSURE CONTOURS AND VELOCITY VECTORS OF NACA 0015IN COMPARISON WITH OPTIMIZED NACA 0015 USING GURNEY FLAP INVESTIGATION OF PRESSURE CONTOURS AND VELOCITY VECTORS OF NACA 0015IN COMPARISON WITH OPTIMIZED NACA 0015 USING GURNEY FLAP 1 ANANTH S SHARMA, 2 SUDHAKAR S, 3 SWATHIJAYAKUMAR, 4 B S ANIL KUMAR 1,2,3,4

More information

CFD AND EXPERIMENTAL STUDY OF AERODYNAMIC DEGRADATION OF ICED AIRFOILS

CFD AND EXPERIMENTAL STUDY OF AERODYNAMIC DEGRADATION OF ICED AIRFOILS Colloquium FLUID DYNAMICS 2008 Institute of Thermomechanics AS CR, v.v.i., Prague, October 22-24, 2008 p.1 CFD AND EXPERIMENTAL STUDY OF AERODYNAMIC DEGRADATION OF ICED AIRFOILS Vladimír Horák 1, Dalibor

More information

COMPUTATIONAL FLUID DYNAMIC ANALYSIS OF AIRFOIL NACA0015

COMPUTATIONAL FLUID DYNAMIC ANALYSIS OF AIRFOIL NACA0015 International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 2, February 2017, pp. 210 219 Article ID: IJMET_08_02_026 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=2

More information

Principles of glider flight

Principles of glider flight Principles of glider flight [ Lecture 1: Lift, drag & glide performance ] Richard Lancaster Email: Richard@RJPLancaster.net Twitter: @RJPLancaster ASK-21 illustrations Copyright 1983 Alexander Schleicher

More information

Measurement of Pressure. The aerofoil shape used in wing is to. Distribution and Lift for an Aerofoil. generate lift due to the difference

Measurement of Pressure. The aerofoil shape used in wing is to. Distribution and Lift for an Aerofoil. generate lift due to the difference Measurement of Pressure Distribution and Lift for an Aerofoil. Objective The objective of this experiment is to investigate the pressure distribution around the surface of aerofoil NACA 4415 and to determine

More information

Computational Investigation of Airfoils with Miniature Trailing Edge Control Surfaces

Computational Investigation of Airfoils with Miniature Trailing Edge Control Surfaces AIAA-24-5 Computational Investigation of Airfoils with Miniature Trailing Edge Control Surfaces Hak-Tae Lee, Ilan M. Kroo Stanford University, Stanford, CA 9435 Abstract Miniature trailing edge effectors

More information

Investigation of the flow around uncambered airfoils at 1000 Reynolds number using computational fluid dynamics for micro air vehicles

Investigation of the flow around uncambered airfoils at 1000 Reynolds number using computational fluid dynamics for micro air vehicles Investigation of the flow around uncambered airfoils at 1000 Reynolds number using computational fluid dynamics for micro air vehicles Emad Uddin 1), Muhammad Adil Naseem 2), Saif Ullah Khalid 3), Aamir

More information

Static Extended Trailing Edge for Lift Enhancement: Experimental and Computational Studies

Static Extended Trailing Edge for Lift Enhancement: Experimental and Computational Studies Static Extended Trailing Edge for Lift Enhancement: Experimental and Computational Studies T. Liu, J. Montefort, W. Liou Western Michigan University Kalamazoo, MI 49008 and Q. Shams NASA Langley Research

More information

Numerical Modelling of Aerodynamics for Applications in Sports Car Engineering

Numerical Modelling of Aerodynamics for Applications in Sports Car Engineering Numerical Modelling of Aerodynamics for Applications in Sports Car Engineering Dr. Pascual Marqués-Bruna, Faculty of Arts & Sciences, Edge Hill University, St. Helen s Road, Ormskirk, L39 4QP, United Kingdom.

More information

EXPERIMENTAL ANALYSIS OF THE CONFLUENT BOUNDARY LAYER BETWEEN A FLAP AND A MAIN ELEMENT WITH SAW-TOOTHED TRAILING EDGE

EXPERIMENTAL ANALYSIS OF THE CONFLUENT BOUNDARY LAYER BETWEEN A FLAP AND A MAIN ELEMENT WITH SAW-TOOTHED TRAILING EDGE 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES EXPERIMENTAL ANALYSIS OF THE CONFLUENT BOUNDARY LAYER BETWEEN A FLAP AND A MAIN ELEMENT WITH SAW-TOOTHED TRAILING EDGE Lemes, Rodrigo Cristian,

More information

Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped Fuselage

Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped Fuselage International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-213 1 Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped

