MODELLING OF WATER FLOW ON SMALL VESSEL S DECK

Size: px
Start display at page:

Download "MODELLING OF WATER FLOW ON SMALL VESSEL S DECK"

Transcription

1 Monika Warmowska, Jan Jankowski, Polski Rejestr Statków S.A., al. gen. Józefa Hallera 126, Poland, Gdańsk, MODELLING OF WATER FLOW ON SMALL VESSEL S DECK Summary Green water moving on deck of small vessels affects their motion and can contribute to the vessel capsizing. The phenomenon is nonlinear and its description using mathematical differential problems remains to be difficult. This paper presents a numerical model, based on shallow water flow, describing water flow on moving ship s deck. Up to now simplified methods have been applied to determine ship motion in irregular waves. The shallow water method is developed to include it into ship motion equations. The paper presents verification of this method and the results of the simulation of water moving on small vessel s deck. Key words: shallow water problem, water on deck, vessel capsizing, vessel motion

2 M. Warmowska, J. Jankowski Modelling of Water Flow on Small Vessel s Deck 1. Introduction The amount of water on deck changes continuously during simulation and may lead to capsizing of the vessel. To model this phenomenon we have to take into account boundary conditions such as: velocity field of water motion around the ship, pressure caused by water incoming on submerged deck, motion of ship, mass and acceleration of water jumping over the bulwark, mass of water inflow and outflow trough the openings of bulwark. These problems are well described in references. Dilligham (1981) presents a formulae describing water flow through openings in bulwark and over bulwark. The mass of flowing water depends on the size and shape of the openings, the height of sea wave and the water elevation above the opening. The numerical solution of 2D problem is given by Dillingham (1981). The equation used is valid for a ship at rest. The author applies the random choice method for solving hyperbolic equations. The three-dimensional flow is described by Dillingham and Falzarano (1986), who transform equations to a coordinate system coupled to the ship s centre of gravity. Panatazapoulas (1988) presents a 3D equation of shallow water motion on deck of a ship moving in waves with yow equal to zero. His method is further developed by Huang and Hsiung (1997), who apply the flux differential splitting method to solve the non-linear threedimensional problem describing water flow on deck. The forces and moments of water moving on deck are added to equations of ship motion. The changing water mass and flow of water across the deck and bulwark contribute to the forces and moments acting on the ship. Detailed description of this problem is presented by Belenky (2002). Jankowski & Laskowski (2006) applied a simplified approach used in Ro-Ro ferries damage stability calculations in their computer programs enabling simulation of ship motion in irregular waves (Jankowski, 2007), as the first phase of modeling the water-on-deck effects. They added to the model used in Ro-Ro ferries additional pressure acting on the deck caused by the change of water volume on the deck (Buchner, 2002). This program was used to determine a ship s motion in irregular waves. As the next step the problem of shallow water flow was used to model the water motion on deck, which includes horizontal relative velocity of water (Zienkiewicz, 2005). The added pressure of the dynamic motion of water was obtained using this method. 2. Ship motion in irregular waves obtained using simplified method The simulation of vessel motions in waves is based on numerical solutions of non-linear equations of motion (non-linear model). The hydrodynamic forces and moments defining the equations are determined in each time step, Fig. 1. The forces acting on the vessel can be split into: Froude-Krylov forces, diffraction and radiation forces, rudder forces, non-linear damping and forces induced by water on deck. The forces caused by water on deck are obtained using a simplified model used in Ro-Ro ferries (Jankowski & Laskowski, 2006). The example of simulation of ship motion is presented in Figure 1.

3 Modelling of Water Flow on Small Vessel s Deck M. Warmowska, J. Jankowski Fig. 1 Time history of ship heave ζ, pitch θ, surface elevation, and roll ϕ The position of water trapped on deck is determined by the horizontal plane and the actual position of the vessel deck in the given time instant. The dynamics of water caused by the motion of water particles in relation to the deck is neglected. The forces and moments caused by water-on-deck are obtained by integrating the hydrostatic pressure determined by water horizontal plane above the deck in the vessel s actual position. Additionally, the vessel s acceleration and the changing heights of the horizontal plane above the deck have been added to the model to better replicate the phenomenon (Jankowski & Laskowski, 2006). The pressure p A in point A on the deck is equal to: where h changing distance of the horizontal plane from the point A in the inertial system, v A, a A velocity and acceleration of the deck point A, determined in the inertial system. The pressure field enables us to determine the force F=(F 1,F 2,F 3 ) and movement M=(F 4,F 5,F 6 ) generated by moving water on deck: ( 1) ( 2) where S the wetted part of surface of the deck and bulwark, R the position vector of points belonging to S, n normal vector.

4 M. Warmowska, J. Jankowski Modelling of Water Flow on Small Vessel s Deck 3. Modeling of water flow on small vessel s deck using the shallow water method The phenomenon of water flow on small vessel s deck can be divided into the following stages: 1. the inflow of water over upper edge of bulwark, 2. the inflow and outflow of water from deck through openings in bulwark, 3. the flow of sea water over the submerged vessel deck, 4. the dynamic water motion on deck. In this model it is assumed that the volume of water on deck, varying in time, depends on the difference in heights between the wave surface and the following edges: the upper edge of the bulwark, and the lower edges of openings in the bulwark. The velocity field around the ship is not disturbed by the ship and its motion. The field causes the flow of seawater in case the deck is submerged. The dynamic water motion over the deck is directed along the deck. The vertical acceleration a z can be neglected. It is assumed that viscosity forces can be neglected. The motion of water is described using Euler equations. The assumption enables to model the problem of dynamic water motion on deck as the shallow water flow problem. Using such a model the following can be determined: the shape of free surface elevation, the velocity field of water particles over the deck, the pressure, forces and moments acting on the deck caused by water moving over the deck Inflow and outflow of water over the bulwark and through the openings It is assumed that the flow rate of water volume over the bulwark can be calculated as the flow over a weir, whereas the flow through the openings in the bulwark is modeled as a flow through a submerged orifice in a dam. The general formula for the flow rate is: ( 3) where q changing mass of water, c correction coefficient for non-stationary flow, established experimentally, b the width of the orifice or the fragment of bulwark above which the deck is flooded, H vertical distance between the wave profile and the water free surface on the deck at a point considered (positive if the wave exceeds the water level on the deck), d the depth of water at the orifice or the instantaneous elevation of wave profile above the deck edge at the orifice. Formula (3) assumes various forms depending on relative water levels inside and outside the deck hollow and on the position of the opening in the bulwark (Pawłowski, 2004). Formula (3) is applied separately for the upper edge of bulwark and the openings in the bulwark.

