ME 425: AERODYNAMICS

Size: px
Start display at page:

Download "ME 425: AERODYNAMICS"

Transcription

1 ME 45: AERODYNAMICS - Dr. A.B.M. Toufique Hasan Professor Department of Mehanial Engineering, BUET Leture # 3 4 Otober, 6 ME45: Aerodynamis Airfoil Nomenlature Mean amber line is the lous of points halfway between the upper and lower surfae as measured perpendiular to the mean amber line itself. The straight line onneting the leading and trailing edges is the hord line. The amber is the maximum distane between the mean amber line and the hord line, measured perpendiular to the hord line. ME45: Aerodynamis

2 Airfoil Nomenlature NACA airfoils (National Advisory Committee for Aeronautis ontd NASA (National Aeronautis and Spae Administration NACA X X X X maximum thikness in hundreths of hord loation of maximum amber from LE in tenths of hord maximum amber in hundreths of hord NACA maximum thikness% zero amber (symmetri airfoil NACA 4 maximum thikness% maximum amber is.4 from LE maximum amber % (ambeed airfoil ME45: Aerodynamis 3 Low-speed flow over airfoils Infinite no. of point vorties along a straight line extending to infinity (+ to - irulation around thedashedpathis r r Γ = ds = v dn + u ds v dn u ds Γ = ( u u ds γ ds = ( u u ds loal C γ = u u the loal sheet strength. ; dn Infinite no. of vortex filaments side by side, where strength of eah filament is infinitesimallysmall. ; γ is theloalsheet strength per unit length jump in tengential veloity aross the vortex sheet is equal to Indued veloity, d due to infinitesimalvortex filament ME45: Aerodynamis 4

3 Low-speed flow over airfoils ontd The onept of vortex sheet is instrumental in the theoretial aerodynamis of lowspeed airfoil. A philosophy of airfoil theory of invisid, inompressible flow is as follows: Consider an airfoil of arbitrary shape and thikness in a free stream with veloity as skethed in the figure. Replae the airfoil surfae with a vortex sheet of variable strength γ(s. Calulate the variation of γ as a funtion of s suh that the indued veloity field from he vortex sheet when added to the uniform veloity of magnitude will make the vortex sheet (hene the airfoil surfae a streamline of the flow. In turn, the irulation around the airfoil will given by Γ = γ ds where the integral is taken around the omplete surfae of Finally, lift is alulated by the Kutta - Joukowski theorem : L = ρ Γ ME45: Aerodynamis the airfoil. 5 Low-speed flow over airfoils ontd The onept of replaing the airfoil surfae with a vortex sheet is more than just a mathematial devie; it also has physial signifiane. In real ase, there is a thin boundary layer on the surfae, due to the ation of frition between the surfae and the air flow. This boundary layer is highly visous region in whih large veloity gradients produe substantial vortiity. r (urlof veloityfieldis finite Hene, in real life, there is a distribution of vortiity along the airfoil surfae due to visous effet and the philosophy of replaing the airfoil surfae with a vortex sheet an be onstruted as a way of modeling this effet in an invisid flow. Modeling of boundary layer as vorties r ME45: Aerodynamis 6 3

4 Low-speed flow over airfoils ontd Imagine that the airfoil is made very thin. If we were to stand bak and look at suh a thin airfoil from a distane, the portion of the vortex sheet on the top and bottom surfae of the airfoil would almost oinide. This give rise to a method of approximating a thin airfoil be replaing it with a single vortex sheet distributed over the amber line of the airfoil, as shown in figure. The strength of this vortex sheet is alulated suh that, in ombination with free stream, the amber line beomes a streamline of the flow. This philosophy is known as lassial thin airfoil theory. ME45: Aerodynamis 7 Thin Airfoil Theory Consider a vortex sheet plaed on the amber line of airfoil, as shown in figure (a.the free - stream veloity is and the airfoil is at angle of attak (AOA α. The distane measured along the amber line is denoted by s.the shape of the amber line is given by z = z( x.the hord length is. an, w is the omponent of veloity normal to amber line indued by the vortex sheet; w = w ( s. If the airfoil is thin, the amber line is lose to the hord line, and viewed from a distane, the vortex sheet appears to fall approximately on the hord line as shown in figure (b. Hereγ = γ ( xandγ = γ ( x is alulated to satisfy that the amber line (not the hord line is a streamline. ME45: Aerodynamis 8 4

5 Thin Airfoil Theory For the amberline to be a streamline, the omponent of veloity normal to the amber line must be zero at all points along the amber line. The veloity at any point in the flow is the sum of indued by the vortex sheet. Let,n normal to the amber line. Thus, for the amberline to be a streamline, be the omponent of the free stream veloity,n + w ( s = at every point along theamber line. At any point, P on the amber line, where the slope of dz amber line is, thegeometry of Figure yields dx = sin + dz,n α tan,n = dx for a thin airfoil at small angle of uniform veloity and the veloity attak α and the dz α dx dz dx ME45: Aerodynamis ontd 9 Thin Airfoil Theory ontd If theairfoil is thin, the amber line is lose to the hord line, and it is onsistant with thin airfoil theory to make the approximation that w ( s w( x an expression for w(x in terms of the strength of the vortex sheet is easily obtainable as follows : Consider an elemental vortex of distaneξ from the origin along the hord line, as shown in figure. The strength of distane along the hord line; that is γ = γ ( ξ.the veloity dwat point x indued by the elemental vortex at point ξ is : γ ( ξ dξ dw= π ( x ξ strength γ dξ loated at a the vortex sheet γ varies with the reall: Γ θ = π r ; due to vortex ME45: Aerodynamis 5

6 Thin Airfoil Theory ontd In turn, the veloity w(x indued at point x by all the elemental vorties along the hord line is obtained by integrating from leading edge ( ξ = to the trailing edge ( ξ = : w( x = w ( s = γ ( ξ dξ π ( x ξ γ ( ξ dξ π ( x ξ for the amberline to be a streamline, + w ( s =,n dz α dx γ ( ξ dξ = π ( x ξ γ ( ξ dξ = π ( x ξ dz α dx Fundamental equation of thin airfoil theory. To be solved for symmetri airfoil and ambered airfoil. ME45: Aerodynamis Thin Airfoil Theory ontd Symmetri airfoil A symmetri airfoil has no amber; the amber line is oinident with the hord line. dz = dx γ ( ξ dξ = α π ( x ξ To deal with the integral in above equation; adopt the following transformation ξ = ( osθ dξ = sinθ dθ at LE ξ = ; θ = at TE ξ = Further, sine x is a x = ; θ = π ( osθ fixed point in the bove equation, it orresponds as ME45: Aerodynamis 6

