Airy Wave Theory 1: Wave Length and Celerity

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Airy Wave Theory 1: Wave Length and Celerity"

Transcription

1 Airy Wave Theory 1: Wave Length and Celerity Wave Theories Mathematical relationships to describe: (1) the wave form, (2) the water motion (throughout the fluid column) and pressure in waves, and (3) how (1) & (2) change with shoaling. We ll obtain expressions for the movement of water particles under passing waves - important to considerations of sediment transport --> coastal geomorphology. No single theory best describes the full range of conditions found in nature! 1

2 Linear (Airy) Wave Theory Originates from Navier Stokes --> Euler Equations Works very well in deep water, but only applicable when L >> H, so it breaks down in shallow water. Solution is eta relationship: George Biddell Airy ( ) Wave Number: k = 2π/L Radian Frequency: σ = 2π/T Water Surface Displacement Equation What is the wave height? What is the wave period? 2

3 Dispersion Equation: Convert to a general expression for Wave Celerity Fundamental relationship in Airy Theory, which illustrates how waves segregate according to wave period: Substitute the relationships for radian frequency and wave number, respectively to get an equation for wavelength. Divide both sides by wave period to obtain an equation for wave speed (celerity). These are tough to solve, as L is on both sides of equality and contained within hyperbolic trigonometric function. Effect of the Hyperbolic Trig Functions on Wave Celerity What s the relationship for celerity in deep water? What s the relationship for celerity in shallow water? 3

4 So the celerity illustrated is General Expression: Airy Wave Celerity: General Expression, Deep & Shallow Approximatio SWS, only depth dependent Celerity (m/s) DWS, T=16 s DWS, T=14 s DWS, T=12 s DWS, T=10 s DWS, T=8 s Gen l Soln., T=16 s Gen l Soln., T=14 s Gen l Soln., T=12 s Gen l Soln., T=10 s Gen l Soln., T=8 s Deep-water expression: Depth (m) Shallow-water expression: Example 1 of Shallow Water Wave Speed - Tsunami How fast does a tsunami travel across the ocean? What classification is this wave? Deep water? Intermediate? Shallow water? In Shallow Water wave speed C = (gh) 1/2 Deep Ocean Tsunami C = (10m/s 2 *4000 m) 1/2 ~200 m/s ~450 mph! (Alaska to Hawaii in 4.7 hours) 4

5 Example 2 of Shallow Water Wave Speed Tow-In Surfing How fast does a Laird Hamilton surf? wave speed C = (gh) 1/2 tow-in waves: H = ~8 m C = (10 m/s 2 * 10 m) 1/2 ~ 10 m/s ~25 mph! waves surfable by mortals: C = (10 m/s 2 * 2 m) 1/2 ~ 4.4 m/s ~9 mph! Airy Wave Theory 2: Wave Orbitals and Energy 5

6 Compilation of Airy Equations Orbital Motion of Water Particles Airy Wave Theory also predicts water particle orbital path trajectories. Orbital path divided by wave period provides the wave orbital velocity. Show code for this: /Users/pna/Work/mFiles/pna_library/wave_pna_codes/waveOrbVelDeep.m 6

7 Orbital Motion of Water Particles H=2m, T=10s, h=4000m Horizontal Vertical Tangential 0.4 velocity (m/s) A B C D Where is the wave crest? The trough? time (sec) Code for this: /Users/pna/Work/mFiles/pna_library/wave_pna_codes/waveOrbVelDeep.m Orbital Motion of Water Particles Deep water (h>l/2): s=d=he kz, circular orbits whose diameters decrease through water column to zero at h = L/2. At water surface, diameter of particle motion = wave height, H Intermediate water (h<l/2): elliptical orbits, whose size decrease downward through water column Shallow water: s=0, d=h/kh; ellipses flatten to horizontal motions; orbital diameter is constant from surface to bottom. Airy assumptions not valid in shallow water. 7

8 Orbital Motion at the Bed in Shallow Water The horizontal diameter at the bed simplifies to And the maximum horizontal velocity at the bed, which relates conveniently to the shear stress, is Derivation of Wave Energy Density Total Energy = Potential Energy + Kinetic Energy z E = E p + E k = 1 L L 0 ρgzdzdx + η h 1 L = 1 16 ρgh ρgh 2 L 0 η h 1 2 ρ ( u2 + w 2 )dzdx = 1 8 ρgh 2 [dimensions] = M L L 2 ; Units = joules/m 2 or ergs/m 2 L 3 T 2 8

9 Wave Energy Flux Differs from energy density, as energy flux is equal to the energy density carried along by the moving waves. a.k.a. Power per unit wave crest length [dimensions] = M L L 2 L L 3 T 2 T [units] = joules/sec/m = Watts/m Deep Water n=1/2 Shallow Water n=1 P = 1 T η 0 h[ Δp(x,z,t) ]udzdt T = 1 8 ρgh 2 c 1 # kh & % ( $ sinh(2kh) ' = Ecn Wave Groups The expression Cn (sometimes written C g ) is known as the group celerity. In deep water, the first wave in a group decreases in height until it disappears and the second wave now becomes the leading wave (Figure). A new wave develops behind the last wave, thus maintaining the number of waves. 9

