Proceedings of the ASME nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France

Size: px
Start display at page:

Download "Proceedings of the ASME nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France"

Transcription

1 Proceedings of the ASME nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France OMAE MOTION OF OC4 5MW SEMI-SUBMERSIBLE OFFSHORE WIND TURBINE IN IRREGULAR WAVES Hyunkyoung Shin Ulsan, Korea Pham Thanh Dam Ulsan, Korea Byungcheol Kim Ulsan, korea Kwangjin Jung Ulsan, Korea ABSTRACT The interests in new and renewable energies increase sharply while our world suffers from environmental pollution and energy shortage. Governments and organizations throughout the world have tried to develop those energies to reduce pollution and solve energy crisis. In this study, we carry out a 1:80 scale model test and full scale numerical analysis of the OC4 5MW semi-submersible offshore wind turbine system designed by DeepCwind project. The purpose of this model test and numerical analysis is to predict and evaluate its motion in irregular waves. INTRODUCTION We have relied on fossil fuels such as oil, natural gas, and coal as a main source of energy. However, those fossil fuels have raised environmental problems and increased in price. To solve those problems, governments and organizations throughout the world have tried to find alternative energies which will not raise environmental problems. Of those energies, wind energy which has been developed since a long time ago shows high efficiency at lower cost. However, it is hard for wind turbines to be set and run on land anymore because of noise pollution and insufficient space to install wind turbines on land. So now we are turning to Floating Offshore Wind Turbine (FOWT) which can be installed and operated in deep sea. A few floating wind turbine model tests have been performed with coupled wind and wave environments. Hydro Oil & Energy has a linear scale 1/47th of a 5 MW spar-buoy floating wind turbine at Marintek s Ocean Basin Laboratory in Trondheim, Norway [1] with Froude scale was applied for hydrodynamic load and also aerodynamic load. Principal Power Inc. tested a 1/67th scale semi-submersible platform, windfloat [2], in this model test they used a disk instead of three blades to obtained aerodynamic thrust force. WindSea of Norway was performed at Force Technology on a 1/64th scale tri-wind turbine semi-submersible platform [3] which perform in wind tunnel by Reynolds scale and in basin by Froude scale. Another model tests were carried out at the (UOU) on a 1/128th scale OC3-Hywind [4], TLP with spring [5]. Especially, IEA Task30 OC4 Project, which NREL (National Renewable Energy Laboratory) has been responsible for, is currently underway [6]. The FOWT model is composed of both a semi-submersible type platform designed by DeepCwind project in the United States and NREL 5MW baseline wind turbine used in OC3 project [7]. These model tests have been carried with different techniques. In this study, to predict and evaluate the motions of OC4 semi-submersible offshore wind turbines system in irregular waves in deep sea, we performed a 1:80 scale model test of the OC4 semi-submersible offshore wind turbine system and its results are compared with the numerical simulation results. The numerical analysis tool is FAST (Fatigue, Aerodynamics, Structures, and Turbulence) with UOU In-house codes for hydrodynamic coefficients and mooring line forces [8]. Model test The model test to predict and evaluate the motion performance of OC4 Semi-submersible offshore wind turbine system was carried out in the Ocean Engineering Wide Tank(30m x 20m x 2.5m) in the, Korea. The scale model is shown in Fig. 1. Properties of the model are shown in Table 1 and its mooring system properties are shown in Table 2. Center of mass and radius of inertia were checked 1 Copyright 2013 by ASME

2 by both a modeling program, CATIA, and KG test. Differences between target from prototype and measured data from the model are shown in Table 3. Tension-excursion curve is used to check mooring line system. Measured data shows good agreement with target which is data obtained from UOU s mooring code in Fig. 2. Fig. 1 OC4 Semi-submersible type FOWT Model(1:80) Table 1 OC4 Semi-submersible offshore wind turbine system properties Item Full scale Model Scale ratio 1:1 1:80 Water Depth 200 m 2.5 m Turbine Power 5 MW - Mass 110,000 kg kg Diameter 126 m m Hub Mass 56,780 kg kg Blade Mass(1EA) 17,740 kg kg Nacelle Mass 240,000 kg kg Tower Height 77.6 m m Tower Mass 249,718 kg kg Tower Top Diameter 3.87 m m Tower Base Diameter 6.5 m m Platform Height 32 m 0.4 m Platform Mass 13,473,000 kg kg Upper Column Diameter 12 m 0.15 m Upper Column Height 26 m m Base Column Diameter 24 m 0.3 m Base Column Height 6 m m Pontoons Diameter 1.6 m 0.02 m Main Column Diameter 6.5 m m Columns Offset 50 m m Draft 20 m 0.25 m Table 2 Mooring system properties Item Full scale Model Scale ratio 1:1 1:80 Number of Mooring Lines 3EA 3EA Angle Between Adjacent Lines 120m 120m Depth to Anchors Below SWL 200m 2.5m Depth to Fairleads Below SWL 186m 2.325m Radius to Anchors 837.6m 10.47m Radius to Fairleads m 0.511m Unstretched Mooring Line Length 835.5m m Mooring Line Diameter m 0.001m Line Mass Density in Air kg/m 17.7 g/m Line Weight in Water kg/m 17.0 g/m Mooring Line Extensional Stiffness 753.6E3 kn N Fairlead Tension 1,099 kn 2.146N Degree of Mooring at Fairlead Table 3 Difference between target and model (1:80) Item Full scale Target Model Difference (%) Platform Mass (kg) E Center of Gravity (m) Roll Inertia about COG (kg*m 2 ) Pitch Inertia about COG (kg*m 2 ) Yaw Inertia about COG (kg*m 2 ) 6.788E E E Fig. 2 Tension-excursion comparison 2 Copyright 2013 by ASME

3 Two load cases are considered for this study. One is that FOWT with a locked rotor is under only irregular wave. The other is that FOWT with a rotating rotor is under irregular waves and uniform wind. Wind speed of model test is 2.4 m/s which is determined by fixed mount model test based on matching thrust force at the tower top. Hydrostatic coefficients and quadratic additional viscous damping from the OC4 project are shown in Table 4. UOU's mooring quasi-static code uses 4th order Runge Kutta method to solve quasi-static equations of two dimensions of a mooring line. NUMERICAL ANALYSIS FAST(Fatigue, Aerodynamics, Structures, and Turbulence) code developed by NREL and UOU in-house codes developed by the for hydrodynamic coefficients and mooring line forces are used for numerical analysis of OC4 semi-submersible offshore wind turbine in full scale. UOU Inhouse code including radiation solver and diffraction solver is used to calculate added mass, radiation damping and wave exciting forces which are input data for FAST. Fig. 5 Added Mass A15, A24 and Radiation Damping B15, B24 Fig. 3 Added Mass A11, A22, A33, A44, A55, A66 Fig. 6 Wave Excitation per unit amplitude (Modes 1~6) Table 4 Hydrostatic & Quadratic Additional Quadratic Damping Coefficients Hydrostatic restoring in heave Fig. 4 Radiation Damping B11, B22, B33, B44, B55, B66 Added mass matrix in frequency domain is shown in Figs. 3~5. Radiation damping coefficients in Figs. 4 and 5, and wave exciting force coefficients in Fig. 6. Where, modes 1~6 mean surge, sway, heave, roll, pitch and yaw modes in order E+06 N/m Hydrostatic restoring in roll E+08 N-m/rad Hydrostatic restoring in pitch E+08 N-m/rad Additional quadratic damping in surge 3.95E+05 Ns2/m2 Additional quadratic damping in sway 3.95E+05 Ns2/m2 Additional quadratic damping in heave 3.88E+06 Ns2/m2 Additional quadratic damping in roll 3.70E+10 Nms2/rad2 Additional quadratic damping in pitch 3.70E+10 Nms2/rad2 Additional quadratic in yaw 4.08E+09 Nms2/rad2 3 Copyright 2013 by ASME