5 Modelling of Water Flow on Small Vessel s Deck M. Warmowska, J. Jankowski 3.2. Deck submerged in water It is assumed that the velocity field around the ship is the velocity of the undisturbed sea wave. In the case of deck submerged in a wave, the water particle velocity over the deck, near ship s bulwark, is calculated taking into account the velocity field being the average of the deck water velocity field and the wave velocity field The shallow water model The shallow water problem is solved in four steps (Warmowska, 2008), determining: 1. the domain Ω occupied by water, 2. the pressure field, 3. the horizontal components u x, u y of velocity u, 4. the vertical component u z of velocity u, 5. the forces and moments generated by moving water over the deck. The motion of the free surface S F is described by the following equations: ( 4) Equations (4) are integrated using the Runge-Kutta method. The nodes of the net determining the free surface moving in time are updated in each time step by interpolating the function describing free surface over nodes (x Ai, y Ai, z Ai ) of constant Euler grid of deck. It is assumed that the vertical acceleration a z can be neglected. The pressure field on deck p A is obtained integrating third Euler equation defining water motion. As a result we obtain:, ( 5) where p a pressure on the free surface S F corresponding to atmospheric pressure, f Z vertical component of the force acting on the water in point (x,y,z A ). Horizontal components of the velocity field in the domain Ω are determined from the two first Euler equations: ( 6) for pressure determined by formula (5), where f x, f y horizontal components of the force acting the water in point (x,y,z A ).

6 M. Warmowska, J. Jankowski Modelling of Water Flow on Small Vessel s Deck The vertical component u z of the velocity field in the domain Ω is determined from the equation of mass conservation. Additionally, in the shallow water model it is assumed that horizontal velocities u x and u y do not depend on the vertical coordinate z. Basing on this assumption, the equation determining vertical component u z takes the form:. ( 7) The forces and moments are obtained from formulas (2). 4. Verification The model was verified (Warmowska, 2008) testing the following cases of water motion: 1. with constant water mass inside tank moving with constant acceleration, 2. trapped on non moving open deck, 3. with constant water mass inside tank and moving in 3D, 4. trapped on small vessel, moving on irregular wave (Warmowska, 2010), 5. trapped on moving vessel with and without open stern. In case 1, procedures solving the problem of free surface movement were tested. The second case checked the problem of the impact of sea wave motion on water flow over the deck. In case 3, the 3D flow of water inside the closed tank was verified. In case 4, the forces and moments obtained using simplified method (with horizontal, non disturbed free surface of water over deck) and shallow water method were compared Tank moving with constant acceleration In this case the rectangular deck moved with constant acceleration. During the simulation after a few seconds the flat free surface inclined at a constant angle to the deck (Fig. 2). Fig. 2 The form of free surface of water on deck moving with constant acceleration a x =1m/s 2

7 Modelling of Water Flow on Small Vessel s Deck M. Warmowska, J. Jankowski 4.2. Inflow of wave on non moving deck Fig. 3 The impact of the sea wave on the flow over the deck In this case the deck was on the level of the sea surface. The sea wave was regular and flowed onto the open deck. The mass of water kept changing. The superposition of incoming and reflected wave could be observed (Fig. 3) Water motion on oscillating deck The simulation of water motion on deck moving with a harmonic acceleration had also been carried out. The results were compared with results obtained by other authors and in experiments (Huang Z.-J., Hsiung C., 1997). Various frequencies of the deck oscillations were applied. When the frequency was equal to one and half of primary natural frequency, the bore could be clearly observed (Fig. 4). Fig. 4 The oscillating tank The water motion simulation in the tank is described by 3D model. Coupled sway and pitch motion of the tank are presented in Fig. 5. When the frequency was equal to second natural frequency, the free surface was not much disturbed (the Figure on right). In this case the wave over the tank was the superposition of two waves: coming and reflected.

8 M. Warmowska, J. Jankowski Modelling of Water Flow on Small Vessel s Deck Fig. 5 The motion of tank coupled by sway and pitch The simulation enables visualization of the velocity field changing in time. In the case of progressive wave formation, the largest velocity values are created in the head of the wave (Fig. 6). Fig. 6 The velocity field distribution (3D and projection on the plane OXY) 4.4. Comparison between two models The forces and moments F d caused by water on deck are calculated by two models: the simplified method the model used in Ro-Ro ferries damage stability calculations (presented in chapter 2); the shallow water model (presented in chapter 3). The comparison of forces generated on the vessel deck was calculated with the use of two models (simplified and presented) for the same vessel motion making it possible to compare the forces. Fig. 7 Simulation of the water flow on the moving vessel s deck, 262s

9 Modelling of Water Flow on Small Vessel s Deck M. Warmowska, J. Jankowski The irregular wave, determined by significant wave height H s =6m and mean period T z =8s, followed the vessel moving with the forward speed u=6m/s. The angle between the vector of forward vessel velocity and the wave vector was 30 degree. Fig. 8 presents force F d3 generated by water on deck, which increases the vessel draught, and Fig. 9 the rolling moment F d4, responsible for vessel capsizing. Fig. 8 Time history of vertical force F d3 (increasing the draught) When the vessel is in a relatively calm wave trough and the free surface on deck is almost a horizontal plane both methods match well, (in period (240s, 248s)). There are some differences in period (248s, 260s). In shallow water model the mass of water does not change as rapidly as in the simplified method Fig. 8. In the simplified method the volume of water on deck depends only on the difference between the wave surface and deck water surface and does not depend on the velocity field on the deck. In period (260s, 265s) the water surface in the simplified method drops immediately, while in the shallow water method the velocity field in the water on deck falls down slower Fig. 7. The rolling moment matches very well for both methods (Fig. 9); this is probably because the following wave is considered for these conditions, which does not generate significant water motion across the deck. Fig. 9 Time history of rolling moment F d4

10 M. Warmowska, J. Jankowski Modelling of Water Flow on Small Vessel s Deck 4.5. Water flow on deck with or without the open stern For an open stern vessel the mass of seawater inflow on deck and its outflow is faster than the water mass flowing on closed stern vessels. Fig. 10 The vertical forces caused by water on deck In the case of closed stern vessels the water stays longer on the deck. It increases the heave of the vessel and it changes the GM value. A similar situation is observed when the orifices are small or closed. The closed bulwark around small vessels deck may cause vessel capsizing. 5. Conclusions The shallow water model with appropriate models of boundary conditions such as: influence of seawater, water plunging on the deck, motion of the ship, can be applied to simulate the problem of water flow over the ship deck, moving in irregular wave. The computer program, developed in PRS, simulates the flow of water on deck. It takes into account the sea wave undisturbed by ship s presence, the motion of vessel in the wave, the shape of deck and the orifices. The study shows that the velocity of the water flow on deck impacts the forces generated on the deck. In the future, the diffraction velocity field of sea waves around the ship will be added to the boundary conditions of the velocity field of water on deck (Wroniszewski, 2010). REFERENCES [1] V. Belenky, D. Luit, K. Weems, Y.-S. Shin (2002), Nonlinear ship roll simulation with water-on-deck, 6 th International Ship Stability Workshop, Webb Institute, NewYork. [2] B. Buchner (2002), Green water on ship type offshore structures, PhD Thesis, Delft University of Technology. [3] J.T. Dillingham (1981), Motion studies of a vessel with water on deck, Marine Technology, Vol. 18, No. 1. [4] J.T. Dillingham, J.M. Falzarano (1986), Three-dimensional numerical simulation of green water on deck, 3 rd International Conference on the Stability of Ship and Ocean Vehicles, STAB 86, Gdańsk.