10 Individual Waves and Wave Group Velocity Group velocity approx. c g = Δσ/ Δk ~ σ/ k Deep Water: σ 2 = gk c g = σ/ k = g/2σ = 1/2 c (use implicit differentiation) Shallow Water: σ 2 = ghk 2 c g = σ/ k = (gh) 1/2 = c (use implicit differentiation) 1 & 2kh # n = $ 1 + 2! % sinh(2kh) " The effect of the dispersion process is that, in deep water, the group of waves travels at a speed equal to ½ the speed of the individual waves in the group.* This is important in forecasting wave propagation and in particular the travel time of waves generated by a distant storm (hint for a problem on Assignment 3). Stokes s 2 nd Order Wave Theory Airy (linear) wave theory which makes use of a symmetric wave form, cannot predict the mass transport phenomena which arise from asymmetry that exists in the wave form in intermediate-toshallow water. The wave form becomes distorted in shallower water. The crest narrows and the trough widens. Shoreward-directed horizontal velocity becomes higher under the wave crest than the offshore-directed velocity under the trough. Waves steepen and relative depth decreases, so that these waves are no longer considered smallamplitude. Instead they are called finite-amplitude. 10

11 Orbital Motion in Finite-Amplitude Wave Theory Due to the asymmetry of the wave form, orbital paths are not closed. There is a net motion of the water particle in the direction of wave advance, called Stokes drift. Stokes drift is important because it provides a mechanism of sediment transport on beaches, independent of current-driven transport. Can divide drift distance by wave period to obtain drift velocity. Shallow Water - Cnoidal and Solitary Wave Theories Wave speed in shallow-water is influenced more by wave amplitude than water depth. The water particle motion is dominated by horizontal flows - vertical accelerations are small, and Stokes's theory becomes invalid. Mathematically complex formulations have emerged that predict shallow water wave forms well Cnoidal and Solitary theory, which originates from the shallow water Boussinesq equation. 11

12 Limits of Application 12

The inner shelf is a friction-dominated realm where surface and bottom boundary layers overlap.

The inner shelf is a friction-dominated realm where surface and bottom boundary layers overlap. Wave Hydrodynamics. Beach Terminology The inner shelf is a friction-dominated realm where surface and bottom boundary layers overlap. (From Nitrouer, C.A. and Wright, L.D., Rev. Geophys., 32, 85, 1994.

More information

Chapter 10 Waves. wave energy NOT the water particles moves across the surface of the sea. wave form moves and with it, energy is transmitted

Chapter 10 Waves. wave energy NOT the water particles moves across the surface of the sea. wave form moves and with it, energy is transmitted Capillary Waves, Wind Waves, Chapter 10 Waves Anatomy of a Wave more like a real wave Tsunamis, Internal waves big waves huge waves rogue waves small waves more like a sine wave Wave direction Wave wave

More information

OCEAN WAVES NAME. I. Introduction

OCEAN WAVES NAME. I. Introduction NAME OCEAN WAVES I. Introduction The physical definition of a wave is a disturbance that transmits energy from one place to another. In the open ocean waves are formed when wis blowing across the water

More information

CHAPTER 6 OSCILLATORY FLOW

CHAPTER 6 OSCILLATORY FLOW CHAPTER 6 OSCILLATORY FLOW INTRODUCTION 1 The first thing that comes to your mind when I mention water waves are probably the waves that appear on the water surface when the wind blows. These range in

More information

Waves Part II. non-dispersive (C g =C)

Waves Part II. non-dispersive (C g =C) Waves Part II Previously we discussed Surface Gravity Waves Deep Water Waves Shallow Water Waves C g T 2 C g h dispersive (C g =C/2) Definitions: phase speed C= /T= /k non-dispersive (C g =C) group speed

More information

Wave Propagation and Shoaling

Wave Propagation and Shoaling Wave Propagation and Shoaling Focus on movement and natural alteration of the characteristics of waves as they travel from the source region toward shore Waves moving from deep to intermediate/shallow

More information

MAR 110 LECTURE #14 Ocean Waves

MAR 110 LECTURE #14 Ocean Waves MAR 110: Lecture 14 Outline Ocean Waves 1 MAR 110 LECTURE #14 Ocean Waves Figure 19.1 Do Ocean Surface Waves Present a Hazard?...a picture is worth a thousand words Tsunamis - giant shallow water waves

More information

A.J.C. Crespo, J.M. Domínguez, C. Altomare, A. Barreiro, M. Gómez-Gesteira

A.J.C. Crespo, J.M. Domínguez, C. Altomare, A. Barreiro, M. Gómez-Gesteira A.J.C. Crespo, J.M. Domínguez, C. Altomare, A. Barreiro, M. Gómez-Gesteira OUTLINE Oscillating Water Column - What OWC is? - Numerical modelling of OWC SPH functionalities - Wave generation (1 st order

More information

Oceans in Motion: Waves and Tides

Oceans in Motion: Waves and Tides Oceans in Motion: Waves and Tides Waves Waves are among the most familiar features in the ocean. All waves work similarly, so although we are talking about ocean waves here, the same information would

More information

IMAGE-BASED STUDY OF BREAKING AND BROKEN WAVE CHARACTERISTICS IN FRONT OF THE SEAWALL

IMAGE-BASED STUDY OF BREAKING AND BROKEN WAVE CHARACTERISTICS IN FRONT OF THE SEAWALL IMAGE-BASED STUDY OF BREAKING AND BROKEN WAVE CHARACTERISTICS IN FRONT OF THE SEAWALL Weijie Liu 1 and Yoshimitsu Tajima 1 This study aims to study the breaking and broken wave characteristics in front