4 LOAD CASES The load cases are divided into two big categories, LC1 and LC2. Both are shown in Table 5 and 6, respectively. Table 5 LC1, Only Irregular Waves Run (Sea state) Full scale Model Wind Wind Tp(s) Hs(m) Tp(s) Hs(m) 1(4) (5) (6) (7) FFT(Fast Fourier Transform) is used to check irregular waves. The basin generated irregular wave spectrum has a margin of error of 5% as compared with the theoretical JONSWAP wave spectrum in Figs. 7 and 8. Waves are recorded during model test by installing wave probe 1m apart from model installation point. Fig. 7 JONSWAP wave spectrum in sea state 4(Left) and sea state 5(Right) Table 6 LC2, Irregular Waves, Wind and Rotating Run (Sea state) Wind Full scale 11.4m/s 12.1rpm Wind Model 2.4m/s 108.2rpm Tp(s) Hs(m) Tp(s) Hs(m) 1(4) (5) (6) (7) Irregular waves for both model test and numerical analysis are obtained from JONSWAP wave spectrum. JONSWAP wave spectrum is hereunder: Fig. 8 JONSWAP wave spectrum in sea state 6(Left) and sea state 7(Right) RESULTS To predict and evaluate motions of OC4 semi-submersible offshore wind turbine system, we carried out model test and numerical analysis. Its motion in certain sea states is expressed in terms of a significant height as a representative value which is defined by the average of the 1/3 highest, that is, four times the square root of the zeroth-order of the response spectrum. To obtain a significant height from measured data, we use motion spectrum from FFT (Fast Fourier Transform). And results from model test are enlarged to full scale to compare with ones from numerical analysis. The units we used for comparison are meter(m) for translational motions such as surge, sway and heave and degree( ) for rotational motions such as roll, pitch and yaw motions. And we neglect sway and roll motions because waves we used for this model test and numerical analysis are only heading sea. Significant heights in LC1(Only regular waves) are shown in Figs. 9 and 10. There is a good agreement between model test results and numerical predictions of motion in sea states of irregular waves, except sea state 7. The motion increments 4 Copyright 2013 by ASME

5 from numerical analysis are bigger than ones from model test. An underestimation of viscous damping would be one possible explanation. We need to talk about the adjustment of additional damping coefficients from the OC4 project. Fig. 12 Significant Height of Pitch(Left) and Yaw(Right) in LC2 Fig. 9 Significant Height of Surge (left) and Heave (Right) in LC1 Significant heights in LC2 (Irregular waves with uniform wind and rotating rotor) are shown in Figs. 11 and 12. In numerical analysis, both transitional motions and rotational motions in LC2 show little differences with those in LC1, that is, the wind has a small influence on motions in numerical prediction. However, in model test, transitional motions in LC2 show little differences with those in LC1 but not in rotational motions. Based on model test, pitch motion in LC2 is higher than one in LC1. Yaw motion in model test is quite big because of a rotating rotor but this phenomenon does not occur in numerical analysis. It may be due to gyroscopic moment induced by the rotating rotor. Fig. 10 Significant Height of Pitch (Left) and Yaw (Right) in LC1 CONCLUSION The motion performance of the OC4 semi-submersible offshore wind turbine in irregular waves are predicted and evaluated by both model test and numerical simulation. From the numerical simulation, the responses in both LC1 and LC2 in sea states 4 ~7 are approximately equal. From the model test, the transitional responses in both LC1 and LC2 are approximately equal but there are differences in rotational responses. In the numerical simulation, the aerodynamic force due to wind having the rated wind speed(11.4 m/s) has a small influence on the motion of OC4 semi-submersible offshore wind turbine compared with the hydrodynamic force due to irregular waves. In model test, the rotating rotor may create a gyroscopic moment which induces yaw motion in LC2. However, the aerodynamic force has a small effect on the transitional motion of OC4 semi-submersible offshore wind turbine. The UOU-FAST code shows decent results for these load cases of LC1 and LC2 in predicting motions of semisubmersible type FOWT. Fig. 11 Significant Height of Surge (Left) and Heave(Right) in LC2 5 Copyright 2013 by ASME

6 Further model tests and numerical analyses in various load cases will be carried out to figure out parameters which affect motion of FOWT. ACKNOWLEDGEMENTS This work was supported by the New & Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government Ministry of Knowledge Economy. (No and No ) REFERENCES [1] Skaare B., Hanson T.D., Nielsen F.G., Yttervik R., Hansen A.M., Thomsen K., Larsen T.J., 2007, Integrated dynamic analysis of floating offshore wind turbines, European Wind Energy Conference, Milan, Italy. [2] Roddier D, Cermelli C, Aubault A, Weinstin A, 2010, WindFloat: A floating foundation for offshore wind turbines, Journal of Renewable and Sustainable Energy [3] Windsea AS, 2013, Windsea Concept, [4] Kim K.M.,2011, Experimental and Numerical Study on Analysis of Motion of Floating Offshore Wind Turbine. Master s thesis, The graduate School of the University of Ulsan, School of Naval Architecture and Ocean Engineering. [5] Shin H., 2010, Model test of the OC3-Hywind floating offshore wind turbine. Proc. of 21st ISOPE, Maui, Hawaii, Vol.1, pp.361~366. [6] Robertson A., Jonkman J., Masciola M, Song H., Goupee A., Coulling A., and Luan C. 2012, Definition of the Semisubmersible Floating System for Phase II of OC4. [7] Jonkman J., Butterfield S., Musial W., and Scott G., 2009, Definition of a 5-MW Reference Wind Turbine for Offshore System Development, Technical Report NREL/TP [8] Jonkman J.M., Buhl Jr. M.L., 2005, FAST User s Guide, Technical Report NREL/EL Copyright 2013 by ASME

Dynamic analysis of offshore floating wind turbines

Dynamic analysis of offshore floating wind turbines Dynamic analysis of offshore floating wind turbines Hasan Bagbanci Centre for Marine Technology and Engineering (CENTEC), Instituto Superior Técnico Technical University of Lisbon, Lisboa, Portugal ABSTRACT:

More information

Model Tests for a Floating Wind Turbine on Three Different Floaters

Model Tests for a Floating Wind Turbine on Three Different Floaters Bonjun J. Koo 1 Technip USA, Inc., 11700 Katy Freeway, Suite 150, Houston, TX 77079 e-mail: bkoo@technip.com Andrew J. Goupee Advanced Structures and Composites Center, University of Maine, 35 Flagstaff

More information

COUPLED AND UNCOUPLED ANALYSIS OF Y-WIND SEMI WIND TURBINE FOUNDATION

COUPLED AND UNCOUPLED ANALYSIS OF Y-WIND SEMI WIND TURBINE FOUNDATION COUPLED AND UNCOUPLED ANALYSIS OF Y-WIND SEMI WIND TURBINE FOUNDATION HYOUNGCHUL KIM VL OFFSHORE (GRADUATE INTERN) SUNG YOUN BOO VL OFFSHORE (VICE PRESIDENT) Proceedings of the 23 rd Offshore Symposium,

More information

EXPERIMENTAL COMPARISON OF THREE FLOATING WIND TURBINE CONCEPTS

EXPERIMENTAL COMPARISON OF THREE FLOATING WIND TURBINE CONCEPTS Proceedings of the 31 st International Conference on Ocean, Offshore and Arctic Engineering OMAE2012 Rio de Janeiro, Brazil June 10-15, 2012 OMAE2012-83645 EXPERIMENTAL COMPARISON OF THREE FLOATING WIND

More information

Experimental Comparison of Three Floating Wind Turbine Concepts

Experimental Comparison of Three Floating Wind Turbine Concepts Andrew J. Goupee 1 Advanced Structures and Composites Center, University of Maine, 35 Flagstaff Road, Orono, ME 04469 e-mail: agoupe91@maine.edu Bonjun J. Koo Technip USA, Inc., 11700 Katy Freeway, Suite

More information

ADDITIONAL WIND/WAVE BASIN TESTING OF THE DEEPCWIND SEMI- SUBMERSIBLE WITH A PERFORMANCE-MATCHED WIND TURBINE

ADDITIONAL WIND/WAVE BASIN TESTING OF THE DEEPCWIND SEMI- SUBMERSIBLE WITH A PERFORMANCE-MATCHED WIND TURBINE Proceedings of the ASME 214 33rd International Conference on Ocean, Offshore and Arctic Engineering OMAE214 June 8-13, 214, San Francisco, California, USA OMAE214-24172 ADDITIONAL WIND/WAVE BASIN TESTING

More information

Tension-Leg-Buoy (TLB) Platforms for Offshore Wind Turbines

Tension-Leg-Buoy (TLB) Platforms for Offshore Wind Turbines Tension-Leg-Buoy (TLB) Platforms for Offshore Wind Turbines EERA DeepWind'2014 Deep Sea Offshore Wind R&D Conference, Trondheim, 22-24 January 2014 Tor Anders Nygaard, Institute for Energy Technology (IFE),

More information

Floating offshore wind turbines

Floating offshore wind turbines Floating offshore wind turbines Michael Muskulus Department of Civil and Transport Engineering Norwegian University of Science and Technology 7491 Trondheim, Norway Stochastic Dynamics of Wind Turbines

More information

EXPERIMENTAL INVESTIGATIONS OF BARGE FLOATER WITH MOONPOOL FOR 5 MW WIND TURBINE

EXPERIMENTAL INVESTIGATIONS OF BARGE FLOATER WITH MOONPOOL FOR 5 MW WIND TURBINE EXPERIMENTAL INVESTIGATIONS OF BARGE FLOATER WITH MOONPOOL FOR 5 MW WIND TURBINE 1 MR. G.VIJAYA KUMAR, 2 DR. R. PANNEER SELVAM 1 M.S. Research Scholar, Department of Ocean Engineering, IIT Madras, Chennai,

More information

Comparison of coupled aero-hydro-servo-elastic simulations for floating wind turbines with model tests

Comparison of coupled aero-hydro-servo-elastic simulations for floating wind turbines with model tests Comparison of coupled aero-hydro-servo-elastic for floating wind turbines with Georgios Chrysagis Delft University of Technology, The Netherlands Email: georgechrysagis@hotmail.com September 2016 Key words:

More information

EFFECT OF DIFFERENT MOORING SYSTEMS ON HYDRODYNAMIC ANALYSIS OF AN OFFSHORE WIND TURBINE

EFFECT OF DIFFERENT MOORING SYSTEMS ON HYDRODYNAMIC ANALYSIS OF AN OFFSHORE WIND TURBINE EFFECT OF DIFFERENT MOORING SYSTEMS ON HYDRODYNAMIC ANALYSIS OF AN OFFSHORE WIND TURBINE Sabri ALKAN 1, Ayhan Mentes 2, Ismail H. Helvacioglu 2, Nagihan Turkoglu 2 1 Department of Mechanical Engineering,

More information

Performance Calculation of Floating Wind Turbine Tension Leg Platform in the South China Sea

Performance Calculation of Floating Wind Turbine Tension Leg Platform in the South China Sea 568 J. Eng. Technol. Sci., Vol. 47, No. 5, 2015, 568-588 Performance Calculation of Floating Wind Turbine Tension Leg Platform in the South China Sea Hai Feng Wang & You Hua Fan School of Natural Sciences

More information

Proceedings of the ASME nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France

Proceedings of the ASME nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France Proceedings of the ASME 23 32nd International Conference on Ocean, Offshore and Arctic Engineering OMAE23 June 9-4, 23, Nantes, France OMAE23-289 A METHOD FOR MODELING OF FLOATING VERTICAL AXIS WIND TURBINE

More information

Ameliorating the Negative Damping in the Dynamic Responses of a Tension Leg Spar-Type Support Structure with a Downwind Turbine

Ameliorating the Negative Damping in the Dynamic Responses of a Tension Leg Spar-Type Support Structure with a Downwind Turbine 1 Ameliorating the Negative Damping in the Dynamic Responses of a Tension Leg Spar-Type Support Structure with a Downwind Turbine Madjid Karimirad Torgeir Moan Author CeSOS Centre Centre for Ships for

More information

Available online at ScienceDirect. Energy Procedia 80 (2015 )

Available online at  ScienceDirect. Energy Procedia 80 (2015 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia ( ) 6 th Deep Sea Offshore Wind R&D Conference, EERA DeepWind' Coupled mooring systems for floating wind farms Marek Goldschmidt*,

More information

Feasibility study of a semi floating spar buoy wind turbine anchored with a spherical joint to the sea floor

Feasibility study of a semi floating spar buoy wind turbine anchored with a spherical joint to the sea floor Feasibility study of a semi floating spar buoy wind turbine anchored with a spherical joint to the sea floor María Sanz Martínez DTU Wind Energy DK-4000 Roskilde, Denmark msma@dtu.dk Anand Natarajan DTU