More information

Aerodynamic Modification of CFR Formula SAE Race Car

Aerodynamic Modification of CFR Formula SAE Race Car Aerodynamic Modification of CFR Formula SAE Race Car Brandon M. Verhun, Trevor D. Haight, and Thomas A. Mahank Department of Mechanical Engineering Saginaw Valley State University University Center, MI

More information

Science of Flight. Introduction to Aerodynamics for the Science Student By Pat Morgan

Science of Flight. Introduction to Aerodynamics for the Science Student By Pat Morgan Science of Flight Introduction to Aerodynamics for the Science Student By Pat Morgan Why does a Paper Airplane Fly? A paper airplane flies because of the scientific properties of gases, which make up our

More information

UNSTEADY AERODYNAMICS OF OFFSHORE FLOATING WIND TURBINES IN PLATFORM PITCHING MOTION USING VORTEX LATTICE METHOD

UNSTEADY AERODYNAMICS OF OFFSHORE FLOATING WIND TURBINES IN PLATFORM PITCHING MOTION USING VORTEX LATTICE METHOD UNSTEADY AERODYNAMICS OF OFFSHORE FLOATING WIND TURBINES IN PLATFORM PITCHING MOTION USING VORTEX LATTICE METHOD Min U Jeon a *, Seung Min Lee a, Hong Seok Jeong a, Soo Gab Lee a a Department of Mechanical

More information

THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL. By Mehrdad Ghods

THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL. By Mehrdad Ghods THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL By Mehrdad Ghods Technical Communication for Engineers The University of British Columbia July 23, 2001 ABSTRACT Theory of Wings and Wind

More information

Numerical Analysis of Wings for UAV based on High-Lift Airfoils

Numerical Analysis of Wings for UAV based on High-Lift Airfoils Numerical Analysis of Wings for UAV based on High-Lift Airfoils Sachin Srivastava Department of Aeronautical Engineering Malla Reddy College of Engineering & Technology, Hyderabad, Telangana, India Swetha

More information

Aero Club. Introduction to Flight

Aero Club. Introduction to Flight Aero Club Presents Introduction to RC Modeling Module 1 Introduction to Flight Centre For Innovation IIT Madras Page2 Table of Contents Introduction:... 3 How planes fly How is lift generated?... 3 Forces

More information

Induced Drag Reduction for Modern Aircraft without Increasing the Span of the Wing by Using Winglet

Induced Drag Reduction for Modern Aircraft without Increasing the Span of the Wing by Using Winglet International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:10 No:03 49 Induced Drag Reduction for Modern Aircraft without Increasing the Span of the Wing by Using Winglet Mohammad Ilias

More information

Aerodynamic Analyses of Horizontal Axis Wind Turbine By Different Blade Airfoil Using Computer Program

Aerodynamic Analyses of Horizontal Axis Wind Turbine By Different Blade Airfoil Using Computer Program ISSN : 2250-3021 Aerodynamic Analyses of Horizontal Axis Wind Turbine By Different Blade Airfoil Using Computer Program ARVIND SINGH RATHORE 1, SIRAJ AHMED 2 1 (Department of Mechanical Engineering Maulana

More information

Computational Analysis of the S Airfoil Aerodynamic Performance

Computational Analysis of the S Airfoil Aerodynamic Performance Computational Analysis of the 245-3S Airfoil Aerodynamic Performance Luis Velazquez-Araque and Jiří Nožička 2 Department of Mechanical Engineering National University of Táchira, San Cristóbal 5, Venezuela

More information

Aerodynamic Terms. Angle of attack is the angle between the relative wind and the wing chord line. [Figure 2-2] Leading edge. Upper camber.

Aerodynamic Terms. Angle of attack is the angle between the relative wind and the wing chord line. [Figure 2-2] Leading edge. Upper camber. Chapters 2 and 3 of the Pilot s Handbook of Aeronautical Knowledge (FAA-H-8083-25) apply to powered parachutes and are a prerequisite to reading this book. This chapter will focus on the aerodynamic fundamentals

More information

External Tank- Drag Reduction Methods and Flow Analysis

External Tank- Drag Reduction Methods and Flow Analysis External Tank- Drag Reduction Methods and Flow Analysis Shaik Mohammed Anis M.Tech Student, MLR Institute of Technology, Hyderabad, India. G. Parthasarathy Associate Professor, MLR Institute of Technology,

More information

WING PROFILE WITH VARIABLE FLAP

WING PROFILE WITH VARIABLE FLAP WING PROFILE WITH VARIABLE FLAP March 2009 INTRODUCTION Flaps are something that can be found on a majority of aeroplanes. That they fill an important purpose in affecting the aircraft s performance is