More information

Undertow - Zonation of Flow in Broken Wave Bores

Undertow - Zonation of Flow in Broken Wave Bores Nearshore Circulation Undertow and Rip Cells Undertow - Zonation of Flow in Broken Wave Bores In the wave breaking process, the landward transfer of water, associated with bore and surface roller decay

More information

GLY Coastal Geomorphology Notes

GLY Coastal Geomorphology Notes GLY 4734 - Coastal Geomorphology Notes Dr. Peter N. Adams February-March 2010 3 Waves In this section we ll cover waves from their generation to dispersion and travel to shoaling transformation to breaking

More information

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2. Chapter 11 Waves Energy can be transported by particles or waves A wave is characterized as some sort of disturbance that travels away from a source. The key difference between particles and waves is a

More information

Tsunami generation, propagation, and devastation. John Fenton

Tsunami generation, propagation, and devastation. John Fenton Tsunami generation, propagation, and devastation John Fenton Tsunami Tsunami is a Japanese term that means "harbour wave". It is used worldwide to describe a large sea wave generated by sea-floor disturbance.

More information

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2. Energy can be transported by particles or waves: Chapter 11 Waves A wave is characterized as some sort of disturbance that travels away from a source. The key difference between particles and waves is

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS LSN 11-7: WAVE MOTION LSN 11-8: TYPES OF WAVES; LONGITUDINAL AND TRANSVERSE LSN 11-9: ENERGY TRANSPORTED BY WAVES Physics of Waves Questions From Reading

More information

Ocean Waves. What is a Wave? Where re the waves?!

Ocean Waves. What is a Wave? Where re the waves?! Ocean Waves What is a Wave? A response to a generating force (in this case a pebble thrown into a pond) System returns to normal through restoring force (in this case, surface tension of the water) Ripple

More information

Effect of channel slope on flow characteristics of undular hydraulic jumps

Effect of channel slope on flow characteristics of undular hydraulic jumps River Basin Management III 33 Effect of channel slope on flow characteristics of undular hydraulic jumps H. Gotoh, Y. Yasuda & I. Ohtsu Department of Civil Engineering, College of Science and Technology,

More information

Section 1 Types of Waves

Section 1 Types of Waves CHAPTER OUTLINE Section 1 Types of Waves Key Idea questions > What does a wave carry? > How are waves generated? > What is the difference between a transverse wave and a longitudinal wave? > How do the

More information

Wave Energy Coastal Waves Primer

Wave Energy Coastal Waves Primer Wave Energy Coastal Waves Primer (R. Budd) NIWA Internal Project Report: October 2004 NIWA Project: IRL05301 Wave Energy Coastal Waves Primer Murray Smith Craig Stevens Richard Gorman Prepared for FRST

More information

CHAPTER 185 SAND TRANSPORT UNDER GROUPING WAVES

CHAPTER 185 SAND TRANSPORT UNDER GROUPING WAVES CHAPTER 185 SAND TRANSPORT UNDER GROUPING WAVES Shinji Sato 1 Abstract Laboratory experiments as well as numerical modeling were conducted for sand transport under non-breaking grouping waves. Experiments

More information

CROSS-SHORE SEDIMENT PROCESSES

CROSS-SHORE SEDIMENT PROCESSES The University of the West Indies Organization of American States PROFESSIONAL DEVELOPMENT PROGRAMME: COASTAL INFRASTRUCTURE DESIGN, CONSTRUCTION AND MAINTENANCE A COURSE IN COASTAL DEFENSE SYSTEMS I CHAPTER

More information

EMPIRICAL FORMULA OF DISPERSION RELATION OF WAVES IN SEA ICE

EMPIRICAL FORMULA OF DISPERSION RELATION OF WAVES IN SEA ICE Ice in the Environment: Proceedings of the th IAHR International Symposium on Ice Dunedin, New Zealand, nd th December International Association of Hydraulic Engineering and Research EMPIRICAL FORMULA

More information

Numerical Simulation of Wave Loads on Static Offshore Structures

Numerical Simulation of Wave Loads on Static Offshore Structures Numerical Simulation of Wave Loads on Static Offshore Structures Hrvoje Jasak, Inno Gatin, Vuko Vukčević Wikki Ltd, United Kingdom Faculty of Mechanical Engineering and Naval Architecture University of

More information

HITES, 2011 Lecture 1 1. You are in a boat out on the ocean watching the waves go by. To fully describe the waves, you need three things:

HITES, 2011 Lecture 1 1. You are in a boat out on the ocean watching the waves go by. To fully describe the waves, you need three things: Waves A wave is a that propagates p in a certain direction with a certain speed. 1D 2D 3D Physical medium Waves in water Waves in elastic bodies Sound Empty space (a vacuum) Electromagnetic waves HITES,

More information

Wave Generation. Chapter Wave Generation

Wave Generation. Chapter Wave Generation Chapter 5 Wave Generation 5.1 Wave Generation When a gentle breeze blows over water, the turbulent eddies in the wind field will periodically touch down on the water, causing local disturbances of the