More information

Coupled Aero-hydrodynamic Analysis on a Floating Offshore Wind Turbine under Extreme Sea Conditions

Coupled Aero-hydrodynamic Analysis on a Floating Offshore Wind Turbine under Extreme Sea Conditions Proceedings of the Twenty-seventh (2017) International Ocean and Polar Engineering Conference San Francisco, CA, USA, June 25-30, 2017 Copyright 2017 by the International Society of Offshore and Polar

More information

Wind-Wave Misalignment Effects on Floating Wind Turbines: Motions and Tower Load Effects

Wind-Wave Misalignment Effects on Floating Wind Turbines: Motions and Tower Load Effects Erin E. Bachynski 1 Centre for Ships and Ocean Structures, NOWITECH, Centre for Autonomous Marine Operations and Systems, Trondheim NO-7491, Norway e-mail: erin.bachynski@ntnu.no Marit I. Kvittem Centre

More information

Copyright by Jinsong Liu 2015

Copyright by Jinsong Liu 2015 Copyright by Jinsong Liu 2015 The Thesis Committee for Jinsong Liu certifies that this is the approved version of the following thesis: On the Development of a Semi-Submersible Offshore Floating Platform

More information

Available online at ScienceDirect. Energy Procedia 53 (2014 ) 2 12

Available online at  ScienceDirect. Energy Procedia 53 (2014 ) 2 12 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 53 (24 ) 2 2 EERA DeepWind 24, th Deep Sea Offshore Wind R&D Conference Concept design verification of a semi-submersible floating

More information

A NOVEL FLOATING OFFSHORE WIND TURBINE CONCEPT: NEW DEVELOPMENTS

A NOVEL FLOATING OFFSHORE WIND TURBINE CONCEPT: NEW DEVELOPMENTS A NOVEL FLOATING OFFSHORE WIND TURBINE CONCEPT: NEW DEVELOPMENTS L. Vita, U.S.Paulsen, T.F.Pedersen Risø-DTU Technical University of Denmark, Roskilde, Denmark luca.vita@risoe.dk Abstract: A novel concept

More information

Aero-Elastic-Control-Floater-Mooring Coupled Dynamic Analysis of Floating Offshore Wind Turbines

Aero-Elastic-Control-Floater-Mooring Coupled Dynamic Analysis of Floating Offshore Wind Turbines Proceedings of the Twenty-first () International Offshore and Polar Engineering Conference Maui, Hawaii, USA, June 9-, Copyright by the International Society of Offshore and Polar Engineers (ISOPE) ISBN

More information

Experimental Results for Tension-Leg-Buoy Offshore Wind Turbine Platforms

Experimental Results for Tension-Leg-Buoy Offshore Wind Turbine Platforms Journal of Ocean and Wind Energy (ISSN 2310-3604) Copyright by The International Society of Offshore and Polar Engineers Vol. 1, No. 4, November 2014, pp. 217 224 http://www.isope.org/publications Experimental

More information

OMAE A COMPARISON OF TWO COUPLED MODEL OF DYNAMICS FOR OFFSHORE FLOATING VERTICAL AXIS WIND TURBINES (VAWT)

OMAE A COMPARISON OF TWO COUPLED MODEL OF DYNAMICS FOR OFFSHORE FLOATING VERTICAL AXIS WIND TURBINES (VAWT) Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineeing OMAE2014 June 8-13, 2014, San Francisco, California, USA OMAE2014-23301 A COMPARISON OF TWO COUPLED MODEL

More information

Integrated System Design for a Large Wind Turbine Supported on a Moored Semi-Submersible Platform

Integrated System Design for a Large Wind Turbine Supported on a Moored Semi-Submersible Platform Journal of Marine Science and Engineering Article Integrated System Design for a Large Wind Turbine Supported on a Moored Semi-Submersible Platform Jinsong Liu, Edwin Thomas, Lance Manuel, * ID, D. Todd

More information

Offshore Oil and Gas Platforms for Deep Waters

Offshore Oil and Gas Platforms for Deep Waters Offshore Oil and Gas Platforms for Deep Waters Atilla Incecik Department of Naval Architecture, Ocean and Marine Engineering University of Strathclyde, Glasgow, UK (atilla.incecik@strath.ac.uk) Summary

More information

Aerodynamic Thrust Modelling in Wave Tank Tests of Offshore Floating Wind Turbines Using a Ducted Fan

Aerodynamic Thrust Modelling in Wave Tank Tests of Offshore Floating Wind Turbines Using a Ducted Fan Journal of Physics: Conference Series OPEN ACCESS Aerodynamic Thrust Modelling in Wave Tank Tests of Offshore Floating Wind Turbines Using a Ducted Fan To cite this article: José Azcona et al 2014 J. Phys.:

More information

COUPLED DYNAMIC ANALYSIS OF FLOATING OFFSHORE WIND FARMS. A Thesis SANGYUN SHIM

COUPLED DYNAMIC ANALYSIS OF FLOATING OFFSHORE WIND FARMS. A Thesis SANGYUN SHIM COUPLED DYNAMIC ANALYSIS OF FLOATING OFFSHORE WIND FARMS A Thesis by SANGYUN SHIM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the

More information

COUPLED DYNAMIC ANALYSIS OF MOORING LINES FOR DEEP WATER FLOATING SYSTEMS

COUPLED DYNAMIC ANALYSIS OF MOORING LINES FOR DEEP WATER FLOATING SYSTEMS Proceedings of International Conference in Ocean Engineering, ICOE Proceedings 2009 of ICOE 2009 Coupled Dynamic Analysis IIT Madras, of Chennai, Mooring India. Lines for Deep Water Floating Systems 1-5

More information

Methodology for Wind/Wave Basin Testing of Floating Offshore Wind Turbines

Methodology for Wind/Wave Basin Testing of Floating Offshore Wind Turbines Heather R. Martin Kleinschmidt Associates, 141 Main Street, Pittsfield, ME 04967 Richard W. Kimball Maine Maritime Academy, 54 Pleasant Street, Castine, ME 04420 Anthony M. Viselli Advanced Structures

More information

Catenary Mooring Chain Eigen Modes and the Effects on Fatigue Life

Catenary Mooring Chain Eigen Modes and the Effects on Fatigue Life Catenary Mooring Chain Eigen Modes and the Effects on Fatigue Life Tor Anders Nygaard and Jacobus de Vaal, IFE Morten Hviid Madsen and Håkon Andersen, Dr.techn Olav Olsen AS Jorge Altuzarra, Vicinay Marine

More information

EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS

EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS *Jeong-Rok Kim 1), Hyeok-Jun Koh ), Won-Sun Ruy 3) and Il-Hyoung Cho ) 1), 3), ) Department of Ocean System Engineering, Jeju

More information

INSIGHT INTO THE UNSTEADY AERODYNAMICS OF FLOATING WIND TURBINES WITH TENSION LEG PLATFORMS (TLP) USING A BLADE ELEMENT MOMENTUM (BEM) BASED MODEL