7 Thin Airfoil Theory ontd Substitute the above transformation gives: π π γ ( θ sinθ dθ osθ osθ = α A rigorous solution of the above equation an be obtained from the mathematial theory of integral equations (whih is beyond the sope of ME 45 Aerodynamis γ ( θ = α ( + osθ sinθ Now, the total irulation around the symmetri airfoil is Γ = Γ = Γ = π π Γ = α Γ = π α γ ( ξ dξ γ ( θ sinθ dθ ; α π ( + osθ sinθ dθ sinθ ( + osθ dθ transformation, ξ = ( osθ ME45: Aerodynamis 3 Thin Airfoil Theory In ase of symmetri airfoil; ontd Γ = π α Using Kutta-Joukowski theorem; L = ρ Γ L = π α ρ The lift oeffiient l L = ρ (lift per unit span of airfoil ( Q Γ = π α π α ρ = ρ l = πα Theoretial lift oeffiient is linearly proportional to the angle of attak (AOA. lift slope = d l dα = π Theoretial lift slope is π per radian, whih is. per degree of AOA. ME45: Aerodynamis 4 7

8 Thin Airfoil Theory ontd theory exp. ME45: Aerodynamis 5 8

ME 425: Aerodynamics

ME 425: Aerodynamics ME 45: Aeroynamis Dr. A.B.M. Toufique Hasan Professor Department of Mehanial Engineering Banglaesh University of Engineering & Tehnology BUET, Dhaka Leture-6 /5/8 teaher.buet.a.b/toufiquehasan/ toufiquehasan@me.buet.a.b

More information

Incompressible Flow over Airfoils

Incompressible Flow over Airfoils < 4.7 Classical Thin Airfoil Theory > The Symmetric Airfoil * Assumptions Incompressible Flow over Airfoils i) The camber line is one of the streamlines ii) Small maximum camber and thickness relative

More information

Incompressible Flow over Airfoils

Incompressible Flow over Airfoils Road map for Chap. 4 Incompressible Flow over Airfoils Aerodynamics 2015 fall - 1 - < 4.1 Introduction > Incompressible Flow over Airfoils Incompressible flow over airfoils Prandtl (20C 초 ) Airfoil (2D)

More information

OUTLINE FOR Chapter 4

OUTLINE FOR Chapter 4 16/8/3 OUTLINE FOR Chapter AIRFOIL NOMENCLATURE The leaing ege circle: (usually raius =. chor length c) The trailing ege: The chor line: Straight line connecting the center of leaing ege circle an the

More information

Congruence Axioms. Data Required for Solving Oblique Triangles. 1 of 8 8/6/ THE LAW OF SINES

Congruence Axioms. Data Required for Solving Oblique Triangles. 1 of 8 8/6/ THE LAW OF SINES 1 of 8 8/6/2004 8.1 THE LAW OF SINES 8.1 THE LAW OF SINES Congrueny and Olique Triangles Derivation of the Law of Sines Appliations Amiguous Case Area of a Triangle Until now, our work with triangles has

More information

Vortex Interaction and Roll-Up in Unsteady Flow past Tandem Airfoils

Vortex Interaction and Roll-Up in Unsteady Flow past Tandem Airfoils Journal of Applied Fluid Mehanis, Vol. 9, No. 6, pp. 387-31, 216. Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. Vortex Interation and Roll-p in nsteady Flow past Tandem Airfoils

More information

AE Dept., KFUPM. Dr. Abdullah M. Al-Garni. Fuel Economy. Emissions Maximum Speed Acceleration Directional Stability Stability.

AE Dept., KFUPM. Dr. Abdullah M. Al-Garni. Fuel Economy. Emissions Maximum Speed Acceleration Directional Stability Stability. Aerodynamics: Introduction Aerodynamics deals with the motion of objects in air. These objects can be airplanes, missiles or road vehicles. The Table below summarizes the aspects of vehicle performance

More information

APPENDICES STRANDJACK WEDGES Friction coefficients, micro slip and handling

APPENDICES STRANDJACK WEDGES Friction coefficients, micro slip and handling APPENDICES STRANDJACK WEDGES Frition oeffiients, miro slip and handling Report nr. DCT 2005-78 By: H.G.M.R. van Hoof Idnr : 501326 20 November, 2005 Researh strand jak wedges Appendies By H.G.M.R. van

More information

Trigonometry. terminal ray

Trigonometry. terminal ray terminal ray y Trigonometry Trigonometry is the study of triangles the relationship etween their sides and angles. Oddly enough our study of triangles egins with a irle. r 1 θ osθ P(x,y) s rθ sinθ x initial

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 28 Nov 1997

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 28 Nov 1997 Coeffiient of normal restitution of visous partiles and ooling arxiv:ond-mat/9733v [ond-mat.stat-meh] 8 Nov 997 rate of granular gases Thomas Shwager and Thorsten Pöshel Humboldt-Universität zu Berlin,

More information

2. describe the airflow in high- and low-pressure systems, and explain how these motions create weather (pp );

2. describe the airflow in high- and low-pressure systems, and explain how these motions create weather (pp ); 11 Winds Learnin Goals After studyin this hapter, students should be able to: 1. show how ertain fores interat to produe the winds (pp. 49 56);. desribe the airflow in hih- and low-pressure systems, and

More information

The effect of back spin on a table tennis ball moving in a viscous fluid.