More information

PHY 221: Wavefunction, Wave Superposition, Standing Waves on a String

PHY 221: Wavefunction, Wave Superposition, Standing Waves on a String PHY 221: Wavefunction, Wave Superposition, Standing Waves on a String Objective Write a mathematical function to describe the wave. Describe a transverse wave and a longitudinal wave. Describe frequency,

More information

Two-Dimensional Wave Equations and Wave Characteristics

Two-Dimensional Wave Equations and Wave Characteristics 2 Two-Dimensional Wave Equations and Wave Characteristics A practicing coastal engineer must have a basic and relatively easy to use theory that dewnes the important characteristics of two-dimensional

More information

DualSPHysics in Coastal Engineering

DualSPHysics in Coastal Engineering DualSPHysics in Coastal Engineering Dr Corrado Altomare Universiteit Gent - Flanders Hydraulics Research, Belgium Dr Alex Crespo University of Vigo, SPAIN 2 nd DualSPHysics Users Workshop, 6-7 December

More information

Ocean Waves. Capillary. Gravity. Wind generated. Tides Tsunamis Seiches

Ocean Waves. Capillary. Gravity. Wind generated. Tides Tsunamis Seiches Ocean Waves Capillary Wind generated Gravity Tides Tsunamis Seiches Capillary waves are driven by the surface tension produced by electrically polarized water molecule San Pedro Lighthouse Waves are alternate

More information

ATMS 310 Tropical Dynamics

ATMS 310 Tropical Dynamics ATMS 310 Tropical Dynamics Introduction Throughout the semester we have focused on mid-latitude dynamics. This is not to say that the dynamics of other parts of the world, such as the tropics, are any

More information

PREDICTION OF WAVE RUN-UP ON A COASTAL IMPERMEABLE STRUCTURE

PREDICTION OF WAVE RUN-UP ON A COASTAL IMPERMEABLE STRUCTURE Journal of Coastal Development ISSN: 40-57 Volume 4, Number, February 00 : 79-86 Accredited: 69/Dikti/Kep/000 PREDICTION OF WAVE RUN-UP ON A COASTAL IMPERMEABLE STRUCTURE Mustafid and Slamet Hargono Faculty

More information

Ocean Wave Kinetic Energy Harvesting System for Automated Sub Sea Sensors

Ocean Wave Kinetic Energy Harvesting System for Automated Sub Sea Sensors Vol:6, No:1, 01 Ocean Wave Kinetic Energy Harvesting System for Automated Sub Sea Sensors Amir Anvar, and Dong Yang Li International Science Index, Mechanical and Mechatronics Engineering Vol:6, No:1,

More information

Physics 1C. Lecture 12C. "Fluctuat nec mergitur. = She is swayed by the waves but does not sink." --Motto of the city of Paris

Physics 1C. Lecture 12C. Fluctuat nec mergitur. = She is swayed by the waves but does not sink. --Motto of the city of Paris Physics 1C Lecture 12C "Fluctuat nec mergitur. = She is swayed by the waves but does not sink." --Motto of the city of Paris Outline Homework is intended for practice and preparation It is the basis for

More information

ESCI 343 Atmospheric Dynamics II Lesson 10 - Topographic Waves

ESCI 343 Atmospheric Dynamics II Lesson 10 - Topographic Waves ESCI 343 Atmospheric Dynamics II Lesson 10 - Topographic Waves Reference: An Introduction to Dynamic Meteorology (3 rd edition), J.R. Holton Reading: Holton, Section 7.4. STATIONARY WAVES Waves will appear

More information

Sandy Beach Morphodynamics. Relationship between sediment size and beach slope

Sandy Beach Morphodynamics. Relationship between sediment size and beach slope Sandy Beach Morphodynamics Relationship between sediment size and beach slope 1 Longshore Sorting - Willard Bascom Beach Slope, Grain Size, and Wave Energy Beach at Sandwich Bay, Kent, UK near the Straights

More information

Longshore sediment transport

Longshore sediment transport and Orson P. Smith, PE, Ph.D., Professor Emeritus Longshore transport Waves breaking at an angle to shore Sediment under breakers lifted by saltation Drops back to sea bed a little down drift Swash (runup)

More information

Chapter. The Dynamic Ocean

Chapter. The Dynamic Ocean Chapter The Dynamic Ocean An ocean current is the mass of ocean water that flows from one place to another. 16.1 The Composition of Seawater Surface Circulation Surface Currents Surface currents are movements

More information

Crashing waves are a sight to watch. M. J. VARKEY sheds light on how these waves are formed

Crashing waves are a sight to watch. M. J. VARKEY sheds light on how these waves are formed BIMAN BASU Crashing waves are a sight to watch. M. J. VARKEY sheds light on how these waves are formed SCIENCE REPORTER [9] MAY 1996 OU are on a seashore on a windless day. Watch the sea for some time

More information

Kelly Legault, Ph.D., P.E. USACE SAJ

Kelly Legault, Ph.D., P.E. USACE SAJ Kelly Legault, Ph.D., P.E. USACE SAJ Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including

More information

Clarification of Behavior of Huge Tsunami Action on Bridges - Hydraulic Model Experiment and Simulation Technology -