INSIGHT INTO THE UNSTEADY AERODYNAMICS OF FLOATING WIND TURBINES WITH TENSION LEG PLATFORMS (TLP) USING A BLADE ELEMENT MOMENTUM (BEM) BASED MODEL HEFAT212 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 212 Malta INSIGHT INTO THE UNSTEADY AERODYNAMICS OF FLOATING WIND TURBINES WITH TENSION LEG PLATFORMS

More information

Response Analysis of a Spar-Type Floating Offshore Wind Turbine Under Atmospheric Icing Conditions

Response Analysis of a Spar-Type Floating Offshore Wind Turbine Under Atmospheric Icing Conditions Journal of Ocean and Wind Energy (ISSN 2310-3604) Copyright by The International Society of Offshore and Polar Engineers Vol. 1, No. 4, November 2014, pp. 193 201 http://www.isope.org/publications Response

More information

Copyright by Mohit Soni 2014

Copyright by Mohit Soni 2014 Copyright by Mohit Soni 4 The Thesis Committee for Mohit Soni Certifies that this is the approved version of the following thesis: Dynamic Response Analysis of an Offshore Wind Turbine Supported by a Moored

More information

2MW baseline wind turbine: model development and verification (WP1) The University of Tokyo & Hitachi, Ltd.

2MW baseline wind turbine: model development and verification (WP1) The University of Tokyo & Hitachi, Ltd. 2MW baseline wind turbine: model development and verification (WP1) The University of Tokyo & Hitachi, Ltd. Downwind turbine technology, IEA Wind Task 40 First Progress Meeting, Tokyo, Japan 11 Dec, 2017

More information

Coupled Dynamic Modeling of Floating Wind Turbine Systems

Coupled Dynamic Modeling of Floating Wind Turbine Systems National Renewable Energy Laboratory Innovation for Our Energy Future A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Coupled Dynamic Modeling of Floating

More information

Stiesdal. Physical model testing of the TetraSpar floater in two configurations

Stiesdal. Physical model testing of the TetraSpar floater in two configurations Physical model testing of the TetraSpar floater in two configurations M Borg a, H Bredmose a, H Stiesdal b, B Jensen c, RF Mikkelsen a, M Mirzaei a, A Pegalajar-Jurado a, FJ Madsen a, TRL Nielsen a, AK

More information

Parametric Investigation of Dynamic Characteristics of Mooring Cable of Floating-type Offshore Wind Turbine

Parametric Investigation of Dynamic Characteristics of Mooring Cable of Floating-type Offshore Wind Turbine The 0 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM ) Seoul, Korea, August 6-30, 0 Parametric Investigation of Dynamic Characteristics of Mooring Cable of Floating-type

More information

Basic Design and Finite Element Analysis of Substructure of 2.5MW. Floating-type Offshore Wind Turbine. O-Kaung Lim 3)

Basic Design and Finite Element Analysis of Substructure of 2.5MW. Floating-type Offshore Wind Turbine. O-Kaung Lim 3) The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-30, 2012 Basic Design and Finite Element Analysis of Substructure of 2.5MW Floating-type

More information

A comprehensive method for the structural design and verification of the INNWIND 10MW tri-spar floater

A comprehensive method for the structural design and verification of the INNWIND 10MW tri-spar floater NATIONAL TECHNICAL UNIVERSITY of ATHENS (NTUA) A comprehensive method for the structural design and verification of the INNWIND 10MW tri-spar floater DI Manolas, CG Karvelas, IA Kapogiannis, VA Riziotis,

More information

Floating Wind Turbines

Floating Wind Turbines FINAL REPORT Floating Wind Turbines May 212 Prepared by American Bureau of Shipping Corporate Offshore Technology, Renewables 16855 Northchase Drive Houston, Texas 776 www.eagle.org Submitted to U.S. Department

More information

Design and Dynamic Performances of Y-Wind Floating Offshore Wind Turbine Platform

Design and Dynamic Performances of Y-Wind Floating Offshore Wind Turbine Platform Proceedings of the Twenty-seventh (7) International Ocean and Polar Engineering Conference San Francisco, CA, USA, June -3, 7 Copyright 7 by the International Society of Offshore and Polar Engineers (ISOPE)

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October ISSN

International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October ISSN International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October-2016 172 DYNAMIC ANALYSIS OF MINI TENSION LEG PLATFORMS UNDER RANDOM WAVES Shibin P Shaji, Dr. Jayalekshmi R. Abstract

More information

Control of surge and pitch motions of a rectangular floating body using internal sloshing phenomena. Minho Ha and *Cheolung Cheong 1)

Control of surge and pitch motions of a rectangular floating body using internal sloshing phenomena. Minho Ha and *Cheolung Cheong 1) Control of surge and pitch motions of a rectangular floating body using internal sloshing phenomena Minho Ha and *Cheolung Cheong 1) School of Mechanical Engineering, PNU, Busan 609-735, Korea 1) ccheong@pusan.ac.kr

More information

Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) 30-31,December, 2014, Ernakulam, India

Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) 30-31,December, 2014, Ernakulam, India INTERNATIONAL JOURNAL OF DESIGN AND MANUFACTURING TECHNOLOGY (IJDMT) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976 6995 (Print) ISSN

More information

Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines

Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines Anand Natarajan Senior Scientist Wind Energy Department, Risø DTU Denmark Introduction IEC 61400-1

More information

Hywind. Deep offshore wind operational experience. Finn Gunnar Nielsen, Statoil RDI

Hywind. Deep offshore wind operational experience. Finn Gunnar Nielsen, Statoil RDI Hywind. Deep offshore wind operational experience. Finn Gunnar Nielsen, Statoil RDI The starting point -2001 Inspired by floating sailing marks. Seawind matured during 2002 Tong, K.C. OWEMES seminar, Atena,

More information

Coupling and Analysis of 981 Deep Water Semi-submersible. Drilling Platform and the Mooring System

Coupling and Analysis of 981 Deep Water Semi-submersible. Drilling Platform and the Mooring System 4th International Conference on Renewable Energy and Environmental Technology (ICREET 2016) Coupling and Analysis of 981 Deep Water Semi-submersible Drilling Platform and the Mooring System XuDong Wang1,

More information

Experimental Study on the Motion Response and Mooring Characteristics of a New Type Deep-draft Multi-column FDPSO

Experimental Study on the Motion Response and Mooring Characteristics of a New Type Deep-draft Multi-column FDPSO International Journal of Engineering and Applied Sciences (IJEAS) Experimental Study on the Motion Response and Mooring Characteristics of a New Type Deep-draft Multi-column FDPSO Xuncheng Tu, Xianghong

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 6 Table of Contents 1. PURPOSE...2 2. PARAMETERS...2 2.1 General Considerations...2 3 DESCRIPTION OF PROCEDURE...2 3.1 Model Design and Construction...2 3.2 Measurements...3 3.5 Execution of