11 Modelling of Water Flow on Small Vessel s Deck M. Warmowska, J. Jankowski [5] Z.-J. Huang, C.-C. Hsiung (1997), Nonlinear shallow-water flow on deck coupled with ship motion, Proceedings of the Twenty First Symposium of Naval Hydrodynamics, National Academy Press, Washington, D.C. [6] J. Jankowski (2007), Statek wobec działania fali, Raport Techniczny Nr 52, PRS, Gdańsk, Poland. [7] J. Jankowski, A. Laskowski (2006), Capsizing of small vessel due to waves and water trapped on deck, Proceedings of the 9 th International Conference STAB 2006, Brasil. [8] M. Pawłowski (2004), Subdivision and Damage Stability of Ship, Euro-MTEC series, pp [9] M. Warmowska (2007), Problem of water flow on deck, Archives of civil and mechanical engineering, Wrocław, Poland, vol. VII, No. 4. [10] M. Warmowska (2010), Problem of water flow on deck of small vessel, 18 th International Conference on Hydrodynamics in Ship Design, Safety and operation, Hydronav 10, Gdańsk, Poland. [11] P. Wroniszewski, J. Jankowski, S. Grochowalski (2010), Verification of various methods for calculation of diffracted wae field around the ship, 18 th International Conference on Hydrodynamics in Ship Design, Safety and operation, Hydronav 10, Gdańsk, Poland [12] O. Zienkiewicz, R.L. Taylor, P. Nithiarasu (2005), The Finite Element Method for Fluid Dynamics, Elsevier.

THE EFFECT OF COUPLED HEAVE/HEAVE VELOCITY OR SWAY/SWAY VELOCITY INITIAL CONDITIONS ON CAPSIZE MODELING

THE EFFECT OF COUPLED HEAVE/HEAVE VELOCITY OR SWAY/SWAY VELOCITY INITIAL CONDITIONS ON CAPSIZE MODELING 8 th International Conference on 521 THE EFFECT OF COUPLED HEAVE/HEAVE VELOCITY OR SWAY/SWAY VELOCITY INITIAL CONDITIONS ON CAPSIZE MODELING Leigh S. McCue and Armin W. Troesch Department of Naval Architecture

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 6 Table of Contents 1. PURPOSE...2 2. PARAMETERS...2 2.1 General Considerations...2 3 DESCRIPTION OF PROCEDURE...2 3.1 Model Design and Construction...2 3.2 Measurements...3 3.5 Execution of

More information

Dynamic Component of Ship s Heeling Moment due to Sloshing vs. IMO IS-Code Recommendations

Dynamic Component of Ship s Heeling Moment due to Sloshing vs. IMO IS-Code Recommendations International Journal on Marine Navigation and Safety of Sea Transportation Volume 4 Number 3 September 2010 Dynamic Component of Ship s Heeling Moment due to Sloshing vs. IMO IS-Code Recommendations P.

More information

Student name: + is valid for C =. The vorticity

Student name: + is valid for C =. The vorticity 13.012 Marine Hydrodynamics for Ocean Engineers Fall 2004 Quiz #1 Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes. For the problems in Section A, fill

More information

Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1

Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1 Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1 Minggui Zhou 1, Dano Roelvink 2,4, Henk Verheij 3,4 and Han Ligteringen 2,3 1 School of Naval Architecture, Ocean and Civil Engineering,

More information

Wave Forces on a Moored Vessel from Numerical Wave Model Results

Wave Forces on a Moored Vessel from Numerical Wave Model Results Wave Forces on a Moored Vessel from Numerical Wave Model Results ABSTRACT P W O BRIEN OMC International Pty Ltd, Melbourne, Australia O WEILER WL Delft Hydraulics, Delft, The Netherlands M BORSBOOM WL

More information

Analysis of Factors Affecting Extreme Ship Motions in Following and Quartering Seas

Analysis of Factors Affecting Extreme Ship Motions in Following and Quartering Seas Analysis of Factors Affecting Extreme Ship Motions in Following and Quartering Seas Chang Seop Kwon *, Dong Jin Yeo **, Key Pyo Rhee *** and Sang Woong Yun *** Samsung Heavy Industries Co., td. * Maritime

More information

FUZZY MONTE CARLO METHOD FOR PROBABILITY OF CAPSIZING CALCULATION USING REGULAR AND NON-REGULAR WAVE

FUZZY MONTE CARLO METHOD FOR PROBABILITY OF CAPSIZING CALCULATION USING REGULAR AND NON-REGULAR WAVE Tomasz Hinz, Polish Registry of Shipping;Tomasz.Hinz@prs.pl Jerzy Matusiak, Aalto University School of Science and Technology FUZZY MONTE CARLO METHOD FOR PROBABILITY OF CAPSIZING CALCULATION USING REGULAR

More information

Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges

Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges T. Abbas 1 and G. Morgenthal 2 1 PhD candidate, Graduate College 1462, Department of Civil Engineering,

More information

Split-time Algorithm Implementation in Advanced Hydrodynamic Codes

Split-time Algorithm Implementation in Advanced Hydrodynamic Codes Proceedings of the 15 th International Ship Stability Workshop, 13-15 June 2016, Stockholm, Sweden 1 Split-time Algorithm Implementation in Advanced Hydrodynamic Codes Kenneth Weems, Naval Surface Warfare

More information

Numerical modeling of refraction and diffraction

Numerical modeling of refraction and diffraction Numerical modeling of refraction and diffraction L. Balas, A. inan Civil Engineering Department, Gazi University, Turkey Abstract A numerical model which simulates the propagation of waves over a complex

More information

CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT

CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT 531 CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT Toru KATAYAMA, Graduate School of Engineering, Osaka Prefecture University (Japan) Kentarou TAMURA, Universal Shipbuilding Corporation (Japan) Yoshiho

More information

Hydrodynamic Analysis of a Heavy Lift Vessel during Offshore Installation Operations

Hydrodynamic Analysis of a Heavy Lift Vessel during Offshore Installation Operations Presentation for Defense of Master Thesis Hydrodynamic Analysis of a Heavy Lift Vessel during Offshore Installation Operations Speaker: Bin Wang Supervisor: Prof. Robert Bronsart 23 rd Feb, 2015 Nantes