Clarification of Behavior of Huge Tsunami Action on Bridges - Hydraulic Model Experiment and Simulation Technology - Clarification of Behavior of Huge Tsunami Action on Bridges - Hydraulic Model Experiment and Simulation Technology - 21 TOSHIMITSU SUZUKI *1 RIKUMA SHIJO *2 KAORU YOKOYAMA *3 SYUNICHI IKESUE *4 HIROFUMI

More information

Unit 2 Review: Projectile Motion

Unit 2 Review: Projectile Motion Name: Unit 2 Review: Projectile Motion Date: 1. A projectile is fired from a gun near the surface of Earth. The initial velocity of the projectile has a vertical component of 98 meters per second and a

More information

Chapter 7. Waves in the Ocean

Chapter 7. Waves in the Ocean Chapter 7 Waves in the Ocean Eric Gevaert/ShutterStock, Inc. Figure 07.COPCO: Waves in the Ocean Maverick s in Half Moon Bay off central California is rated as the world s top big wave surf spot. Waves

More information

Lesson 48: Wave Velocity and Boundaries

Lesson 48: Wave Velocity and Boundaries Lesson 48: Wave Velocity and Boundaries Wave Velocity The speed of a wave does not depend on the amplitude or wavelength of the wave. Instead, the speed of the wave is determined by the properties of the

More information

Unsteady Wave-Driven Circulation Cells Relevant to Rip Currents and Coastal Engineering

Unsteady Wave-Driven Circulation Cells Relevant to Rip Currents and Coastal Engineering Unsteady Wave-Driven Circulation Cells Relevant to Rip Currents and Coastal Engineering Andrew Kennedy Dept of Civil and Coastal Engineering 365 Weil Hall University of Florida Gainesville, FL 32611 phone:

More information

An Atlas of Oceanic Internal Solitary Waves (May 2002) by Global Ocean Associates Prepared for the Office of Naval Research - Code 322PO

An Atlas of Oceanic Internal Solitary Waves (May 2002) by Global Ocean Associates Prepared for the Office of Naval Research - Code 322PO Overview is located in the western Pacific Ocean along the west side of the Philippines (between approximately 5 o and 11 o N. latitude and 117 o and 123 o E. longitude). It is a deepwater sea, roughly

More information

WAVE PROPAGATION ON A FLUME: PHYSICAL MODELLING

WAVE PROPAGATION ON A FLUME: PHYSICAL MODELLING WAVE PROPAGATION ON A FLUME: PHYSICAL MODELLING J. M. P. Conde a,b,c, R. Reis b, C. J. Fortes b, and D. R. C. B. Neves b a Universidade Nova de Lisboa Faculty of Science and Technology Dep. Mechanical

More information

Chapter 14. Vibrations and Waves

Chapter 14. Vibrations and Waves Chapter 14 Vibrations and Waves Chapter 14 Vibrations and Waves In this chapter you will: Examine vibrational motion and learn how it relates to waves. Determine how waves transfer energy. Describe wave

More information

CHAPTER 72. Toward A Simple Model of the Wave Breaking Transition Region in Surf Zones

CHAPTER 72. Toward A Simple Model of the Wave Breaking Transition Region in Surf Zones CHAPTER 72 Toward A Simple Model of the Wave Breaking Transition Region in Surf Zones David R. Basco 1 and Takao Yamashita 2 Abstract Breaking waves undergo a transition from oscillatory, irrotational

More information

Mathematics and bodysurfing

Mathematics and bodysurfing 244 Mathematics and bodysurfing Neville de Mestre Abstract Bodysurfing is an art that many people can enjoy, particularly in Australia where the ocean is relatively warm and waves break regularly near

More information

Exam 1 Kinematics September 17, 2010

Exam 1 Kinematics September 17, 2010 Physics 16 Name KEY Exam 1 Kinematics September 17, 21 This is a closed book examination. You may use a 3x5 index card that you have made with any information on it that you would like. You must have your

More information

The Composition of Seawater

The Composition of Seawater The Composition of Seawater Salinity Salinity is the total amount of solid material dissolved in water. Most of the salt in seawater is sodium chloride, common table salt. Element Percent Element Percent

More information

Ship waves in Tallinn Bay: Experimental and numerical study

Ship waves in Tallinn Bay: Experimental and numerical study Ship waves in Tallinn Bay: Experimental and numerical study Tomas Torsvik Bergen Center for Computational Science UNIFOB AS In collaboration with Tarmo Soomere Wave Engineering Centre for Nonlinear studies

More information

Three Dimensional Modeling of Breaking

Three Dimensional Modeling of Breaking Three Dimensional Modeling of Breaking Robert A. Dalrymple Dept of Civil Engineering The Johns Hopkins University 3400 North Charles Street Baltimore, MD 21218 phone: (410) 516-7923 fax: (410) 516-7473

More information

U S F O S B u o y a n c y And Hydrodynamic M a s s

U S F O S B u o y a n c y And Hydrodynamic M a s s 1 U S F O S B u o y a n c y And Hydrodynamic M a s s 2 CONTENTS: 1 INTRODUCTION... 3 2 ACCURACY LEVELS... 3 2.1 LEVEL-0... 3 2.2 LEVEL-1... 3 2.3 PANEL MODEL... 3 3 EX 1. SINGLE PIPE. NON FLOODED... 4

More information

Agood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the. Ball Trajectories

Agood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the. Ball Trajectories 42 Ball Trajectories Factors Influencing the Flight of the Ball Nathalie Tauziat, France By Rod Cross Introduction Agood tennis player knows instinctively how hard to hit a ball and at what angle to get