More information

The 5 MW Deepwind Floating Offshore Vertical Wind Turbine Concept Design - Status And Perspective. Uwe Schmidt Paulsen

The 5 MW Deepwind Floating Offshore Vertical Wind Turbine Concept Design - Status And Perspective. Uwe Schmidt Paulsen The 5 MW Deepwind Floating Offshore Vertical Wind Turbine Concept Design - Status And Perspective Uwe Schmidt Paulsen uwpa@dtu.dk Contents What is DeepWind Motivation and Background Concept Design Status

More information

On mooring line tension and fatigue prediction for offshore vertical axis wind turbines: a comparison of lumped-mass and quasi-static approaches

On mooring line tension and fatigue prediction for offshore vertical axis wind turbines: a comparison of lumped-mass and quasi-static approaches 9 th European Seminar OWEMES 217 On mooring line tension and fatigue prediction for offshore vertical axis wind turbines: a comparison of lumped-mass and quasi-static approaches D. Cevasco 1, M. Collu

More information

7 JAXA Special Publication JAXA-SP--8E the internal wall surface of the tower at the three different levels shown in Figure. Strain (in the vertical d

7 JAXA Special Publication JAXA-SP--8E the internal wall surface of the tower at the three different levels shown in Figure. Strain (in the vertical d First International Symposium on Flutter and its Application, 739 Wind Loads on a Bottom-mounted Offshore Wind Turbine Tower Kazumasa OKUBO +, Manabu YAMAMOTO +, Yukinari FUKUMOTO +3 and Takeshi ISHIHARA

More information

Aero-Hydro-Servo-Elastic Analysis of Floating Wind. Leg Moorings. January ar 7, 2013

Aero-Hydro-Servo-Elastic Analysis of Floating Wind. Leg Moorings. January ar 7, 2013 1 Aero-Hydro-Servo-Elastic Analysis of Floating Wind Turbines with Tension Leg Moorings Erin Bachynski, PhD candidate at CeSOS erin.bachynski@ntnu.no January ar 7, 2013 Erin Bachynski CeSOS Centre for

More information

UNSTEADY AERODYNAMICS OF OFFSHORE FLOATING WIND TURBINES IN PLATFORM PITCHING MOTION USING VORTEX LATTICE METHOD

UNSTEADY AERODYNAMICS OF OFFSHORE FLOATING WIND TURBINES IN PLATFORM PITCHING MOTION USING VORTEX LATTICE METHOD UNSTEADY AERODYNAMICS OF OFFSHORE FLOATING WIND TURBINES IN PLATFORM PITCHING MOTION USING VORTEX LATTICE METHOD Min U Jeon a *, Seung Min Lee a, Hong Seok Jeong a, Soo Gab Lee a a Department of Mechanical

More information

Numerical study on a hybrid mooring system with clump weights and buoys

Numerical study on a hybrid mooring system with clump weights and buoys Numerical study on a hybrid mooring system with clump weights and buoys * Zhiming Yuan a, Atilla Incecik a, Chunyan Ji b a Department of Naval Architecture, Ocean & Marine Engineering, University of Strathclyde,

More information

MASTER S THESIS. Faculty of Science and Technology. Study program/ Specialization: Offshore technology: Marine and Subsea Spring semester, 2015.

MASTER S THESIS. Faculty of Science and Technology. Study program/ Specialization: Offshore technology: Marine and Subsea Spring semester, 2015. Faculty of Science and Technology MASTER S THESIS Study program/ Specialization: Offshore technology: Marine and Subsea Spring semester, 2015 Open Writer: Aron Amundsen (Writer s signature) Faculty supervisor:

More information

Dynamic Response Analysis of Three Floating Wind Turbine Concepts with a Two-Bladed Darrieus Rotor

Dynamic Response Analysis of Three Floating Wind Turbine Concepts with a Two-Bladed Darrieus Rotor Journal of Ocean and Wind Energy (ISSN 2310-3604) Copyright by The International Society of Offshore and Polar Engineers Vol. 2, No. 4, November 2015, pp. 213 222; http://dx.doi.org/10.17736/jowe.2015.jcr33

More information

A COMPARISON BETWEEN THE PRELIMINARY DESIGN STUDIES OF A FIXED AND A FLOATING SUPPORT STRUCTURE FOR A 5 MW OFFSHORE WIND TURBINE IN THE NORTH SEA

A COMPARISON BETWEEN THE PRELIMINARY DESIGN STUDIES OF A FIXED AND A FLOATING SUPPORT STRUCTURE FOR A 5 MW OFFSHORE WIND TURBINE IN THE NORTH SEA A COMPARISON BETWEEN THE PRELIMINARY DESIGN STUDIES OF A FIXED AND A FLOATING SUPPORT STRUCTURE FOR A 5 MW OFFSHORE WIND TURBINE IN THE NORTH SEA M Collu, A J Kolios, A Chahardehi, F Brennan, Cranfield

More information

Proceedings of the ASME nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France

Proceedings of the ASME nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France OMAE2013-10675 THE EFFECT OF WAVE ENERGY SPREADING ON THE MOORING

More information

Wave Forces on a Moored Vessel from Numerical Wave Model Results

Wave Forces on a Moored Vessel from Numerical Wave Model Results Wave Forces on a Moored Vessel from Numerical Wave Model Results ABSTRACT P W O BRIEN OMC International Pty Ltd, Melbourne, Australia O WEILER WL Delft Hydraulics, Delft, The Netherlands M BORSBOOM WL

More information

Innovative and Robust Design. With Full Extension of Offshore Engineering and Design Experiences.

Innovative and Robust Design. With Full Extension of Offshore Engineering and Design Experiences. Innovative and Robust Design by VL Offshore With Full Extension of Offshore Engineering and Design Experiences www.vloffshore.com Y Wind Semi Designed by VL Offshore The Y Wind Semi platform (foundation)

More information

Mooring for floating offshore renewable energy platforms classification

Mooring for floating offshore renewable energy platforms classification International Conference on Renewable Energies and Power Quality (ICREPQ 13) Bilbao (Spain), 20 th to 22 th March, 2013 exçxãtuäx XÇxÜzç tçw céãxü dâtä àç ]ÉâÜÇtÄ (RE&PQJ) ISSN 2172-038 X, No.11, March

More information

MINIMUM DECK HEIGHT OF A SEMI-SUBMERSIBLE PLATFORM ACCORDING TO BLACK SEA ENVIRONMENT

MINIMUM DECK HEIGHT OF A SEMI-SUBMERSIBLE PLATFORM ACCORDING TO BLACK SEA ENVIRONMENT MINIMUM DECK HEIGHT OF A SEMI-SUBMERSIBLE PLATFORM ACCORDING TO BLACK SEA ENVIRONMENT Ionuț-Cristian SCURTU Principal instructor, Navy Academy Mircea cel Batran Constanta, Romania Abstract-The fast evolution