More information

ITTC Recommended Procedures Testing and Extrapolation Methods Loads and Responses, Seakeeping Experiments on Rarely Occurring Events

ITTC Recommended Procedures Testing and Extrapolation Methods Loads and Responses, Seakeeping Experiments on Rarely Occurring Events Loads and Responses, Seakeeping Page 1 of 5 CONTENTS 1. PURPOSE OF PROCEDURE 2. STANDARDS FOR EXPERIMENTS ON RARELY OCCURRING EVENTS 2.1 Previous Recommendations of ITTC 2.2 Model Design and Construction

More information

IMO REVISION OF THE INTACT STABILITY CODE. Proposal of methodology of direct assessment for stability under dead ship condition. Submitted by Japan

IMO REVISION OF THE INTACT STABILITY CODE. Proposal of methodology of direct assessment for stability under dead ship condition. Submitted by Japan INTERNATIONAL MARITIME ORGANIZATION E IMO SUB-COMMITTEE ON STABILITY AND LOAD LINES AND ON FISHING VESSELS SAFETY 49th session Agenda item 5 SLF 49/5/5 19 May 2006 Original: ENGLISH REVISION OF THE INTACT

More information

INVESTIGATION INTO THE CAPSIZING OF DAMAGED RO-RO PASSENGER SHIPS IN WAVES

INVESTIGATION INTO THE CAPSIZING OF DAMAGED RO-RO PASSENGER SHIPS IN WAVES INVESTIGATION INTO THE CAPSIZING OF DAMAGED RO-RO PASSENGER SHIPS IN WAVES D. Papanikolaou 1, G. Zaraphonitis 2, D. Spanos 3, E. Boulougouris 4, E. Eliopoulou 5 ABSTRACT The paper derives from current

More information

ANSWERS TO QUESTIONS IN THE NOTES AUTUMN 2018

ANSWERS TO QUESTIONS IN THE NOTES AUTUMN 2018 ANSWERS TO QUESTIONS IN THE NOTES AUTUMN 2018 Section 1.2 Example. The discharge in a channel with bottom width 3 m is 12 m 3 s 1. If Manning s n is 0.013 m -1/3 s and the streamwise slope is 1 in 200,

More information

Irrigation &Hydraulics Department lb / ft to kg/lit.

Irrigation &Hydraulics Department lb / ft to kg/lit. CAIRO UNIVERSITY FLUID MECHANICS Faculty of Engineering nd Year CIVIL ENG. Irrigation &Hydraulics Department 010-011 1. FLUID PROPERTIES 1. Identify the dimensions and units for the following engineering

More information

ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN

ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN Bridget M. Wadzuk 1 (Member, ASCE) and Ben R. Hodges 2 (Member, ASCE) ABSTRACT Modeling of dynamic pressure appears necessary to achieve a more robust

More information

WAVE MECHANICS FOR OCEAN ENGINEERING

WAVE MECHANICS FOR OCEAN ENGINEERING Elsevier Oceanography Series, 64 WAVE MECHANICS FOR OCEAN ENGINEERING P. Boccotti Faculty of Engineering University of Reggio-Calabria Feo di Vito 1-89060 Reggio-Calabria Italy 2000 ELSEVIER Amsterdam

More information

Abstract. 1 Introduction

Abstract. 1 Introduction A computational method for calculatingthe instantaneous restoring coefficients for a ship moving in waves N. El-Simillawy College of Engineering and Technology, Arab Academyfor Science and Technology,

More information

CALCULATIONS OF THE MOTIONS OF A SHIP MOORED WITH MOORMASTER UNITS

CALCULATIONS OF THE MOTIONS OF A SHIP MOORED WITH MOORMASTER UNITS CALCULATIONS OF THE MOTIONS OF A SHIP MOORED WITH MOORMASTER UNITS By J. de Bont 1, W. van der Molen 2, J. van der Lem 3, H. Ligteringen 4, D. Mühlestein 5 and M. Howie 6 ABSTRACT Container ships should

More information

Development of Technology to Estimate the Flow Field around Ship Hull Considering Wave Making and Propeller Rotating Effects

Development of Technology to Estimate the Flow Field around Ship Hull Considering Wave Making and Propeller Rotating Effects Development of Technology to Estimate the Flow Field around Ship Hull Considering Wave Making and Propeller Rotating Effects 53 MAKOTO KAWABUCHI *1 MASAYA KUBOTA *1 SATORU ISHIKAWA *2 As can be seen from

More information

International Journal of Maritime Engineering

International Journal of Maritime Engineering International Journal of Maritime Engineering THE BORE PRODUCED BETWEEN THE HULLS OF A HIGH-SPEED CATAMARAN IN SHALLOW WATER T Gourlay, Curtin University, J Duffy, Australian Maritime College and A Forbes,

More information

EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS

EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS *Jeong-Rok Kim 1), Hyeok-Jun Koh ), Won-Sun Ruy 3) and Il-Hyoung Cho ) 1), 3), ) Department of Ocean System Engineering, Jeju

More information

A Note on the Capsizing of Vessels in Following and Quartering Seas

A Note on the Capsizing of Vessels in Following and Quartering Seas Oceanic Engineenng International, Vol. 1, No. 1, 1997, pp. 25-32 A Note on the Capsizing of Vessels in Following and Quartering Seas MARTIN RENILSON' * 'Australian Maritime Engineering CRC Ltd, c/o Australian

More information

3D CDF MODELING OF SHIP S HEELING MOMENT DUE TO LIQUID SLOSHING IN TANKS A CASE STUDY

3D CDF MODELING OF SHIP S HEELING MOMENT DUE TO LIQUID SLOSHING IN TANKS A CASE STUDY Journal of KONES Powertrain and Transport, Vol. 17, No. 4 21 3D CDF ODELING OF SHIP S HEELING OENT DUE TO LIQUID SLOSHING IN TANKS A CASE STUDY Przemysaw Krata, Jacek Jachowski Gdynia aritime University,

More information

EVALUATION OF TIMBER CARRIER DECK CARGO JETTISON DYNAMICS

EVALUATION OF TIMBER CARRIER DECK CARGO JETTISON DYNAMICS 1 th International Conference 621 EVALUATION OF TIMBER CARRIER DECK CARGO JETTISON DYNAMICS Sergey V. Antonenko, D. Sc, professor, Far-Eastern National Technical Univ. (FENTU), Vladivostok, Russia, e-mail:

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October ISSN

International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October ISSN International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October-2016 172 DYNAMIC ANALYSIS OF MINI TENSION LEG PLATFORMS UNDER RANDOM WAVES Shibin P Shaji, Dr. Jayalekshmi R. Abstract