The effect of back spin on a table tennis ball moving in a viscous fluid. How can planes fly? The phenomenon of lift can be produced in an ideal (non-viscous) fluid by the addition of a free vortex (circulation) around a cylinder in a rectilinear flow stream. This is known as

More information

TABLE OF CONTENTS...2 APPENDIX A ANCHORHEADS...3 APPENDIX B WEDGE PROPERTIES...5 APPENDIX C

TABLE OF CONTENTS...2 APPENDIX A ANCHORHEADS...3 APPENDIX B WEDGE PROPERTIES...5 APPENDIX C Table of ontents TABLE OF CONTENTS...2 APPENDIX A ANCHORHEADS...3 APPENDIX B WEDGE PROPERTIES...5 APPENDIX C 18 MM DYFORM STRANDS...6 APPENDIX D OPERATION CYCLES STRANDJACK UNIT...7 D.1 JACK UP CYCLE (LIFTING

More information

Lift for a Finite Wing. all real wings are finite in span (airfoils are considered as infinite in the span)

Lift for a Finite Wing. all real wings are finite in span (airfoils are considered as infinite in the span) Lift for a Finite Wing all real wings are finite in span (airfoils are considered as infinite in the span) The lift coefficient differs from that of an airfoil because there are strong vortices produced

More information

Modelling the decrease in wave height over the shoreface due to slope-induced changes in bottom friction.

Modelling the decrease in wave height over the shoreface due to slope-induced changes in bottom friction. Chapter : Modelling the derease in wave height over the shorefae due to slope-indued hanges in bottom frition. Abstrat Wave height-redution on the shorefae is partly indued by frition at the bottom. The

More information

Correlation analysis on biomechanics parameters of basketball shooting based on differential equations

Correlation analysis on biomechanics parameters of basketball shooting based on differential equations Available online www.jopr.om Journal of Chemial and harmaeutial Researh, 14, 6(6):86-9 Researh Artile ISSN : 975-784 CODEN(USA) : JCRC5 Correlation analysis on biomehanis parameters of basketball shooting

More information

CFD ANALYSIS OF FLOW AROUND AEROFOIL FOR DIFFERENT ANGLE OF ATTACKS

CFD ANALYSIS OF FLOW AROUND AEROFOIL FOR DIFFERENT ANGLE OF ATTACKS www.mechieprojects.com CFD ANALYSIS OF FLOW AROUND AEROFOIL FOR DIFFERENT ANGLE OF ATTACKS PRESENTATION OUTLINE AIM INTRODUCTION LITERATURE SURVEY CFD ANALYSIS OF AEROFOIL RESULTS CONCLUSIONS www.mechieprojects.com

More information

Drag Divergence and Wave Shock. A Path to Supersonic Flight Barriers

Drag Divergence and Wave Shock. A Path to Supersonic Flight Barriers Drag Divergence and Wave Shock A Path to Supersonic Flight Barriers Mach Effects on Coefficient of Drag The Critical Mach Number is the velocity on the airfoil at which sonic flow is first acquired If

More information

AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK

AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK SUPREETH NARASIMHAMURTHY GRADUATE STUDENT 1327291 Table of Contents 1) Introduction...1 2) Methodology.3 3) Results...5

More information

DEVELOPMENT OF A THREE-DIMENSIONAL INVERSE SAIL DESIGN METHOD

DEVELOPMENT OF A THREE-DIMENSIONAL INVERSE SAIL DESIGN METHOD rd High Performance Yacht Design Conference Auckland, 2- December, 2008 DEVELOPMENT OF A THREE-DIMENSIONAL INVERSE SAIL DESIGN METHOD Julien Pilate, julien_pilate@hotmail.com Frederik C. Gerhardt 2, fger00@aucklanduni.ac.nz

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodynamics I UNIT C: 2-D Airfoils C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory AE301 Aerodynamics I : List of Subjects

More information

Helicopters / Vortex theory. Filipe Szolnoky Cunha

Helicopters / Vortex theory. Filipe Szolnoky Cunha Vortex Theory Slide 1 Vortex Theory Slide 2 Vortex Theory µ=0.2 Slide 3 Vortex Theory µ=0.4 Slide 4 Vortex Theory Slide 5 Tip Vortex Trajectories Top view Slide 6 Definition Wake Age Slide 7 Assumptions:

More information

MODEL FOR PREDICTING BATHYMETRIC AND GRAIN SIZE CHANGES BASED ON BAGNOLD S CONCEPT AND EQUILIBRIUM SLOPE CORRESPONDING TO GRAIN SIZE COMPOSITION

MODEL FOR PREDICTING BATHYMETRIC AND GRAIN SIZE CHANGES BASED ON BAGNOLD S CONCEPT AND EQUILIBRIUM SLOPE CORRESPONDING TO GRAIN SIZE COMPOSITION MODEL FOR PREDICTING BATHYMETRIC AND GRAIN SIZE CHANGES BASED ON BAGNOLD S CONCEPT AND EQUILIBRIUM SLOPE CORRESPONDING TO GRAIN SIZE COMPOSITION Yasuhito Noshi, Takaaki Uda 2, Masumi Serizawa 3, Takayuki

More information

Static Extended Trailing Edge for Lift Enhancement: Experimental and Computational Studies

Static Extended Trailing Edge for Lift Enhancement: Experimental and Computational Studies Static Extended Trailing Edge for Lift Enhancement: Experimental and Computational Studies T. Liu, J. Montefort, W. Liou Western Michigan University Kalamazoo, MI 49008 and Q. Shams NASA Langley Research

More information

*Definition of Cosine

*Definition of Cosine Vetors - Unit 3.3A - Problem 3.5A 3 49 A right triangle s hypotenuse is of length. (a) What is the length of the side adjaent to the angle? (b) What is the length of the side opposite to the angle? ()

More information

Flight Corridor. The speed-altitude band where flight sustained by aerodynamic forces is technically possible is called the flight corridor.

Flight Corridor. The speed-altitude band where flight sustained by aerodynamic forces is technically possible is called the flight corridor. Flight Corridor The speed-altitude band where flight sustained by aerodynamic forces is technically possible is called the flight corridor. The subsonic Boeing 747 and supersonic Concorde have flight corridors

More information

Kinematics of Vorticity

Kinematics of Vorticity Kinematics of Vorticity Vorticity Ω Ω= V 2 circumferentially averaged angular velocity of the fluid particles Sum of rotation rates of perpendicular fluid lines Non-zero vorticity doesn t imply spin.ω=0.