More information

DESIGN OF AN AERODYNAMIC MEASUREMENT SYSTEM FOR UNMANNED AERIAL VEHICLE AIRFOILS

DESIGN OF AN AERODYNAMIC MEASUREMENT SYSTEM FOR UNMANNED AERIAL VEHICLE AIRFOILS DESIGN OF AN AERODYNAMIC MEASUREMENT SYSTEM FOR UNMANNED AERIAL VEHICLE AIRFOILS L. Velázquez-Araque 1 and J. Nožička 1 1 Department of Fluid Dynamics and Power Engineering, Faculty of Mechanical Engineering

More information

CFD ANALYSIS OF EFFECT OF FLOW OVER NACA 2412 AIRFOIL THROUGH THE SHEAR STRESS TRANSPORT TURBULENCE MODEL

CFD ANALYSIS OF EFFECT OF FLOW OVER NACA 2412 AIRFOIL THROUGH THE SHEAR STRESS TRANSPORT TURBULENCE MODEL CFD ANALYSIS OF EFFECT OF FLOW OVER NACA 2412 AIRFOIL THROUGH THE SHEAR STRESS TRANSPORT TURBULENCE MODEL 1 SHIVANANDA SARKAR, 2SHAHEEN BEG MUGHAL 1,2 Department of Mechanical Engineering, ITM University,

More information

Design and Analysis of Vortex Generator and Dimple over an Airfoil Surface to Improve Aircraft Performance

Design and Analysis of Vortex Generator and Dimple over an Airfoil Surface to Improve Aircraft Performance ISSN: 2454-2377, Design and Analysis of Vortex Generator and Dimple over an Airfoil Surface to Improve Aircraft Performance Sonia Chalia 1*, Manish Kumar Bharti 2 1&2 Assistant professor, Department of

More information

Anna University Regional office Tirunelveli

Anna University Regional office Tirunelveli Effect of Tubercle Leading Edge Control Surface on the Performance of the Double Delta Wing Fighter Aircraft P Sharmila 1, S Rajakumar 2 1 P.G. Scholar, 2 Assistant Professor, Mechanical Department Anna

More information

OBJECTIVE METHODOLOGY

OBJECTIVE METHODOLOGY SKMA394 Measurement of Pressure Distribution around an Airfoil NACA445 OBJECTIVE The objective of this experiment is to study about the pressure distribution around the surface of aerofoil NACA 445 starting

More information

PASSIVE FLOW SEPARATION CONTROL BY STATIC EXTENDED TRAILING EDGE

PASSIVE FLOW SEPARATION CONTROL BY STATIC EXTENDED TRAILING EDGE Proceedings of the International Conference on Mechanical Engineering and Renewable Energy 25 (ICMERE25) 26 29 November, 25, Chittagong, Bangladesh ICMERE25-PI-232 PASSIVE FLOW SEPARATION CONTROL BY STATIC

More information

Experimental investigation on the aft-element flapping of a two-element airfoil at high attack angle

Experimental investigation on the aft-element flapping of a two-element airfoil at high attack angle Experimental investigation on the aft-element flapping of a two-element airfoil at high attack angle Tan Guang-kun *, Shen Gong-xin, Su Wen-han Beijing University of Aeronautics and Astronautics (BUAA),

More information

CFD ANALYSIS OF AIRFOIL SECTIONS

CFD ANALYSIS OF AIRFOIL SECTIONS CFD ANALYSIS OF AIRFOIL SECTIONS Vinayak Chumbre 1, T. Rushikesh 2, Sagar Umatar 3, Shirish M. Kerur 4 1,2,3 Student, Jain College of Engineering, Belagavi, Karnataka, INDIA 4Professor, Dept. of Mechanical

More information

Experimental Study on Flapping Wings at Low Reynolds Numbers

Experimental Study on Flapping Wings at Low Reynolds Numbers Experimental Study on Flapping Wings at Low Reynolds Numbers S. Kishore Kumar, M.Tech Department of Aeronautical Engineering CMR Technical Campus, Hyderabad, Andhra Pradesh, India K. Vijayachandar, Ms

More information

Chapter 5 Wing design - selection of wing parameters - 3 Lecture 21 Topics

Chapter 5 Wing design - selection of wing parameters - 3 Lecture 21 Topics Chapter 5 Wing design - selection of wing parameters - 3 Lecture 21 Topics 5.3.2 Choice of sweep ( ) 5.3.3 Choice of taper ratio ( λ ) 5.3.4 Choice of twist ( ε ) 5.3.5 Wing incidence(i w ) 5.3.6 Choice

More information

Reduction of Wingtip Vortices by Using Active Means

Reduction of Wingtip Vortices by Using Active Means International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1280 Reduction of Wingtip Vortices by Using Active Means Sangram Keshari Samal, Dr. P. K. Dash Abstract Wingtip

More information

Volume 2, Issue 5, May- 2015, Impact Factor: Structural Analysis of Formula One Racing Car