More information

INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION

INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION Proceedings of COBEM 2009 Copyright 2009 by ABCM 20th International Congress of Mechanical Engineering November 15-20, 2009, Gramado, RS, Brazil INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION Helena

More information

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators Second International Symposium on Marine Propulsors smp 11, Hamburg, Germany, June 2011 Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 1, No 4, 2010

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 1, No 4, 2010 Effect of geometric dimensions on the transmission coefficient of floating breakwaters Mohammad Hosein Tadayon, Khosro Bargi 2, Hesam Sharifian, S. Reza Hoseini - Ph.D student, Department of Civil Engineering,

More information

PHYSICAL REQUIREMENTS FOR A TAKEOFF IN SURFING. Akihiko Kimura 1 and Taro Kakinuma 2

PHYSICAL REQUIREMENTS FOR A TAKEOFF IN SURFING. Akihiko Kimura 1 and Taro Kakinuma 2 PHYSICAL REQUIREMENTS FOR A TAKEOFF IN SURFING Akihiko Kimura 1 and Taro Kakinuma 2 The conditions required for a takeoff in surfing, are discussed, with the waves simulated numerically, considering two

More information

Influence of different controllers on ship motion stabilization at applied active fin stabilizer

Influence of different controllers on ship motion stabilization at applied active fin stabilizer Influence of different controllers on ship motion stabilization at applied active fin stabilizer Imed El Fray, Zbigniew Kubik Technical University of Szczecin Department of Computer Science, ul. Zolnierska

More information

Computing Added Resistance in Waves Rankine Panel Method vs RANSE Method

Computing Added Resistance in Waves Rankine Panel Method vs RANSE Method Computing Added Resistance in Waves Rankine Panel Method vs RANSE Method Heinrich Söding, TU Hamburg-Harburg, Hamburg/Germany, h.soeding@tu-harburg.de Vladimir Shigunov, Germanischer Lloyd SE, Hamburg/Germany,

More information

Chapter 16. Waves-I Types of Waves

Chapter 16. Waves-I Types of Waves Chapter 16 Waves-I 16.2 Types of Waves 1. Mechanical waves. These waves have two central features: They are governed by Newton s laws, and they can exist only within a material medium, such as water, air,

More information

Minyee Jiang, Malarie Vanyo, Jason Updegraph, Evan Lee Naval Surface Warfare Center at Carderock May 12, 2010 STAR Aerospace & Defense Conference 2010

Minyee Jiang, Malarie Vanyo, Jason Updegraph, Evan Lee Naval Surface Warfare Center at Carderock May 12, 2010 STAR Aerospace & Defense Conference 2010 Minyee Jiang, Malarie Vanyo, Jason Updegraph, Evan Lee Naval Surface Warfare Center at Carderock May 12, 2010 STAR Aerospace & Defense Conference 2010 Introduction CFD Validation and Simulation for RIB

More information

Sample Application of Second Generation IMO Intact Stability Vulnerability Criteria as Updated during SLF 55

Sample Application of Second Generation IMO Intact Stability Vulnerability Criteria as Updated during SLF 55 1 Sample Application of Second Generation IMO Intact Stability Vulnerability Criteria as Updated during SLF 55 Clève Wandji, Bureau Veritas Philippe Corrignan, Bureau Veritas ABSTRACT A second generation

More information

A PHASE-AMPLITUDE ITERATION SCHEME FOR THE OPTIMIZATION OF DETERMINISTIC WAVE SEQUENCES

A PHASE-AMPLITUDE ITERATION SCHEME FOR THE OPTIMIZATION OF DETERMINISTIC WAVE SEQUENCES Proceedings of the ASME 29 28th International Conference on Ocean, Offshore and Arctic Engineering OMAE29 May 31 - June, 29, Honolulu, Hawaii, USA Proceedings of the ASME 28th International Conference

More information

1. A tendency to roll or heel when turning (a known and typically constant disturbance) 2. Motion induced by surface waves of certain frequencies.

1. A tendency to roll or heel when turning (a known and typically constant disturbance) 2. Motion induced by surface waves of certain frequencies. Department of Mechanical Engineering Massachusetts Institute of Technology 2.14 Analysis and Design of Feedback Control Systems Fall 2004 October 21, 2004 Case Study on Ship Roll Control Problem Statement:

More information

Section 1 Types of Waves

Section 1 Types of Waves CHAPTER OUTLINE Section 1 Types of Waves Key Idea questions > What does a wave carry? > How are waves generated? > What is the difference between a transverse wave and a longitudinal wave? > How do the

More information

ITTC - Recommended Procedures and Guidelines

ITTC - Recommended Procedures and Guidelines 7.5 Page 1 of 5 Table of Contents 1. PURPOSE OF PROCEDURE... 2 2. DESCRIPTION OF PROCEDURE... 2 4. DOCUMENTATION... 4 5. REFERENCES... 4 3. PARAMETERS... 4 Updated by Approved Manoeuvring Committee of

More information

Effect of channel slope on flow characteristics of undular hydraulic jumps

Effect of channel slope on flow characteristics of undular hydraulic jumps River Basin Management III 33 Effect of channel slope on flow characteristics of undular hydraulic jumps H. Gotoh, Y. Yasuda & I. Ohtsu Department of Civil Engineering, College of Science and Technology,

More information

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Fluid statics Fluid statics is the study of fluids in

More information

The Effect of Mast Height and Centre of Gravity on the Re-righting of Sailing Yachts

The Effect of Mast Height and Centre of Gravity on the Re-righting of Sailing Yachts THE 17 th CHESAPEAKE SAILING YACHT SYMPOSIUM ANNAPOLIS, MARYLAND, MARCH 25 The Effect of Mast Height and Centre of Gravity on the Re-righting of Sailing Yachts Jonathan R. Binns, Researcher, Australian

More information

RULES PUBLICATION NO. 86/P EXPLANATORY NOTES TO SOLAS CONVENTION AND DIRECTIVE 2003/25/EC STABILITY AND SUBDIVISION REQUIREMENTS

RULES PUBLICATION NO. 86/P EXPLANATORY NOTES TO SOLAS CONVENTION AND DIRECTIVE 2003/25/EC STABILITY AND SUBDIVISION REQUIREMENTS RULES PUBLICATION NO. 86/P EXPLANATORY NOTES TO SOLAS CONVENTION AND DIRECTIVE 2003/25/EC STABILITY AND SUBDIVISION REQUIREMENTS 2011 Publications P (Additional Rule Requirements) issued by Polski Rejestr

More information

Numerical Simulation of Wave Loads on Static Offshore Structures

Numerical Simulation of Wave Loads on Static Offshore Structures Numerical Simulation of Wave Loads on Static Offshore Structures Hrvoje Jasak, Inno Gatin, Vuko Vukčević Wikki Ltd, United Kingdom Faculty of Mechanical Engineering and Naval Architecture University of