More information

Full scale measurements of pressure equalization on air permeable façade elements

Full scale measurements of pressure equalization on air permeable façade elements Full sale measurements of pressure equalization on air permeable façade elements Carine van Bentum, Chris Geurts Department of Strutural Dynamis, TNO, Delft, The Netherlands email: arine.vanbentum@tno.nl,

More information

CHAPTER-1 INTRODUCTION

CHAPTER-1 INTRODUCTION CHAPTER-1 INTRODUCTION 1 1.1 Introduction This investigation documents the aerodynamic characteristics of four profiles, as cylinder, sphere, symmetrical aerofoil (NACA 0015) and cambered aerofoil (NACA

More information

Statistical Mechanics of the Frequency Modulation of Sea Waves

Statistical Mechanics of the Frequency Modulation of Sea Waves Statistial Mehanis of the Frequeny Modulation of Sea Waves Hiroshi Tomita and Takafumi Kawamura Ship Researh Institute, Shinkawa 6-8-, Mitaka, Tokyo 8-, Japan tomita@srimot.go.jp Abstrat. The longtime

More information

Investigation on the Vortex Thermal Separation in a Vortex Tube Refrigerator

Investigation on the Vortex Thermal Separation in a Vortex Tube Refrigerator doi: 1.236/sieneasia13-1874.2.31.2 SieneAsia 31 (2): 2-223 Investigation on the Vortex Thermal Separation in a Vortex Tube Refrigerator Pongjet Promvonge* and Smith Eiamsa-ard Department of Mehanial Engineering,

More information

Wind energy potential of Ban village

Wind energy potential of Ban village Available online at www.pelagiaresearhlibrary.om Advanes in Applied Siene Researh, 2013, 4(3):220-225 ISSN: 0976-8610 CODEN (USA): AASRFC Wind energy potential of Ban village Maren. I. Borok 1, Gyang Y.

More information

WIND TUNNEL MEASUREMENT AND ASSESSMENT ON THE PEDESTRIAN WIND ENVIRONMENT A CASE STUDY OF JINYING HIGH RISE BUILDING IN TAIPEI, TAIWAN

WIND TUNNEL MEASUREMENT AND ASSESSMENT ON THE PEDESTRIAN WIND ENVIRONMENT A CASE STUDY OF JINYING HIGH RISE BUILDING IN TAIPEI, TAIWAN WIND TNNEL MEASREMENT AND ASSESSMENT ON THE PEDESTRIAN WIND ENVIRONMENT A CASE STDY OF JINYING HIGH RISE BILDING IN TAIPEI, TAIWAN Bao-Shi Shiau 1 and Ben-Jue Tsai 2 ABSTRACT In this paper, wind tunnel

More information

Study on Thin Airfoil Theory and Performance Test of Elliptical Wing as Compared to Model Mosquito Wing and NACA 64A012 Mod Airfoil

Study on Thin Airfoil Theory and Performance Test of Elliptical Wing as Compared to Model Mosquito Wing and NACA 64A012 Mod Airfoil Study on Thin Airfoil Theory and Performance Test of Elliptical Wing as Compared to Model Mosquito Wing and NACA 64A012 Mod Airfoil Nesar Ali, Mostafizur R. Komol, and Mohammad T. Saki Abstract Thin airfoil

More information

Minimum Mean-Square Error (MMSE) and Linear MMSE (LMMSE) Estimation

Minimum Mean-Square Error (MMSE) and Linear MMSE (LMMSE) Estimation Minimum Mean-Square Error (MMSE) and Linear MMSE (LMMSE) Estimation Outline: MMSE estimation, Linear MMSE (LMMSE) estimation, Geometric formulation of LMMSE estimation and orthogonality principle. Reading:

More information

Aerodynamic Analysis of a Symmetric Aerofoil

Aerodynamic Analysis of a Symmetric Aerofoil 214 IJEDR Volume 2, Issue 4 ISSN: 2321-9939 Aerodynamic Analysis of a Symmetric Aerofoil Narayan U Rathod Department of Mechanical Engineering, BMS college of Engineering, Bangalore, India Abstract - The

More information

J. Szantyr Lecture No. 21 Aerodynamics of the lifting foils Lifting foils are important parts of many products of contemporary technology.

J. Szantyr Lecture No. 21 Aerodynamics of the lifting foils Lifting foils are important parts of many products of contemporary technology. J. Szantyr Lecture No. 21 Aerodynamics of the lifting foils Lifting foils are important parts of many products of contemporary technology. < Helicopters Aircraft Gliders Sails > < Keels and rudders Hydrofoils

More information

Dynamic Responses of Floating Platform for Spar-type Offshore Wind Turbine: Numerical and Experimental

Dynamic Responses of Floating Platform for Spar-type Offshore Wind Turbine: Numerical and Experimental Dynami Responses of Floating Platform for Spar-type Offshore Wind Turbine: Numerial and Experimental *Jin-Rae Cho 1), Yang-Uk Cho ), Weui-Bong Jeong 3) Sin-Pyo Hong 3) and Ho-Hwan Chun 3) 1), ), 3) Shool

More information

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool)

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool) Unit D-1: Aerodynamics of 3-D Wings Page 1 of 5 AE301 Aerodynamics I UNIT D: Applied Aerodynamics ROAD MAP... D-1: Aerodynamics of 3-D Wings D-: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics

More information

Chapter 2 FLUID STATICS by Amat Sairin Demun

Chapter 2 FLUID STATICS by Amat Sairin Demun Capter FLUID STTICS by mat Sairin Demun Learning Outomes Upon ompleting tis apter, te students are expeted to be able to: 1. Calulate te pressure in pipes by using piezometers and manometers.. Calulate

More information

Assistant Lecturer Anees Kadhum AL Saadi

Assistant Lecturer Anees Kadhum AL Saadi Pressure Variation with Depth Pressure in a static fluid does not change in the horizontal direction as the horizontal forces balance each other out. However, pressure in a static fluid does change with

More information

AN EXPERIMENTAL STUDY OF THE EFFECTS OF SWEPT ANGLE ON THE BOUNDARY LAYER OF THE 2D WING

AN EXPERIMENTAL STUDY OF THE EFFECTS OF SWEPT ANGLE ON THE BOUNDARY LAYER OF THE 2D WING AN EXPERIMENTAL STUDY OF THE EFFECTS OF SWEPT ANGLE ON THE BOUNDARY LAYER OF THE 2D WING A. Davari *, M.R. Soltani, A.Tabrizian, M.Masdari * Assistant Professor, Department of mechanics and Aerospace Engineering,

More information

Kumar et al. (2012) Ocean Modeling (doi: /j.ocemod )