More information

Assistant Lecturer Anees Kadhum AL Saadi

Assistant Lecturer Anees Kadhum AL Saadi Pressure Variation with Depth Pressure in a static fluid does not change in the horizontal direction as the horizontal forces balance each other out. However, pressure in a static fluid does change with

More information

Surfzone Bubbles: Model Development, Testing and Extension to Sedimentary/Chemical/Biological Processes

Surfzone Bubbles: Model Development, Testing and Extension to Sedimentary/Chemical/Biological Processes DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Surfzone Bubbles: Model Development, Testing and Extension to Sedimentary/Chemical/Biological Processes James T. Kirby

More information

Chapter 10 Lecture Outline. The Restless Oceans

Chapter 10 Lecture Outline. The Restless Oceans Chapter 10 Lecture Outline The Restless Oceans Focus Question 10.1 How does the Coriolis effect influence ocean currents? The Ocean s Surface Circulation Ocean currents Masses of water that flow from one

More information

SPH applied to coastal engineering problems

SPH applied to coastal engineering problems 2 nd Iberian Workshop Ourense, 3 rd and 4 th December 2015 SPH applied to coastal engineering problems (validating the SPH concept) ALTOMARE, CRESPO, DOMINGUEZ, SUZUKI http://www.flandershydraulicsresearch.be/

More information

Adaptor Core Technology:

Adaptor Core Technology: Adaptor Core Technology: The Inception and Adapting of Calculus Based Truths within Geometric Entities Written By: Nick Siefers (Nicks@900global.com) Director of Operations 900 Global would like to introduce

More information

A Little Math. Wave speed = wave length/wave period C= L/T. Relationship of Wave Length to Depth of Wave Motion

A Little Math. Wave speed = wave length/wave period C= L/T. Relationship of Wave Length to Depth of Wave Motion Ocean Waves 1 2 1 A Little Math Wave speed = wave length/wave period C= L/T 3 Relationship of Wave Length to Depth of Wave Motion 4 2 Motion of Water as Wave Passes Water in the crest of the wave move

More information

Experimental Investigation of Water Wave Characteristics in a Wave Channel

Experimental Investigation of Water Wave Characteristics in a Wave Channel Experimental Investigation of Water Wave Characteristics in a Wave Channel Mohammed Faizal 1, M. Rafiuddin Ahmed 1, Chang-Goo Kim 2, and Young-Ho Lee 2 1 Division of Mechanical Engineering, The University

More information

Bernoulli's Principle

Bernoulli's Principle Bernoulli's Principle Bernoulli's Principle states that as the speed of a moving fluid increases, the pressure within the fluid decreases. Introduction The Bernoulli's Principle explains the behavior of

More information

Review of Equivalent Neutral Winds and Stress

Review of Equivalent Neutral Winds and Stress Review of Equivalent Neutral Winds and Stress Mark A. Bourassa Center for Ocean-Atmospheric Prediction Studies, Geophysical Fluid Dynamics Institute & Department of Earth, Ocean and Atmospheric Science

More information

Next Generation Modeling for Deep Water Wave Breaking and Langmuir Circulation

Next Generation Modeling for Deep Water Wave Breaking and Langmuir Circulation Next Generation Modeling for Deep Water Wave Breaking and Langmuir Circulation Eric D. Skyllingstad College of Oceanic and Atmospheric Sciences, Oregon State University Corvallis, OR 97331, Phone: (541)

More information

Chapter 12: Mechanical Waves and Sound

Chapter 12: Mechanical Waves and Sound Chapter 12 Lecture Chapter 12: Mechanical Waves and Sound Goals for Chapter 12 To describe mechanical waves. To study superposition, standing waves and sound. To present sound as a standing longitudinal

More information

MODELING OF CLIMATE CHANGE IMPACTS ON COASTAL STRUCTURES - CONTRIBUTION TO THEIR RE-DESIGN

MODELING OF CLIMATE CHANGE IMPACTS ON COASTAL STRUCTURES - CONTRIBUTION TO THEIR RE-DESIGN Proceedings of the 14 th International Conference on Environmental Science and Technology Rhodes, Greece, 3-5 September 2015 MODELING OF CLIMATE CHANGE IMPACTS ON COASTAL STRUCTURES - CONTRIBUTION TO THEIR

More information

Section 1 Types of Waves. Distinguish between mechanical waves and electromagnetic waves.

Section 1 Types of Waves. Distinguish between mechanical waves and electromagnetic waves. Section 1 Types of Waves Objectives Recognize that waves transfer energy. Distinguish between mechanical waves and electromagnetic waves. Explain the relationship between particle vibration and wave motion.

More information

Reprinted from Proceedings of the 28 th International Conference on Coastal Engineering, Cardiff, UK, pp , 2002.