Volume 2, Issue 5, May- 2015, Impact Factor: Structural Analysis of Formula One Racing Car Structural Analysis of Formula One Racing Car Triya Nanalal Vadgama 1, Mr. Arpit Patel 2, Dr. Dipali Thakkar 3, Mr. Jignesh Vala 4 Department of Aeronautical Engineering, Sardar Vallabhbhai Patel Institute

More information

LEADING-EDGE VORTEX FLAPS FOR SUPERSONIC TRANSPORT CONFIGURATION -EFFECTS OF FLAP CONFIGURATIONS AND ROUNDED LEADING-EDGES-

LEADING-EDGE VORTEX FLAPS FOR SUPERSONIC TRANSPORT CONFIGURATION -EFFECTS OF FLAP CONFIGURATIONS AND ROUNDED LEADING-EDGES- ICAS 2002 CONGRESS LEADING-EDGE VORTEX FLAPS FOR SUPERSONIC TRANSPORT CONFIGURATION -EFFECTS OF FLAP CONFIGURATIONS AND ROUNDED LEADING-EDGES- Kenichi RINOIE*, Dong Youn KWAK**, Katsuhiro MIYATA* and Masayoshi

More information

Design & Analysis of Natural Laminar Flow Supercritical Aerofoil for Increasing L/D Ratio Using Gurney Flap

Design & Analysis of Natural Laminar Flow Supercritical Aerofoil for Increasing L/D Ratio Using Gurney Flap Design & Analysis of Natural Laminar Flow Supercritical Aerofoil for Increasing L/D Ratio Using Gurney Flap U.Praveenkumar 1, E.T.Chullai 2 M.Tech Student, School of Aeronautical Science, Hindustan University,

More information

PRE-TEST Module 2 The Principles of Flight Units /60 points

PRE-TEST Module 2 The Principles of Flight Units /60 points PRE-TEST Module 2 The Principles of Flight Units 1-2-3.../60 points 1 Answer the following questions. (20 p.) moving the plane (4) upward / forward. Opposed to that is 1. What are the names of the four

More information

Analysis of Aerodynamic Characteristics of Various Airfoils at Sonic Speed

Analysis of Aerodynamic Characteristics of Various Airfoils at Sonic Speed Analysis of Aerodynamic Characteristics of Various Airfoils at Sonic Speed Nishant Singh B.E Aeronautical Enginnering Dayananda Sager Collage Of Enginnering Karnataka Abstract:- The important approach

More information

ME 425: Aerodynamics

ME 425: Aerodynamics ME 45: Aeroynamis Dr. A.B.M. Toufique Hasan Professor Department of Mehanial Engineering Banglaesh University of Engineering & Tehnology BUET, Dhaka Leture-6 /5/8 teaher.buet.a.b/toufiquehasan/ toufiquehasan@me.buet.a.b

More information

Asia Pacific Journal of Engineering Science and Technology

Asia Pacific Journal of Engineering Science and Technology Asia Pacific Journal of Engineering Science and Technology 3 (1) (2017) 28-38 Asia Pacific Journal of Engineering Science and Technology journal homepage: www.apjest.com Full length article Design and

More information

Some High Lift Aerodynamics Part 1 Mechanical High Lift Systems

Some High Lift Aerodynamics Part 1 Mechanical High Lift Systems Some High Lift Aerodynamics Part 1 Mechanical High Lift Systems W.H. Mason Configuration Aerodynamics Class Why High Lift is Important Wings sized for efficient cruise are too small to takeoff and land

More information

Wing-Body Combinations

Wing-Body Combinations Wing-Body Combinations even a pencil at an angle of attack will generate lift, albeit small. Hence, lift is produced by the fuselage of an airplane as well as the wing. The mating of a wing with a fuselage

More information

Aerodynamic Analysis of Blended Winglet for Low Speed Aircraft

Aerodynamic Analysis of Blended Winglet for Low Speed Aircraft , July 1-3, 2015, London, U.K. Aerodynamic Analysis of Blended Winglet for Low Speed Aircraft Pooja Pragati, Sudarsan Baskar Abstract This paper provides a practical design of a new concept of massive

More information

Aerodynamics. A study guide on aerodynamics for the Piper Archer

Aerodynamics. A study guide on aerodynamics for the Piper Archer Aerodynamics A study guide on aerodynamics for the Piper Archer Aerodynamics The purpose of this pilot briefing is to discuss the simple and complex aerodynamics of the Piper Archer. Please use the following

More information

Design and Development of Micro Aerial Vehicle

Design and Development of Micro Aerial Vehicle Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 4, Number 1 (2014), pp. 91-98 Research India Publications http://www.ripublication.com/aasa.htm Design and Development of Micro Aerial

More information