Kumar et al. (2012) Ocean Modeling (doi: /j.ocemod ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Implementation of the vortex fore formalism in the Coupled Oean- Atmosphere-Wave-Sediment

More information

ANALYSIS OF THE CAVITATING FLOW AROUND THE HORN-TYPE RUDDER IN THE RACE OF A PROPELLER

ANALYSIS OF THE CAVITATING FLOW AROUND THE HORN-TYPE RUDDER IN THE RACE OF A PROPELLER CAV2001:sessionB9.005 1 ANALYSIS OF THE CAVITATING FLOW AROUND THE HORN-TYPE RUDDER IN THE RACE OF A PROPELLER Jae-Moon Han, Do-Sung Kong, In-Haeng Song Shipbuilding & Plant Research Institute Samsung

More information

Jet Propulsion. Lecture-17. Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati

Jet Propulsion. Lecture-17. Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati Lecture-17 Prepared under QIP-CD Cell Project Jet Propulsion Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Lift: is used to support the weight of

More information

Chapter 3 Lecture 9. Drag polar 4. Topics. Chapter-3

Chapter 3 Lecture 9. Drag polar 4. Topics. Chapter-3 Chapter 3 Lecture 9 Drag polar 4 Topics 3..11 Presentation of aerodynamic characteristics of airfoils 3..1 Geometric characteristics of airfoils 3..13 Airfoil nomenclature\designation 3..14 Induced drag

More information

The kinematic determinants of anuran swimming performance: an inverse and forward dynamics approach

The kinematic determinants of anuran swimming performance: an inverse and forward dynamics approach 38 The Journal of Experimental Biology 2, 38-394 Published by The Company of Biologists 28 doi:.242/jeb.9844 The kinemati determinants of anuran swimming performane: an inverse and forward dynamis approah

More information

ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT

ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT P.Sethunathan 1, M.Niventhran 2, V.Siva 2, R.Sadhan Kumar 2 1 Asst.Professor, Department of Aeronautical Engineering,

More information

Reduction of Skin Friction Drag in Wings by Employing Riblets

Reduction of Skin Friction Drag in Wings by Employing Riblets Reduction of Skin Friction Drag in Wings by Employing Riblets Kousik Kumaar. R 1 Assistant Professor Department of Aeronautical Engineering Nehru Institute of Engineering and Technology Coimbatore, India

More information

Computational Investigation of Airfoils with Miniature Trailing Edge Control Surfaces

Computational Investigation of Airfoils with Miniature Trailing Edge Control Surfaces AIAA-24-5 Computational Investigation of Airfoils with Miniature Trailing Edge Control Surfaces Hak-Tae Lee, Ilan M. Kroo Stanford University, Stanford, CA 9435 Abstract Miniature trailing edge effectors

More information

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Fluid statics Fluid statics is the study of fluids in

More information

Comparison of the South Dakota Road Profiler with Other Rut Measurement Methods

Comparison of the South Dakota Road Profiler with Other Rut Measurement Methods TRANSPORTATION RESEARCH RECORD 1311 Comparison of the South Dakota Road Profiler ith Other Rut Measurement Methods ]AMES B. DuBosE During the fall of 1989, the Illinois Department of Transportation ompleted

More information

Numerical Investigation of Multi Airfoil Effect on Performance Increase of Wind Turbine

Numerical Investigation of Multi Airfoil Effect on Performance Increase of Wind Turbine International Journal of Engineering & Applied Sciences (IJEAS) International Journal of Engineering Applied Sciences (IJEAS) Vol.9, Issue 3 (2017) 75-86 Vol.x, Issue x(201x)x-xx http://dx.doi.org/10.24107/ijeas.332075

More information

Computational Analysis of the S Airfoil Aerodynamic Performance

Computational Analysis of the S Airfoil Aerodynamic Performance Computational Analysis of the 245-3S Airfoil Aerodynamic Performance Luis Velazquez-Araque and Jiří Nožička 2 Department of Mechanical Engineering National University of Táchira, San Cristóbal 5, Venezuela

More information

Dynamic Modeling of the Water Balance in the Cathode Gas Diffusion Layer of Polymer Electrolyte Fuel Cells

Dynamic Modeling of the Water Balance in the Cathode Gas Diffusion Layer of Polymer Electrolyte Fuel Cells Dynami Modeling of the Water Balane in the Cathode Gas Diffusion Layer of Polymer Eletrolyte Fuel Cells D. Fofana, K. Agbossou, Y. Dubé, J. Hamelin This doument appeared in Detlef Stolten, Thomas Grube

More information

Effect of Co-Flow Jet over an Airfoil: Numerical Approach

Effect of Co-Flow Jet over an Airfoil: Numerical Approach Contemporary Engineering Sciences, Vol. 7, 2014, no. 17, 845-851 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ces.2014.4655 Effect of Co-Flow Jet over an Airfoil: Numerical Approach Md. Riajun

More information

Wind Energy Potential of Jordan

Wind Energy Potential of Jordan M. A. Alghoul et al. / International Energy Journal 8 (7) 7-78 7 Wind Energy Potential of Jordan M. A. Alghoul *, M.Y.Sulaiman +, B.Z.Azmi + and M. Abd. Wahab + www.serd.ait.a.th/reri Abstrat - The daily

More information

AERODYNAMICS I LECTURE 7 SELECTED TOPICS IN THE LOW-SPEED AERODYNAMICS

AERODYNAMICS I LECTURE 7 SELECTED TOPICS IN THE LOW-SPEED AERODYNAMICS LECTURE 7 SELECTED TOPICS IN THE LOW-SPEED AERODYNAMICS The sources of a graphical material used in this lecture are: [UA] D. McLean, Understanding Aerodynamics. Arguing from the Real Physics. Wiley, 2013.