Reprinted from Proceedings of the 28 th International Conference on Coastal Engineering, Cardiff, UK, pp , 2002. Reprinted from Proceedings of the 8 th International Conference on Coastal Engineering, Cardiff, UK, pp. 75 717,. WAVE BREAKING AND RIP CURRENT CIRCULATION Merrick C. Haller 1 and H. Tuba Özkan-Haller

More information

Scales of Atmospheric Motion Scale Length Scale (m) Time Scale (sec) Systems/Importance Molecular (neglected)

Scales of Atmospheric Motion Scale Length Scale (m) Time Scale (sec) Systems/Importance Molecular (neglected) Supplement Wind, Fetch and Waves Scales of Atmospheric Motion Scale Length Scale (m) Time Scale (sec) Systems/Importance Molecular 10-7 - 10-2 10-1 (neglected) Coriolis not important Turbulent 10-2 10

More information

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES Student Notes

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES Student Notes 4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES Student Notes I. DIFFERENT TYPES OF WAVES A. TRANSVERSE AND LONGITUDINAL WAVES B. WAVE PULSES AND TRAVELLING WAVES C. SOUND AND WATER WAVES II. DEFINING TERMS

More information

Chapter 6. You lift a 10 N physics book up in the air a distance of 1 meter at a constant velocity of 0.5 m/s. The work done by gravity is

Chapter 6. You lift a 10 N physics book up in the air a distance of 1 meter at a constant velocity of 0.5 m/s. The work done by gravity is I lift a barbell with a mass of 50 kg up a distance of 0.70 m. Then I let the barbell come back down to where I started. How much net work did I do on the barbell? A) - 340 J B) 0 J C) + 35 J D) + 340

More information

NTHMP - Mapping & Modeling Benchmarking Workshop: Tsunami Currents

NTHMP - Mapping & Modeling Benchmarking Workshop: Tsunami Currents NTHMP - Mapping & Modeling Benchmarking Workshop: Tsunami Currents Ahmet Cevdet Yalçıner, Andrey Zaytsev, Utku Kanoğlu Deniz Velioglu, Gozde Guney Dogan, Rozita Kian, Naeimeh Shaghrivand, Betul Aytore

More information

Waves. Unit 14. Why are waves so important? In this Unit, you will learn: Key words. Previously PHYSICS 305

Waves. Unit 14. Why are waves so important? In this Unit, you will learn: Key words. Previously PHYSICS 305 Previously From Page 288 Sound waves travel through the air from a vibrating source. From Page 294 Light can travel through empty space. Unit 14 Waves Why are waves so important? We can use the idea of

More information

Waves and Sound. (Chapter 25-26)

Waves and Sound. (Chapter 25-26) Waves and Sound (Chapter 25-26) I can de(ine and use the terms period, wavelength, frequency, amplitude, Hertz, crest, trough, transverse, longitudinal, and standing waves. Waves and Sound (Chapter 25-26)

More information

There are many different kinds of beaches which are generally characterized by the dominance of waves, tides, rivers and currents, and in particular

There are many different kinds of beaches which are generally characterized by the dominance of waves, tides, rivers and currents, and in particular Fig. 11-11, p. 253 There are many different kinds of beaches which are generally characterized by the dominance of waves, tides, rivers and currents, and in particular differ by the amount of energy, which

More information

Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG)

Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG) Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG) 1 Definitions: The sea breeze is a local, thermally direct circulation arising from

More information

Exercises Vibration of a Pendulum (page 491) 25.2 Wave Description (pages ) 25.3 Wave Motion (pages )

Exercises Vibration of a Pendulum (page 491) 25.2 Wave Description (pages ) 25.3 Wave Motion (pages ) Exercises 25.1 Vibration of a Pendulum (page 491) 1. The time it takes for one back-and-forth motion of a pendulum is called the. 2. List the two things that determine the period of a pendulum. 3. Circle

More information

WAVE LOAD ACTING ON HORIZONTAL PLATE DUE TO BORE

WAVE LOAD ACTING ON HORIZONTAL PLATE DUE TO BORE Proceedings of the 6 th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab16) Ottawa, Canada, May 10-13, 2016 Copyright : Creative Commons

More information

Image-based Study of Breaking and Broken Wave Characteristics under Partial Standing Wave Field and Validation of the Surface Roller Model

Image-based Study of Breaking and Broken Wave Characteristics under Partial Standing Wave Field and Validation of the Surface Roller Model Image-based Study of Breaking and Broken Wave Characteristics under Partial Standing Wave Field and Validation of the Surface Roller Model Weijie Liu* Ocean College, Zhejiang University, Zhoushan, China

More information

CHAPTER 30 INTERFERENCE OF SMALL STRUCTURES IN THE VICINITY OF LARGE STRUCTURES. Subrata K. Chakrabarti, F. ASCE and Sumita Chakrabarti

CHAPTER 30 INTERFERENCE OF SMALL STRUCTURES IN THE VICINITY OF LARGE STRUCTURES. Subrata K. Chakrabarti, F. ASCE and Sumita Chakrabarti CHAPTER 30 INTERFERENCE OF SMALL STRUCTURES IN THE VICINITY OF LARGE STRUCTURES Subrata K. Chakrabarti, F. ASCE and Sumita Chakrabarti Abstract The purpose of this paper is to investigate the effect of

More information

Numerical Simulation of Long-Shore Currents Induced by Regular Breaking Wave

Numerical Simulation of Long-Shore Currents Induced by Regular Breaking Wave Journal of Coastal Research Special Issue 5 15- Florida, USA ISSN 79- Numerical Simulation of Long-Shore Currents Induced by Regular Breaking Wave Yong-Ming Shen, Jun Tang, and Wenrui Huang State Key Laboratory

More information

SECTION 3. Objectives. Distinguish local particle vibrations from overall wave motion. Differentiate between pulse waves and periodic waves.