More information

Waves. harmonic wave wave equation one dimensional wave equation principle of wave fronts plane waves law of reflection

Waves. harmonic wave wave equation one dimensional wave equation principle of wave fronts plane waves law of reflection Waves Vocabulary mechanical wave pulse continuous periodic wave amplitude wavelength period frequency wave velocity phase transverse wave longitudinal wave intensity displacement wave number phase velocity

More information

Airy Wave Theory 1: Wave Length and Celerity

Airy Wave Theory 1: Wave Length and Celerity Airy Wave Theory 1: Wave Length and Celerity Wave Theories Mathematical relationships to describe: (1) the wave form, (2) the water motion (throughout the fluid column) and pressure in waves, and (3) how

More information

Yasuyuki Hirose 1. Abstract

Yasuyuki Hirose 1. Abstract Study on Tsunami force for PC box girder Yasuyuki Hirose 1 Abstract In this study, a waterway experiment was performed in order to understand the influence of tsunami forms on tsunami forces acting on

More information

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL L Boddy and T Clarke, Austal Ships, Australia SUMMARY CFD analysis has been conducted on a 100m catamaran hull

More information

Measurement and simulation of the flow field around a triangular lattice meteorological mast

Measurement and simulation of the flow field around a triangular lattice meteorological mast Measurement and simulation of the flow field around a triangular lattice meteorological mast Matthew Stickland 1, Thomas Scanlon 1, Sylvie Fabre 1, Andrew Oldroyd 2 and Detlef Kindler 3 1. Department of

More information

for Naval Aircraft Operations

for Naval Aircraft Operations Seakeeping Assessment of Large Seakeeping Assessment of Large Trimaran Trimaran for Naval Aircraft Operations for Naval Aircraft Operations Presented by Mr. Boyden Williams, Mr. Lars Henriksen (Viking

More information

Mechanical waves Electromagnetic waves

Mechanical waves Electromagnetic waves Waves Energy can be transported by transfer of matter. For example by a thrown object. Energy can also be transported by wave motion without the transfer of matter. For example by sound waves and electromagnetic

More information

Wave Motion. interference destructive interferecne constructive interference in phase. out of phase standing wave antinodes resonant frequencies

Wave Motion. interference destructive interferecne constructive interference in phase. out of phase standing wave antinodes resonant frequencies Wave Motion Vocabulary mechanical waves pulse continuous periodic wave amplitude period wavelength period wave velocity phase transverse wave longitudinal wave intensity displacement amplitude phase velocity

More information

SOFTWARE. Sesam user course. 12 May 2016 HydroD Hydrostatics & Stability. Ungraded SAFER, SMARTER, GREENER DNV GL 2016

SOFTWARE. Sesam user course. 12 May 2016 HydroD Hydrostatics & Stability. Ungraded SAFER, SMARTER, GREENER DNV GL 2016 SOFTWARE Sesam user course DNV GL 1 SAFER, SMARTER, GREENER Scope of presentation Describe features & commands for performing a hydrostatic analysis, and their concepts Analysis setup Code-checking Reporting

More information

RESOLUTION MSC.141(76) (adopted on 5 December 2002) REVISED MODEL TEST METHOD UNDER RESOLUTION 14 OF THE 1995 SOLAS CONFERENCE

RESOLUTION MSC.141(76) (adopted on 5 December 2002) REVISED MODEL TEST METHOD UNDER RESOLUTION 14 OF THE 1995 SOLAS CONFERENCE MSC 76/23/Add.1 RESOLUTION MSC.141(76) THE MARITIME SAFETY COMMITTEE, RECALLING Article 38(c) of the Convention on the International Maritime Organization concerning the functions of the Committee, RECALLING

More information

Offshore Wind Turbine monopile in 50 year storm conditions

Offshore Wind Turbine monopile in 50 year storm conditions TMR7 Experimental methods in marine hydrodynamics - lab exercise 3 2017 Offshore Wind Turbine monopile in 50 year storm conditions Trygve Kristiansen and Erin Bachynski, Trondheim, 20.09.2017 Background

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 10 Table of Contents 1. PURPOSE... 2 2. NUMERICAL METHODS... 2 3. PREPARATION, SIMULATIONS AND ANALYSIS... 4 3.1 Geometry... 4 3.2 Preparations... 5 3.3 Wave conditions... 6 3.4 Wind conditions...

More information

Workshop 1: Bubbly Flow in a Rectangular Bubble Column. Multiphase Flow Modeling In ANSYS CFX Release ANSYS, Inc. WS1-1 Release 14.

Workshop 1: Bubbly Flow in a Rectangular Bubble Column. Multiphase Flow Modeling In ANSYS CFX Release ANSYS, Inc. WS1-1 Release 14. Workshop 1: Bubbly Flow in a Rectangular Bubble Column 14. 5 Release Multiphase Flow Modeling In ANSYS CFX 2013 ANSYS, Inc. WS1-1 Release 14.5 Introduction This workshop models the dispersion of air bubbles

More information

Windcube FCR measurements

Windcube FCR measurements Windcube FCR measurements Principles, performance and recommendations for use of the Flow Complexity Recognition (FCR) algorithm for the Windcube ground-based Lidar Summary: As with any remote sensor,

More information

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2. Chapter 11 Waves Energy can be transported by particles or waves A wave is characterized as some sort of disturbance that travels away from a source. The key difference between particles and waves is a

More information

DETRMINATION OF A PLUNGER TYPE WAVE MAKER CHARACTERISTICE IN A TOWING TANK

DETRMINATION OF A PLUNGER TYPE WAVE MAKER CHARACTERISTICE IN A TOWING TANK The 9 th International Conference on Coasts, Ports and Marine Structures (ICOPMAS 2010) 29 Nov.-1 Dec. 2010 (Tehran) DETRMINATION OF A PLUNGER TYPE WAVE MAKER CHARACTERISTICE IN A TOWING TANK sayed mohammad

More information

Wave Breaking on a Sloping Beach: Comparison Between Experiments and Simulations

Wave Breaking on a Sloping Beach: Comparison Between Experiments and Simulations Wave Breaking on a Sloping Beach: Comparison Between Experiments and Simulations Alexei Goumilevksi, Jian-Yu Cheng, and Georges L. Chahine DYNAFLOW, Inc. 7 Pindell School Road, Fulton, MD 759 alexei@dynaflow-inc.com

More information

Analysis and Research of Mooring System. Jiahui Fan*

Analysis and Research of Mooring System. Jiahui Fan* nd International Conference on Computer Engineering, Information Science & Application Technology (ICCIA 07) Analysis and Research of Mooring System Jiahui Fan* School of environment, North China Electric