More information

CFD Analysis of Effect of Variation in Angle of Attack over NACA 2412 Airfoil through the Shear Stress Transport Turbulence Model

CFD Analysis of Effect of Variation in Angle of Attack over NACA 2412 Airfoil through the Shear Stress Transport Turbulence Model IJSRD - International Journal for Scientific Research & Development Vol. 5, Issue 02, 2017 ISSN (online): 2321-0613 CFD Analysis of Effect of Variation in Angle of Attack over NACA 2412 Airfoil through

More information

1. A right triangle has legs of 8 centimeters and 13 centimeters. Solve the triangle completely.

1. A right triangle has legs of 8 centimeters and 13 centimeters. Solve the triangle completely. 9.7 Warmup 1. A right triangle has legs of 8 centimeters and 13 centimeters. Solve the triangle completely. 2. A right triangle has a leg length of 7 in. and a hypotenuse length of 14 in. Solve the triangle

More information

AF101 to AF109. Subsonic Wind Tunnel Models AERODYNAMICS. A selection of optional models for use with TecQuipment s Subsonic Wind Tunnel (AF100)

AF101 to AF109. Subsonic Wind Tunnel Models AERODYNAMICS. A selection of optional models for use with TecQuipment s Subsonic Wind Tunnel (AF100) Page 1 of 4 A selection of optional models for use with TecQuipment s Subsonic Wind Tunnel (AF100) Dimpled Sphere Drag Model (from AF109) shown inside the TecQuipment AF100 Wind Tunnel. Cylinder, aerofoils,

More information

FINITE ELEMENT ANALYSIS OF BLOOD FLOW AND APPLY OF PRESSURE IN THE HUMAN THUMB AND APPLICATIONS IN DISEASE INVENTION

FINITE ELEMENT ANALYSIS OF BLOOD FLOW AND APPLY OF PRESSURE IN THE HUMAN THUMB AND APPLICATIONS IN DISEASE INVENTION CHAPER-II FINIE ELEMEN ANALYSIS OF BLOOD FLOW AND APPLY OF PRESSURE IN HE HUMAN HUMB AND APPLICAIONS IN DISEASE INVENION his Chapter Published in International Journal of Siene and Advaned ehnology (ISSN:

More information

Reynolds Number Effects on Leading Edge Vortices

Reynolds Number Effects on Leading Edge Vortices Reynolds Number Effects on Leading Edge Vortices Taken From AIAA-2002-2839 Paper Reynolds Numbers Considerations for Supersonic Flight Brenda M. Kulfan 32nd AIAA Fluid Dynamics Conference and Exhibit St.

More information

STUDY OF VARIOUS NACA SERIES AEROFOIL SECTIONS AND WING CONTOUR GENERATION USING CATIA V5

STUDY OF VARIOUS NACA SERIES AEROFOIL SECTIONS AND WING CONTOUR GENERATION USING CATIA V5 STUDY OF VARIOUS NACA SERIES AEROFOIL SECTIONS AND WING CONTOUR GENERATION USING CATIA V5 Pawan Kumar Department of Aeronautical Engineering, Desh Bhagat University, Punjab, India ABSTRACT Aerofoil is

More information

HURRICANE SANDY LIMITED REEVALUATION REPORT UNION BEACH, NEW JERSEY DRAFT ENGINEERING APPENDIX SUB APPENDIX E OVERTOPPING & FAILURE ANALYSIS

HURRICANE SANDY LIMITED REEVALUATION REPORT UNION BEACH, NEW JERSEY DRAFT ENGINEERING APPENDIX SUB APPENDIX E OVERTOPPING & FAILURE ANALYSIS HURRICANE SANDY LIMITED REEVALUATION REPORT UNION BEACH, NEW JERSEY DRAFT ENGINEERING APPENDIX SUB APPENDIX E OVERTOPPING & FAILURE ANALYSIS Revised 18 Feb 2015 1 OVERTOPPING & FAILURE ANALYSIS 1.0 Introdution

More information

Planar Projectile Motion OBJECTIVES

Planar Projectile Motion OBJECTIVES OBJECTIVES Students should e ale to: 1 Calulate the horizontal and vertial omponents of a veloity vetor given the initial vetor. 2 Define givens as eing either horizontal or vertial. 3 Plae appropriate

More information

Aerofoils, Lift, Drag and Circulation

Aerofoils, Lift, Drag and Circulation Aerofoils, Lift, Drag and Circulation 4.0 Introduction In Section 3.3 we saw that the assumption that blade elements behave as aerofoils allows the analysis of wind turbines in terms of the lift and drag

More information

Jack Blanton, Julie Amft, Peter Verity. Georgia Marine Science Center University System of Georgia Skidaway Island, Georgia

Jack Blanton, Julie Amft, Peter Verity. Georgia Marine Science Center University System of Georgia Skidaway Island, Georgia Tehnial Report Series Number94-1 TheMay93 North Edisto Ingress Experiment (NED1) Jak Blanton, Julie Amft, Peter Verity 31 31 Georgia Marine Siene Center University System of Georgia Skidaway Island, Georgia

More information

Incompressible Potential Flow. Panel Methods (3)

Incompressible Potential Flow. Panel Methods (3) Incompressible Potential Flow Panel Methods (3) Outline Some Potential Theory Derivation of the Integral Equation for the Potential Classic Panel Method Program PANEL Subsonic Airfoil Aerodynamics Issues

More information

Effect of Various Parameters of RBC on Oxygen Concentration in Tissues

Effect of Various Parameters of RBC on Oxygen Concentration in Tissues Journal of Mathematial Control Siene and Appliations (JMCSA) Vol. Journal 3 No. of Mathematial (July-Deember, Control 017), Siene ISSN and : 0974-0570 Appliations (JMCSA) Vol., No. 1, June 008, pp. 117-1

More information

Water )الطرق المائي( Hammer -3 rd Class Dr. Sataa A. F. Al-Bayati (08-09)

Water )الطرق المائي( Hammer -3 rd Class Dr. Sataa A. F. Al-Bayati (08-09) بسم هللا الرحمن الرحيم Water )الطرق المائي( Hammer -3 rd Class Dr. Sataa A. F. Al-Bayati (08-09) Water hammer is the momentary inrease in ressure, whih ours in a water system when there is a sudden hange

More information

Some High Lift Aerodynamics Part 1 Mechanical High Lift Systems

Some High Lift Aerodynamics Part 1 Mechanical High Lift Systems Some High Lift Aerodynamics Part 1 Mechanical High Lift Systems W.H. Mason Configuration Aerodynamics Class Why High Lift is Important Wings sized for efficient cruise are too small to takeoff and land