SECTION 3. Objectives. Distinguish local particle vibrations from overall wave motion. Differentiate between pulse waves and periodic waves. SECTION 3 Plan and Prepare Preview Vocabulary Scientific Meanings Ask students if they ve ever heard someone use the phrase on different wavelengths to describe two people with communication problems.

More information

PAPER 2 THEORY QUESTIONS

PAPER 2 THEORY QUESTIONS PAPER 2 THEORY QUESTIONS 1 (a) Water waves are transverse waves. Sound is a longitudinal wave. (i) Describe the difference between transverse waves and longitudinal waves. In your account, draw a diagram

More information

Waves, Turbulence and Boundary Layers

Waves, Turbulence and Boundary Layers Waves, Turbulence and Boundary Layers George L. Mellor Program in Atmospheric and Oceanic Sciences Princeton University Princeton NJ 8544-71 phone: (69) 258-657 fax: (69) 258-285 email: glm@splash.princeton.edu

More information

INTRODUCTION TO COASTAL ENGINEERING

INTRODUCTION TO COASTAL ENGINEERING The University of the West Indies Organization of American States PROFESSIONAL DEVELOPMENT PROGRAMME: COASTAL INFRASTRUCTURE DESIGN, CONSTRUCTION AND MAINTENANCE A COURSE IN COASTAL DEFENSE SYSTEMS I CHAPTER

More information

Physics 1-2 Mr. Chumbley Physics: Chapter 11 p

Physics 1-2 Mr. Chumbley Physics: Chapter 11 p Physics 1-2 Mr. Chumbley Physics: Chapter 11 p. 362-401 Section 1 p. 364 371 Section 2 p. 372-377 Simple Harmonic Motion There exist many different situations in which objects oscillate in regular, repeating

More information

The Physics of Lateral Stability 1

The Physics of Lateral Stability 1 The Physics of Lateral Stability 1 This analysis focuses on the basic physics of lateral stability. We ask Will a boat heeled over return to the vertical? If so, how long will it take? And what is the

More information

TEACHER ANSWER KEY December 10, Projectile Review 1

TEACHER ANSWER KEY December 10, Projectile Review 1 Projectile Review 1 TEACHER ANSWER KEY December 10, 2004 4 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.]

More information

1. downward 3. westward 2. upward 4. eastward

1. downward 3. westward 2. upward 4. eastward projectile review 1 Name 11-DEC-03 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] 1. Its vertical

More information

SCOUR BELOW PIPELINES AND AROUND VERTICAL PILES DUE TO RANDOM WAVES PLUS CURRENT ON MILD SLOPES

SCOUR BELOW PIPELINES AND AROUND VERTICAL PILES DUE TO RANDOM WAVES PLUS CURRENT ON MILD SLOPES SCOUR BELOW PIPELINES AND AROUND VERTICAL PILES DUE TO RANDOM WAVES PLUS CURRENT ON MILD SLOPES Ping Fu Marine Technology Submission date: June 2014 Supervisor: Dag Myrhaug, IMT Norwegian University of

More information

Kinematics-Projectiles

Kinematics-Projectiles 1. A volleyball hit into the air has an initial speed of 10 meters per second. Which vector best represents the angle above the horizontal that the ball should be hit to remain in the air for the greatest

More information

CHAPTER 10 WAVES. Section 10.1 Types of Waves

CHAPTER 10 WAVES. Section 10.1 Types of Waves CHAPTER 10 WAVES Section 10.1 Types of Waves What does a wave carry? How are waves generated? What is the difference between a transverse wave and a longitudinal waves? How do the particles in ocean waves

More information

SINGULAR WAVES, PROPAGATION AND PROGNOSIS. H. Günther, W. Rosenthal

SINGULAR WAVES, PROPAGATION AND PROGNOSIS. H. Günther, W. Rosenthal SINGULAR WAVES, PROPAGATION AND PROGNOSIS H. Günther, W. Rosenthal GKSS Research Center Geesthacht Institute for Coastal Research Geesthacht, Germany Within the last years a high number of large ships

More information

17.1: Mechanical Waves

17.1: Mechanical Waves New Standard SPS9: Students will investigate the properties of waves. a. Recognize that all waves transfer energy. b. Relate frequency and wavelength to the energy of different types of electromagnetic

More information

Minor changes. Updated for comments. Issued to inform

Minor changes. Updated for comments. Issued to inform Minor changes Updated for comments Issued to inform Early November 2015 two weeks of 3D scale model tests have been carried out at MARIN s Offshore Basin, one of the worlds most renowned test facilities

More information

Lecture Outline Chapter 15. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 15. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 15 Physics, 4 th Edition James S. Walker Chapter 15 Fluids Density Units of Chapter 15 Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy

More information

What Do You Think? GOALS

What Do You Think? GOALS Activity 3 Slinkies and Waves GOALS In this activity you will: Make a people wave. Generate longitudinal and transverse waves on a Slinky. Label the parts of a wave. Analyze the behavior of waves on a

More information

Physics Waves & Sound

Physics Waves & Sound Read Page 298 (Wave Characteristics) TQ1. How is a pulse different from a wave? Physics Waves & Sound Day 1 TQ2. What actually moves down a slinky when in the form of a wave? TQ3. What two things happen

More information