More information

Offshore Oil and Gas Platforms for Deep Waters

Offshore Oil and Gas Platforms for Deep Waters Offshore Oil and Gas Platforms for Deep Waters Atilla Incecik Department of Naval Architecture, Ocean and Marine Engineering University of Strathclyde, Glasgow, UK (atilla.incecik@strath.ac.uk) Summary

More information

COUPLED DYNAMIC ANALYSIS OF MOORING LINES FOR DEEP WATER FLOATING SYSTEMS

COUPLED DYNAMIC ANALYSIS OF MOORING LINES FOR DEEP WATER FLOATING SYSTEMS Proceedings of International Conference in Ocean Engineering, ICOE Proceedings 2009 of ICOE 2009 Coupled Dynamic Analysis IIT Madras, of Chennai, Mooring India. Lines for Deep Water Floating Systems 1-5

More information

Ship Stability. Ch. 8 Curves of Stability and Stability Criteria. Spring Myung-Il Roh

Ship Stability. Ch. 8 Curves of Stability and Stability Criteria. Spring Myung-Il Roh Lecture Note of Naval Architectural Calculation Ship Stability Ch. 8 Curves of Stability and Stability Criteria Spring 2016 Myung-Il Roh Department of Naval Architecture and Ocean Engineering Seoul National

More information

SOFTWARE. Sesam user course. 02 May 2016 HydroD Input. Ungraded SAFER, SMARTER, GREENER DNV GL 2016

SOFTWARE. Sesam user course. 02 May 2016 HydroD Input. Ungraded SAFER, SMARTER, GREENER DNV GL 2016 SOFTWARE Sesam user course DNV GL 1 SAFER, SMARTER, GREENER About the presenter Name: Torgeir Kirkhorn Vada Position: Product Manager for floating structures Background: PhD in Applied mathematics/hydrodynamics

More information

NUMERICAL SIMULATION OF THE PROGRESSIVE FLOODING OF A BOX-SHAPED BARGE

NUMERICAL SIMULATION OF THE PROGRESSIVE FLOODING OF A BOX-SHAPED BARGE 10 th International Conference 281 NUMERICAL SIMULATION OF THE PROGRESSIVE FLOODING OF A BOX-SHAPED BARGE Santos, T.A., Dupla, P., Guedes Soares, C. Centre for Marine Technology and Engineering (CENTEC)

More information

10 Internal Waves: Reflection and Relation to Normal Modes

10 Internal Waves: Reflection and Relation to Normal Modes EOSC 579 Lecture 10. Notes date: February 7, 2012 49 10 Internal Waves: Reflection and Relation to Normal Modes This lecture is based on a set of notes written by R. Pawlowicz 10.1 Reflection at a Boundary

More information

Dynamic Stability of Ships in Waves

Dynamic Stability of Ships in Waves Gourlay, T.P. & Lilienthal, T. 2002 Dynamic stability of ships in waves. Proc. Pacific 2002 International Maritime Conference, Sydney, Jan 2002. ABSTRACT Dynamic Stability of Ships in Waves Tim Gourlay

More information

Influence of rounding corners on unsteady flow and heat transfer around a square cylinder

Influence of rounding corners on unsteady flow and heat transfer around a square cylinder Influence of rounding corners on unsteady flow and heat transfer around a square cylinder S. K. Singh Deptt. of Mech. Engg., M. B. M. Engg. College / J. N. V. University, Jodhpur, Rajasthan, India Abstract

More information

GEA FOR ADVANCED STRUCTURAL DYNAMIC ANALYSIS

GEA FOR ADVANCED STRUCTURAL DYNAMIC ANALYSIS SMART SOLUTIONS FOR VIBRATION MONITORING GEA FOR ADVANCED STRUCTURAL DYNAMIC ANALYSIS ANALYSIS OF CIVIL STRUCTURES - EXPO MERLATA PEDESTRIAN BRIDGE ABSTRACT Civil structures and in particular bridges and

More information

2 Available: 1390/08/02 Date of returning: 1390/08/17 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditio

2 Available: 1390/08/02 Date of returning: 1390/08/17 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditio 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditions shown, determine. 2. A tanker truck carries water, and the cross section of the truck s tank is shown

More information

Plane Turbulent Wall Jets in Limited Tailwater Depth

Plane Turbulent Wall Jets in Limited Tailwater Depth International Journal of Engineering & Technology IJET-IJENS Vol: 11 No: 159 Plane Turbulent Wall Jets in Limited Tailwater Depth Shazy A. Shabayek 1 Abstract This paper presents laboratory study of plane

More information

TLP Minimum tendon tension design and tendon down-stroke investigation

TLP Minimum tendon tension design and tendon down-stroke investigation Published by International Association of Ocean Engineers Journal of Offshore Engineering and Technology Available online at www.iaoejoet.org TLP Minimum tendon tension design and tendon down-stroke investigation

More information

Selecting Monohull, Catamaran and Trimaran as Suitable Passenger Vessels Based on Stability and Seakeeping Criteria

Selecting Monohull, Catamaran and Trimaran as Suitable Passenger Vessels Based on Stability and Seakeeping Criteria Selecting Monohull, Catamaran and Trimaran as Suitable Passenger Vessels Based on Stability and Seakeeping Criteria Richard B Luhulima 1, D Setyawan 2, and I K A P Utama 3 1. PhD Student Dept. of Naval

More information

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration M. Burak Şamşul ITU AYOC 2014 - Milper Pervane Teknolojileri Company Profile MILPER is established in 2011 as a Research and Development

More information

Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) 30-31,December, 2014, Ernakulam, India

Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) 30-31,December, 2014, Ernakulam, India INTERNATIONAL JOURNAL OF DESIGN AND MANUFACTURING TECHNOLOGY (IJDMT) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976 6995 (Print) ISSN

More information

Experimental and Numerical Investigation Into the Effects of Initial Conditions on a Three Degree of Freedom Capsize Model

Experimental and Numerical Investigation Into the Effects of Initial Conditions on a Three Degree of Freedom Capsize Model Journal of Ship Research, Vol. 50, No. 1, March 2006, pp. 63 84 Experimental and Numerical Investigation Into the Effects of Initial Conditions on a Three Degree of Freedom Capsize Model Young-Woo Lee,*

More information

Analysis of Pressure Rise During Internal Arc Faults in Switchgear

Analysis of Pressure Rise During Internal Arc Faults in Switchgear Analysis of Pressure Rise During Internal Arc Faults in Switchgear ASANUMA, Gaku ONCHI, Toshiyuki TOYAMA, Kentaro ABSTRACT Switchgear include devices that play an important role in operations such as electric

More information

Comparison of two practical methods for seakeeping assessment of damaged ships

Comparison of two practical methods for seakeeping assessment of damaged ships Analysis and Design of Marine Structures Guedes Soares & Shenoi (Eds) 2015 Taylor & Francis Group, London, ISBN 978-1-138-02789-3 Comparison of two practical methods for seakeeping assessment of damaged