More information

RoboGolf (aka RoboPutting) Robofest 2016 Game

RoboGolf (aka RoboPutting) Robofest 2016 Game RooGolf (aka RooPutting) Roofest 201 Game 12-2-2015 V1.1 (Kik-off version. Offiial Version will e availale on Jan 8, 201) 4 3 2 1 a A. Game Synopsis Figure 1. RooGolf Playing Field (Jr. Division) There

More information

Aerodynamic Modification of CFR Formula SAE Race Car

Aerodynamic Modification of CFR Formula SAE Race Car Aerodynamic Modification of CFR Formula SAE Race Car Brandon M. Verhun, Trevor D. Haight, and Thomas A. Mahank Department of Mechanical Engineering Saginaw Valley State University University Center, MI

More information

Measurement System of Bubbly Flow Using Ultrasonic Velocity Profile Monitor and Video Data Processing Unit, (II)

Measurement System of Bubbly Flow Using Ultrasonic Velocity Profile Monitor and Video Data Processing Unit, (II) Journal of Nulear Siene and Tehnology SSN: 22-3131 (Print) 1881-1248 (Online) Journal homepage: http://www.tandfonline.om/loi/tnst2 Measurement System of Bubbly Flow Using Ultrasoni Veloity Profile Monitor

More information

Kinematics and Luffing Moment of Lemniscate Type Crane with Boom. Driving

Kinematics and Luffing Moment of Lemniscate Type Crane with Boom. Driving dvanced Materials Research Online: 2012-04-12 ISSN: 1662-8985, Vols. 503-504, pp 923-926 doi:10.4028/www.scientific.net/mr.503-504.923 2012 Trans Tech ublications, Switzerland Kinematics and Luffing Moment

More information

EXPERIMENTAL ANALYSIS OF FLOW OVER SYMMETRICAL AEROFOIL Mayank Pawar 1, Zankhan Sonara 2 1,2

EXPERIMENTAL ANALYSIS OF FLOW OVER SYMMETRICAL AEROFOIL Mayank Pawar 1, Zankhan Sonara 2 1,2 EXPERIMENTAL ANALYSIS OF FLOW OVER SYMMETRICAL AEROFOIL Mayank Pawar 1, Zankhan Sonara 2 1,2 Assistant Professor,Chandubhai S. Patel Institute of Technology, CHARUSAT, Changa, Gujarat, India Abstract The

More information

Lecture # 08: Boundary Layer Flows and Drag

Lecture # 08: Boundary Layer Flows and Drag AerE 311L & AerE343L Lecture Notes Lecture # 8: Boundary Layer Flows and Drag Dr. Hui H Hu Department of Aerospace Engineering Iowa State University Ames, Iowa 511, U.S.A y AerE343L #4: Hot wire measurements

More information

IMPULSE ACTION OF UNDERWATER SHOCK WAVE AS A CAUSE OF DISABLING THE SHIP POWER PLANT

IMPULSE ACTION OF UNDERWATER SHOCK WAVE AS A CAUSE OF DISABLING THE SHIP POWER PLANT IMPULSE ACTION OF UNDERWATER SHOCK WAVE AS A CAUSE OF DISABLING THE SHIP POWER PLANT Zbigniew Powierża, Beata Wojiehowska Gdynia Maritime University Faulty of Marine Engineering ul. Morska 8-87, 8-5 Gdynia,

More information

Computational Analysis of Cavity Effect over Aircraft Wing

Computational Analysis of Cavity Effect over Aircraft Wing World Engineering & Applied Sciences Journal 8 (): 104-110, 017 ISSN 079-04 IDOSI Publications, 017 DOI: 10.589/idosi.weasj.017.104.110 Computational Analysis of Cavity Effect over Aircraft Wing 1 P. Booma

More information

General Technical Data and Calculations

General Technical Data and Calculations 18 Bosh Rexroth AG R31EN 232 (26.4) General Produt Desription General Tehnial Data and Calulations Fores and load moments In Rexroth the running traks are arranged at a ompression angle of 45. This results

More information

FORUMS INSIGHTS BLOG VIDEOS PHYSICS NEWS INFO SEARCH Forums Physics Classical Physics

FORUMS INSIGHTS BLOG VIDEOS PHYSICS NEWS INFO SEARCH Forums Physics Classical Physics FORUMS INSIGHTS BLOG VIDEOS PHYSICS NEWS INFO SEARCH Forum Phyi Claial Phyi PF thrive by your haring of our ommunity with your friend, family and oial media. If you do, tell me and I'll give you Gold Memberhip.

More information

MECHANICAL INTEGRITY ASSESSMENT OF A LARGE HORIZONTAL NGL PRESSURE VESSEL: CASE STUDY

MECHANICAL INTEGRITY ASSESSMENT OF A LARGE HORIZONTAL NGL PRESSURE VESSEL: CASE STUDY Abstrat MECHANICAL INEGRIY ASSESSMEN OF A LARGE HORIZONAL NGL PRESSURE VESSEL: CASE SUDY A methodology for assessing the strutural integrity of a large horizontal NGL (Natural Gas Liquid) vessel has been

More information

Experimental Study on Flapping Wings at Low Reynolds Numbers

Experimental Study on Flapping Wings at Low Reynolds Numbers Experimental Study on Flapping Wings at Low Reynolds Numbers S. Kishore Kumar, M.Tech Department of Aeronautical Engineering CMR Technical Campus, Hyderabad, Andhra Pradesh, India K. Vijayachandar, Ms

More information

THEORETICAL BACKGROUND OF "LEAK-BEFORE-BREAK" AS A CONCEPT IN PRESSURE VESSELS DESIGN. Šárka Pacholková a Howard Taylor b

THEORETICAL BACKGROUND OF LEAK-BEFORE-BREAK AS A CONCEPT IN PRESSURE VESSELS DESIGN. Šárka Pacholková a Howard Taylor b METAL 00 14. 16. 5. 00, Hrade nad Moravií THEORETICAL BACGROUND OF "LEA-BEFORE-BREA" AS A CONCEPT IN PRESSURE VESSELS DESIGN Šárka Paholková a Howard Taylor b a VÚ- NOVÁ HUŤ, a.s., Vratimovská 689, 707

More information

WESEP 594 Research Seminar

WESEP 594 Research Seminar WESEP 594 Research Seminar Aaron J Rosenberg Department of Aerospace Engineering Iowa State University Major: WESEP Co-major: Aerospace Engineering Motivation Increase Wind Energy Capture Betz limit: 59.3%