More information

MODELLING OF WATER FLOW ON SMALL VESSEL S DECK

MODELLING OF WATER FLOW ON SMALL VESSEL S DECK Monika Warmowska, Jan Jankowski, Polski Rejestr Statków S.A., al. gen. Józefa Hallera 126, Poland, Gdańsk, 80-416 MODELLING OF WATER FLOW ON SMALL VESSEL S DECK Summary Green water moving on deck of small

More information

A Wave Basin Model Test Study for a Jackup Moored on the Dock

A Wave Basin Model Test Study for a Jackup Moored on the Dock Proceedings of the Twenty-fifth (2015) International Ocean and Polar Engineering Conference Kona, Big Island, Hawaii, USA, June 21-26, 2015 Copyright 2015 by the International Society of Offshore and Polar

More information

THEORETICAL EVALUATION OF FLOW THROUGH CENTRIFUGAL COMPRESSOR STAGE

THEORETICAL EVALUATION OF FLOW THROUGH CENTRIFUGAL COMPRESSOR STAGE THEORETICAL EVALUATION OF FLOW THROUGH CENTRIFUGAL COMPRESSOR STAGE S.Ramamurthy 1, R.Rajendran 1, R. S. Dileep Kumar 2 1 Scientist, Propulsion Division, National Aerospace Laboratories, Bangalore-560017,ramamurthy_srm@yahoo.com

More information

Wind loads investigations of HAWT with wind tunnel tests and site measurements

Wind loads investigations of HAWT with wind tunnel tests and site measurements loads investigations of HAWT with wind tunnel tests and site measurements Shigeto HIRAI, Senior Researcher, Nagasaki R&D Center, Technical Headquarters, MITSUBISHI HEAVY INDSUTRIES, LTD, Fukahori, Nagasaki,

More information

PRESSURE DISTRIBUTION OF SMALL WIND TURBINE BLADE WITH WINGLETS ON ROTATING CONDITION USING WIND TUNNEL

PRESSURE DISTRIBUTION OF SMALL WIND TURBINE BLADE WITH WINGLETS ON ROTATING CONDITION USING WIND TUNNEL International Journal of Mechanical and Production Engineering Research and Development (IJMPERD ) ISSN 2249-6890 Vol.2, Issue 2 June 2012 1-10 TJPRC Pvt. Ltd., PRESSURE DISTRIBUTION OF SMALL WIND TURBINE

More information

OMAE INVESTIGATION ON THE USE OF DIFFERENT APPROACHES TO MOORING ANALYSIS AND APPROPRIATE SAFETY FACTORS

OMAE INVESTIGATION ON THE USE OF DIFFERENT APPROACHES TO MOORING ANALYSIS AND APPROPRIATE SAFETY FACTORS Proceedings of the ASME 212 31 st International Conference on Ocean, Offshore and Arctic Engineering OMAE212 June 1-15, 212, Rio de Janeiro, Brazil OMAE212-84121 INVESTIGATION ON THE USE OF DIFFERENT APPROACHES

More information

Abstract. 1 Introduction

Abstract. 1 Introduction A computational method for calculatingthe instantaneous restoring coefficients for a ship moving in waves N. El-Simillawy College of Engineering and Technology, Arab Academyfor Science and Technology,

More information

Assessment of 3D aerodynamic effects on the behaviour of floating wind turbines

Assessment of 3D aerodynamic effects on the behaviour of floating wind turbines Journal of Physics: Conference Series OPEN ACCESS Assessment of 3D aerodynamic effects on the behaviour of floating wind turbines To cite this article: D Manolas et al 2014 J. Phys.: Conf. Ser. 555 012067

More information

TLP Minimum tendon tension design and tendon down-stroke investigation

TLP Minimum tendon tension design and tendon down-stroke investigation Published by International Association of Ocean Engineers Journal of Offshore Engineering and Technology Available online at www.iaoejoet.org TLP Minimum tendon tension design and tendon down-stroke investigation

More information

Study on wind turbine arrangement for offshore wind farms

Study on wind turbine arrangement for offshore wind farms Downloaded from orbit.dtu.dk on: Jul 01, 2018 Study on wind turbine arrangement for offshore wind farms Shen, Wen Zhong; Mikkelsen, Robert Flemming Published in: ICOWEOE-2011 Publication date: 2011 Document

More information

CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT

CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT 531 CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT Toru KATAYAMA, Graduate School of Engineering, Osaka Prefecture University (Japan) Kentarou TAMURA, Universal Shipbuilding Corporation (Japan) Yoshiho

More information

INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION

INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION Proceedings of COBEM 2009 Copyright 2009 by ABCM 20th International Congress of Mechanical Engineering November 15-20, 2009, Gramado, RS, Brazil INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION Helena

More information

Edit this text for your title

Edit this text for your title Edit this text for your title MEK 4450 Marine Operations Edit this text for your sub-title Presenter name, location, date etc. Kværner ASA / DNV, Fall 2013 Lesson 2/3 Lift phases Load out Transportation

More information

Proceedings of the ASME th International Conference on Ocean, Offshore and Arctic Engineering

Proceedings of the ASME th International Conference on Ocean, Offshore and Arctic Engineering Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering OMAE2010 June 6-11, 2010, Shanghai, China OMAE2010- OMAE2010-20709 DYNAMIC ANALYSIS OF FLOATING BODIES

More information

Extended Onshore Control of a Floating Wind Turbine with Wave Disturbance Reduction

Extended Onshore Control of a Floating Wind Turbine with Wave Disturbance Reduction Journal of Physics: Conference Series OPEN ACCESS Extended Onshore Control of a Floating Wind Turbine with Wave Disturbance Reduction To cite this article: S Christiansen et al 214 J. Phys.: Conf. Ser.

More information

CFD development for wind energy aerodynamics

CFD development for wind energy aerodynamics CFD development for wind energy aerodynamics Hamid Rahimi, Bastian Dose, Bernhard Stoevesandt Fraunhofer IWES, Germany IEA Task 40 Kick-off Meeting 12.11.2017 Tokyo Agenda BEM vs. CFD for wind turbine

More information

Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges

Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges T. Abbas 1 and G. Morgenthal 2 1 PhD candidate, Graduate College 1462, Department of Civil Engineering,

More information

Hydrodynamic Analysis of a Heavy Lift Vessel during Offshore Installation Operations

Hydrodynamic Analysis of a Heavy Lift Vessel during Offshore Installation Operations Presentation for Defense of Master Thesis Hydrodynamic Analysis of a Heavy Lift Vessel during Offshore Installation Operations Speaker: Bin Wang Supervisor: Prof. Robert Bronsart 23 rd Feb, 2015 Nantes

More information

Wave Force Characteristics for Structural Members of Hybrid Marine Structure

Wave Force Characteristics for Structural Members of Hybrid Marine Structure Wave Force Characteristics for Structural Members of Hybrid Marine Structure Youn-JuJeong Research Fellow, Structural Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology,