More information

A.J.C. Crespo, J.M. Domínguez, C. Altomare, A. Barreiro, M. Gómez-Gesteira

A.J.C. Crespo, J.M. Domínguez, C. Altomare, A. Barreiro, M. Gómez-Gesteira A.J.C. Crespo, J.M. Domínguez, C. Altomare, A. Barreiro, M. Gómez-Gesteira OUTLINE Oscillating Water Column - What OWC is? - Numerical modelling of OWC SPH functionalities - Wave generation (1 st order

More information

Clarification of Behavior of Huge Tsunami Action on Bridges - Hydraulic Model Experiment and Simulation Technology -

Clarification of Behavior of Huge Tsunami Action on Bridges - Hydraulic Model Experiment and Simulation Technology - Clarification of Behavior of Huge Tsunami Action on Bridges - Hydraulic Model Experiment and Simulation Technology - 21 TOSHIMITSU SUZUKI *1 RIKUMA SHIJO *2 KAORU YOKOYAMA *3 SYUNICHI IKESUE *4 HIROFUMI

More information

Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines

Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines Anand Natarajan Senior Scientist Wind Energy Department, Risø DTU Denmark Introduction IEC 61400-1

More information

Section 1: Types of Waves

Section 1: Types of Waves Waves Section 1 Section 1: Types of Waves Preview Key Ideas Bellringer What Is a Wave? Vibrations and Waves Transverse and Longitudinal Waves Surface Waves Waves Section 1 Key Ideas What does a wave carry?

More information

Super-parameterization of boundary layer roll vortices in tropical cyclone models

Super-parameterization of boundary layer roll vortices in tropical cyclone models DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Super-parameterization of boundary layer roll vortices in tropical cyclone models PI Isaac Ginis Graduate School of Oceanography

More information

NTHMP - Mapping & Modeling Benchmarking Workshop: Tsunami Currents

NTHMP - Mapping & Modeling Benchmarking Workshop: Tsunami Currents NTHMP - Mapping & Modeling Benchmarking Workshop: Tsunami Currents Ahmet Cevdet Yalçıner, Andrey Zaytsev, Utku Kanoğlu Deniz Velioglu, Gozde Guney Dogan, Rozita Kian, Naeimeh Shaghrivand, Betul Aytore

More information

EXPERIMENTAL RESEARCH ON COEFFICIENT OF WAVE TRANSMISSION THROUGH IMMERSED VERTICAL BARRIER OF OPEN-TYPE BREAKWATER

EXPERIMENTAL RESEARCH ON COEFFICIENT OF WAVE TRANSMISSION THROUGH IMMERSED VERTICAL BARRIER OF OPEN-TYPE BREAKWATER EXPERIMENTAL RESEARCH ON COEFFICIENT OF WAVE TRANSMISSION THROUGH IMMERSED VERTICAL BARRIER OF OPEN-TYPE BREAKWATER Liehong Ju 1, Peng Li,Ji hua Yang 3 Extensive researches have been done for the interaction

More information

Ventilated marine propeller performance in regular and irregular waves; an experimental investigation

Ventilated marine propeller performance in regular and irregular waves; an experimental investigation Ventilated marine propeller performance in regular and irregular waves; an experimental investigation G. K. Politis Department of Naval Architecture & Marine Engineering, National Technical University

More information

INTRODUCTION TO WAVES. Dr. Watchara Liewrian

INTRODUCTION TO WAVES. Dr. Watchara Liewrian INTRODUCTION TO WAVES Dr. Watchara Liewrian What are Waves? Rhythmic disturbances that carry energy without carrying matter Types of Waves Mechanical Waves need matter (or medium) to transfer energy A

More information

Title. Author(s)HOSSEINI, M.; FARSHADMANESH, P. Issue Date Doc URL. Type. Note. File Information

Title. Author(s)HOSSEINI, M.; FARSHADMANESH, P. Issue Date Doc URL. Type. Note. File Information Title EVALUATING THE EFFECT OF MULTIPLE VERTICAL ORTHOGONA PHENOMENON IN RECTANGULAR TANKS SUBJECTED TO 3-DIMEN EXCITATIONS Author(s)HOSSEINI, M.; FARSHADMANESH, P. Issue Date 2013-09-11 Doc URL http://hdl.handle.net/2115/54196

More information

Ship waves in Tallinn Bay: Experimental and numerical study

Ship waves in Tallinn Bay: Experimental and numerical study Ship waves in Tallinn Bay: Experimental and numerical study Tomas Torsvik Bergen Center for Computational Science UNIFOB AS In collaboration with Tarmo Soomere Wave Engineering Centre for Nonlinear studies

More information

Development of TEU Type Mega Container Carrier

Development of TEU Type Mega Container Carrier Development of 8 700 TEU Type Mega Container Carrier SAKAGUCHI Katsunori : P. E. Jp, Manager, Ship & Offshore Basic Design Department, IHI Marine United Inc. TOYODA Masanobu : P. E, Jp, Ship & Offshore

More information

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2. Energy can be transported by particles or waves: Chapter 11 Waves A wave is characterized as some sort of disturbance that travels away from a source. The key difference between particles and waves is

More information

2.016: Hydrodynamics

2.016: Hydrodynamics 2.016: Hydrodynamics Alexandra H. Techet Dept. of Mechanical Engineering Lecture 1 What is Hydrodynamics? Hydrodynamics v. Aerodynamics Water is almost 1000 times denser than air! Marine Hydrodynamics

More information

Transactions on Ecology and the Environment vol 12, 1996 WIT Press, ISSN

Transactions on Ecology and the Environment vol 12, 1996 WIT Press,   ISSN Open boundary condition for unsteady open-channel flow K. Mizumura Civil Engineering Department, Kanazawa Institute of Technology, 7-1 Ogigaoka, Nonoichimachi, Ishikawa Pref. 921, Japan Abstract Initial

More information

Comparative Stability Analysis of a Frigate According to the Different Navy Rules in Waves

Comparative Stability Analysis of a Frigate According to the Different Navy Rules in Waves Comparative Stability Analysis of a Frigate According to the Different Navy Rules in Waves ABSTRACT Emre Kahramano lu, Technical University, emrek@yildiz.edu.tr Hüseyin Y lmaz,, hyilmaz@yildiz.edu.tr Burak

More information

Modeling Turbulent Entrainment of Air at a Free Surface C.W. Hirt 5/24/12 Flow Science, Inc.

Modeling Turbulent Entrainment of Air at a Free Surface C.W. Hirt 5/24/12 Flow Science, Inc. Flow Science Report 01-12 Modeling Turbulent Entrainment of Air at a Free Surface C.W. Hirt 5/24/12 Flow Science, Inc. Overview In free-surface flows the turbulence in the liquid may be sufficient to disturb

More information