More information

Effects of Spanwise Flexibility on Lift and Rolling Moment of a Wingsail

Effects of Spanwise Flexibility on Lift and Rolling Moment of a Wingsail Effects of Spanwise Flexibility on Lift and Rolling Moment of a Wingsail Sheila Widnall, Hayden Cornwell, and Peter Williams Department of Aeronautics and Astronautics Massachusetts Institute of Technology

More information

Effect of the concentration distribution on the gaseous deflagration propagation in the case of hydrogen/oxygen mixture

Effect of the concentration distribution on the gaseous deflagration propagation in the case of hydrogen/oxygen mixture Effet of the onentration distribution on the gaseous deflagration propagation in the ase of hydrogen/oxygen mixture Isabelle Sohet, Philippe Gillard, Florent Guelon To ite this version: Isabelle Sohet,

More information

Wind Regimes 1. 1 Wind Regimes

Wind Regimes 1. 1 Wind Regimes Wind Regimes 1 1 Wind Regimes The proper design of a wind turbine for a site requires an accurate characterization of the wind at the site where it will operate. This requires an understanding of the sources

More information

Rules of Beach Hockey including explanations

Rules of Beach Hockey including explanations Rules of Beah Hokey inluding explanations Effetive from 1 June 2016 (updated 31 May 2016) Copyright FIH 2016 The International Hokey Federation Rue du Valentin 61 CH 1004, Lausanne Switzerland Telephone:

More information

INVESTIGATION OF PRESSURE CONTOURS AND VELOCITY VECTORS OF NACA 0015IN COMPARISON WITH OPTIMIZED NACA 0015 USING GURNEY FLAP

INVESTIGATION OF PRESSURE CONTOURS AND VELOCITY VECTORS OF NACA 0015IN COMPARISON WITH OPTIMIZED NACA 0015 USING GURNEY FLAP INVESTIGATION OF PRESSURE CONTOURS AND VELOCITY VECTORS OF NACA 0015IN COMPARISON WITH OPTIMIZED NACA 0015 USING GURNEY FLAP 1 ANANTH S SHARMA, 2 SUDHAKAR S, 3 SWATHIJAYAKUMAR, 4 B S ANIL KUMAR 1,2,3,4

More information

PRE-TEST Module 2 The Principles of Flight Units /60 points

PRE-TEST Module 2 The Principles of Flight Units /60 points PRE-TEST Module 2 The Principles of Flight Units 1-2-3.../60 points 1 Answer the following questions. (20 p.) moving the plane (4) upward / forward. Opposed to that is 1. What are the names of the four

More information

CFD DESIGN STUDY OF A CIRCULATION CONTROL INLET GUIDE VANE OF AN AEROFOIL

CFD DESIGN STUDY OF A CIRCULATION CONTROL INLET GUIDE VANE OF AN AEROFOIL Int. J. Mech. Eng. & Rob. Res. 2012 Manjunath Ichchangi and Manjunath H, 2012 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 1, No. 3, October 2012 2012 IJMERR. All Rights Reserved CFD DESIGN STUDY

More information

November 1955 TECHNICAL NOTE 3586 IMPINGEMENT OF WATER DROPLETS ON NACA 65A004. AIRFOIL AT Oo ANGLE OF ATTACK. By Rinaldo J. Brun and Dorothea E.

November 1955 TECHNICAL NOTE 3586 IMPINGEMENT OF WATER DROPLETS ON NACA 65A004. AIRFOIL AT Oo ANGLE OF ATTACK. By Rinaldo J. Brun and Dorothea E. TECHNICAL NOTE 3586 IMPINGEMENT OF WATER DROPLETS ON NACA 65A004 AIRFOIL AT Oo ANGLE OF ATTACK By Rinaldo J. Brun and Dorothea E. Vogt Lewis Flight Propulsion Laboratory Cleveland, Ohio, Washington November

More information

Laminar Flow Sections for Proa Boards and Rudders

Laminar Flow Sections for Proa Boards and Rudders Laminar Flow Sections for Proa Boards and Rudders Thomas E. Speer, Des Moines, Washington, USA ABSTRACT Hydrofoil section designs for proa sailboats which reverse direction in a shunt when changing tacks

More information

Subsonic wind tunnel models

Subsonic wind tunnel models aerodynamics AF1300a to AF1300l A selection of optional models for use with TecQuipment s Subsonic Wind Tunnel (AF1300) Dimpled Sphere Drag Model (from AF1300j) shown inside the TecQuipment AF1300 Wind

More information

Learning Goal: I can explain when to use the Sine, Cosine and Tangent ratios and use the functions to determine the missing side or angle.

Learning Goal: I can explain when to use the Sine, Cosine and Tangent ratios and use the functions to determine the missing side or angle. MFM2P Trigonometry Checklist 1 Goals for this unit: I can solve problems involving right triangles using the primary trig ratios and the Pythagorean Theorem. U1L4 The Pythagorean Theorem Learning Goal:

More information

THE COLLEGE OF AERONAUTICS CRANFIELD

THE COLLEGE OF AERONAUTICS CRANFIELD THE COLLEGE OF AERONAUTICS CRANFIELD AERODYNAMIC CHARACTERISTICS OF A 40 SWEPT BACK WING OF ASPECT RATIO 4.5 by P. S. BARNA NOTE NO. 65 MAY, 1957 CRANFIELD A preliminary report on the aerodynamic characteristics

More information

Modeling of Wind Waves in the Bays of South-West Part of the Crimea Peninsula

Modeling of Wind Waves in the Bays of South-West Part of the Crimea Peninsula Turkish Journal of Fisheries and Aquati Sienes 12: 363-369 (2012) www.trjfas.org ISS 1303-2712 DOI: 10.4194/1303-2712-v12_2_23 Modeling of Wind Waves in the Bays of South-West Part of the Crimea Peninsula

More information

Slow gas expansion in saturated natural porous media by gas injection and partitioning with nonaqueous

Slow gas expansion in saturated natural porous media by gas injection and partitioning with nonaqueous MMaster University From the SeletedWorks of Sarah E Dikson 2008 Slow gas expansion in saturated natural porous media by gas injetion and partitioning with nonaqueous phase liquids Kevin G Mumford, Queen's

More information