More information

Dynamic Response of Floating Wind Turbine

Dynamic Response of Floating Wind Turbine Transaction B: Mechanical Engineering Vol. 17, No. 2, pp. 146{156 c Sharif University of Technology, April 2010 Research Note Dynamic Response of Floating Wind Turbine Abstract. M. Karimirad 1 Like other

More information

Numerical Computation of Aerodynamic Performances of NREL Offshore 5-MW Baseline Wind Turbine

Numerical Computation of Aerodynamic Performances of NREL Offshore 5-MW Baseline Wind Turbine Proceedings of the Eleventh () PacificAsia Offshore Mechanics Symposium Shanghai, China, October -6, Copyright by The International Society of Offshore and Polar Engineers ISBN 978 886 9-6: ISSN 96-X www.isope.org

More information

Time Domain Flutter Analysis of Bend-Twist Coupled Composite Wind Turbine Blades and Comparisons with the Baseline Blade

Time Domain Flutter Analysis of Bend-Twist Coupled Composite Wind Turbine Blades and Comparisons with the Baseline Blade Time Domain Flutter Analysis of Bend-Twist Coupled Composite Wind Turbine Blades and Comparisons with the Baseline Blade *Touraj Farsadi 1) and Altan Kayran 2) 1), 2) METUWind centre, Department of Aerospace

More information

SuperGen UK Centre for Marine Energy Research Progress Meeting 2018

SuperGen UK Centre for Marine Energy Research Progress Meeting 2018 SuperGen UK Centre for Marine Energy Research Progress Meeting 2018 Extreme loads and survivability Cameron Johnstone, Stephanie Ordonez-Sanchez, Song Fu and Rodrigo Martinez Energy Systems Research Unit,

More information

INFLUENCE OF AERODYNAMIC MODEL FIDELITY ON ROTOR LOADS DURING FLOATING OFFSHORE WIND TURBINE MOTIONS

INFLUENCE OF AERODYNAMIC MODEL FIDELITY ON ROTOR LOADS DURING FLOATING OFFSHORE WIND TURBINE MOTIONS INFLUENCE OF AERODYNAMIC MODEL FIDELITY ON ROTOR LOADS DURING FLOATING OFFSHORE WIND TURBINE MOTIONS DENIS MATHA 1,2*, LEVIN KLEIN 3, DIMITRIOS BEKIROPOULOS 3, PO WEN CHENG 2 1 RAMBOLL WIND, GERMANY *

More information

Effect of Wave Steepness on Yaw Motions of a Weathervaning Floating Platform

Effect of Wave Steepness on Yaw Motions of a Weathervaning Floating Platform 16 th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 27 Effect of Wave Steepness on Yaw Motions of a Weathervaning Floating Platform Jayanth Munipalli, and Krish

More information

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration M. Burak Şamşul ITU AYOC 2014 - Milper Pervane Teknolojileri Company Profile MILPER is established in 2011 as a Research and Development

More information

STATION KEEPING EXTENSIVE MODEL TESTING OF A DRY-TREE SPREAD-MOORED BARGE IN BRAZILLIAN WATERS

STATION KEEPING EXTENSIVE MODEL TESTING OF A DRY-TREE SPREAD-MOORED BARGE IN BRAZILLIAN WATERS STATION KEEPING EXTENSIVE MODEL TESTING OF A DRY-TREE SPREAD-MOORED BARGE IN BRAZILLIAN WATERS Arjan Voogt (MARIN) and Mamoun Naciri (SBM) Deep Offshore Technology XIV (DOT-2002) ABSTRACT This paper describes

More information

Deepwater Floating Production Systems An Overview

Deepwater Floating Production Systems An Overview Deepwater Floating Production Systems An Overview Introduction In addition to the mono hull, three floating structure designs Tension leg Platform (TLP), Semisubmersible (Semi), and Truss Spar have been

More information

Norway s solution: Hywind- world s first full scale floating turbine Dr. Nenad Keseric Asset Manager/Specialist Statoil ASA MPR RE Operations

Norway s solution: Hywind- world s first full scale floating turbine Dr. Nenad Keseric Asset Manager/Specialist Statoil ASA MPR RE Operations Norway s solution: Hywind- world s first full scale floating turbine Dr. Nenad Keseric Asset Manager/Specialist Statoil ASA MPR RE Operations Strategy and Support Leveraging Statoil s offshore oil and

More information

Presentation by. Dr.- Eng. T. P. Mazarakos

Presentation by. Dr.- Eng. T. P. Mazarakos Presentation by Dr.- Eng. T. P. Mazarakos Naval and Ocean Architect and Marine and Arctic Engineer, M.Sc., Ph.D. Senior Engineer Laboratory for Floating Structures and Mooring Systems, School of Naval

More information

STALLING BEHAVIOUR OF A CONTRA-ROTATING AXIAL COMPRESSOR STAGE

STALLING BEHAVIOUR OF A CONTRA-ROTATING AXIAL COMPRESSOR STAGE STALLING BEHAVIOUR OF A CONTRA-ROTATING AXIAL COMPRESSOR STAGE by YASHPAL JAIN Thesis submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Mechanical Engineering

More information

Pressure distribution of rotating small wind turbine blades with winglet using wind tunnel

Pressure distribution of rotating small wind turbine blades with winglet using wind tunnel Journal of Scientific SARAVANAN & Industrial et al: Research PRESSURE DISTRIBUTION OF SMALL WIND TURBINE BLADES WITH WINGLET Vol. 71, June 01, pp. 45-49 45 Pressure distribution of rotating small wind

More information

Measurement and simulation of the flow field around a triangular lattice meteorological mast

Measurement and simulation of the flow field around a triangular lattice meteorological mast Measurement and simulation of the flow field around a triangular lattice meteorological mast Matthew Stickland 1, Thomas Scanlon 1, Sylvie Fabre 1, Andrew Oldroyd 2 and Detlef Kindler 3 1. Department of

More information

Inlet Influence on the Pressure and Temperature Distortion Entering the Compressor of an Air Vehicle

Inlet Influence on the Pressure and Temperature Distortion Entering the Compressor of an Air Vehicle Distortion Entering the Compressor of an Air Vehicle P. Hendrick Université Libre de Bruxelles, ULB Avenue F.D. Roosevelt, 50 1050 Brussels BELGIUM patrick.hendrick@ulb.ac.be ABSTRACT One of the possible

More information

Numerical Simulation And Aerodynamic Performance Comparison Between Seagull Aerofoil and NACA 4412 Aerofoil under Low-Reynolds 1

Numerical Simulation And Aerodynamic Performance Comparison Between Seagull Aerofoil and NACA 4412 Aerofoil under Low-Reynolds 1 Advances in Natural Science Vol. 3, No. 2, 2010, pp. 244-20 www.cscanada.net ISSN 171-7862 [PRINT] ISSN 171-7870 [ONLINE] www.cscanada.org *The 3rd International Conference of Bionic Engineering* Numerical

More information