Floating offshore wind turbines

Size: px
Start display at page:

Download "Floating offshore wind turbines"

Transcription

1 Floating offshore wind turbines Michael Muskulus Department of Civil and Transport Engineering Norwegian University of Science and Technology 7491 Trondheim, Norway Stochastic Dynamics of Wind Turbines and Wave Energy Absorbers August 6 8, 2014

2 Part II Optimization and control of floating offshore wind turbines

3 Learning objectives Design criteria Wave forces on floating structures Basic equation of motion Mooring systems Floating wind turbine concepts Basic dynamic instability Recent work

4 Mooring systems

5 Mooring systems (Brown 2005, McCormick 2012) Unmoored structure free in surge, sway and yaw degrees of freedom (no restoring forces) mooring system required for stationkeeping Requirements Offset limitations (e.g. wind turbine power cable) Lifetime before replacement Installability Positioning ability Dynamic performance (e.g. yaw stability, floater accelerations)

6 Catenary equation (Faltinsen 1990) Basic relationship between horizontal anchor distance X and horizontal cable force T H : ( X = l h a ) 1 ( 2 + a cosh h ) h a where l is length of the chain, h is water depth, and a = T H /w. Needs to be numerically inverted.

7 Advanced mooring systems (Herbich 1990) Multi-component moorings common Include clump weights to increase restoring under extreme conditions (Luo 1992) More options: buoys, synthetic rope, etc.

8 Crowfoot mooring (Quallen et al. 2014) Increases yaw stiffness

9 Typical line characteristics (Laks 2014) Design criteria Fairlead tension (line breaking strength) No vertical loads at (drag) anchor General consideration: more influence on floater motion (higher stiffness) results in higher tension loads But limit on motion offsets (e.g. due to power cable)

10 Mooring system nonlinearity (Brown 2005) Mooring line characteristic typically nonlinear Complicates motion analysis Large dependence on mean environmental loads Typically more pronounced for shallower waters (higher stiffness)

11 Floating wind turbine concepts

12 Basic floating wind turbine concepts (Jonkman / NREL)

13 Stability triangle (Butterfield et al. 2007)

14 Wave forces for typical floaters Parameter Spar-buoy Semi-submersible TLP Hywind WindFloat Dimension D m m 6 10 m Low Seastate H = 1 m, T = 4 s, ω = 1.6 rad/s, λ = 24 m KC numbe D/λ Average Seastate H = 4 m, T = 10 s, ω = 0.6 rad/s, λ = 160 m KC number D/λ Extreme Seastate H = 12 m, T = 16 s, ω = 0.4 rad/s, λ = 350 m KC number D/λ

15 Overview of existing concepts (EWEA 2013)

16 Hywind / OC3 spar (Jonkman 2009) and (offshorewind.biz)

17 OC3 spar Added mass and damping from linear diffraction theory: M. Muskulus (Jonkman 2009) Norwegian University of Science and Technology

18 Radiation impulse response kernels: OC3 spar M. Muskulus (Jonkman 2009) Norwegian University of Science and Technology

19 OC3 spar Wave excitation (per unit wave amplitude): (Jonkman 2009)

20 Semi-submersible concepts (EWEA 2013) IDEOL floater and WindFloat

21 TLP concepts under development (EWEA 2013) Alstom Haliade 150 and Glosten Pelastar TLP

22 Hybrid concepts: Spar and point absorber M. Muskulus (Muliawan et al. 2012) Norwegian University of Science and Technology

23 Spar and point absorber Heave response (Muliawan et al. 2012) Significantly less dynamic heave above rated Other degrees of freedom show little change Power production wind turbine 6% higher due to less pitch Total power production estimated 10% higher

24 Control

25 Basic principles of wind turbine control Optimize power production through optimal C p tracking Additionally, the power needs to be limited when the wind speed is above rated Torque-generator control: adjust power take-off and accelerate/deaccelerate the rotor Blade pitch control: reduce aerodynamic forces (above rated wind speed) (Burton et al. 2001)

26 Generator torque control (Burton et al. 2001) Optimal power point tracking Special considerations in transition zone (around rated)

27 Blade pitch control (Gasch 2012) Pitching to feather: limit power by increasing pitch angle (reduced angle of attack) Smooth, good accuracy, but needs relatively large pitching actions for stronger winds

28 Basic instability in floating wind turbines (Skaare et al. 2007) Interaction with platform motion leads to a basic instability in floating wind turbines above rated wind speed Rotor thrust decreases with increasing wind speed due to blade pitching Negative damping occurs: Turbine moving towards the wind: thrust reduced Turbine moving out of the wind: thrust increased

29 Basic instability in floating wind turbines (Skaare et al. 2007) For fixed bottom turbines avoided by placing the bandwith of the pitch controller below the natural frequency of the first tower bending mode For floating turbines the periods in pitch and surge are much higher and this method would lead to large loads on the tower and rotor (and large variations in rotor speed and power output)

30 Estimator based control Response (Skaare et al. 2007) Hywind controller modified to include platform motion Wind velocity estimated such that the effect of tower motion is not contained in the estimate More than 50 percent reduction in fatigue damage

31 Optimization

32 Optimization of floating wind turbines (Tande et al. 2014) Optimization of total cost Wind turbine cost use steel mass as proxy variable Transport & Installation cost often neglected Operation & Maintenance cost often neglected

33 Five examples WINDOPT Computer-aided optimization of spar-buoy shape Short spar Alternative spar-buoy FOWT design TLB Structural optimization of splash zone Semisubmersible Mooring system optimization in the frequency-domain TLP Study of a parameterized family of TLPs

34 WINDOPT (Fylling & Berthelsen 2011)

35 WindOpt Results (Fylling & Berthelsen 2011) Comparison of initial design (black) and optimization under operational load (red) and survival load (blue) Example 1: Optimization with extreme conditions only Example 2: Optimization with fatigue life constraints Example 3: Optimization with power cable

36 WINDOPT Results (Fylling & Berthelsen 2011)

37 WINDOPT Results (Fylling & Berthelsen 2011)

38 WINDOPT Power cable (Fylling & Berthelsen 2011)

39 Short spar concept (Karimirad & Moan 2012)

40 Short spar Mooring systems (Karimirad & Moan 2012)

41 Short spar Reponse (Karimirad & Moan 2012) Surge response more favourable Tension response improved for higher frequencies

42 Short spar Structure performance (Karimirad & Moan 2012) Increased pitch motion (due to less mass / less meta-centric height) Less pretension but larger dynamic tension (stiffer mooring system) Smaller nacelle accelerations Increased bending moment due to increased tilt (gravity load)

43 Reduced wave loading for a TLB Baseline tension-leg-buoy model: (Myhr & Nygaard 2012)

44 Reduced wave loading for a TLB (Myhr & Nygaard 2012) Goal: minimize excess buoyancy (reduce mass and anchor cost, while avoiding snap loads)

45 TLB Results (Myhr & Nygaard 2012) Not possible to reduce excess buyancy but around 10 percent load reduction achieved for X3 Interestingly, X4 performs worse (40 percent more topside mass due to large no. braces)

46 TLP design (Bachynski & Moan 2012)

47 TLP designs Cost estimates (Bachynski & Moan 2012)

48 TLP designs Surge response (Bachynski & Moan 2012)

49 TLP designs Structure performance (Bachynski & Moan 2012) Tension dominated by wave excitation Bending moment significantly increased for TLPs 2-5 TLP design 3/4 optimal in this limited study

50 Mooring system optimization in the frequency domain (Brommundt 2012)

51 Mooring system optimization in the frequency domain (Brommundt 2012)

52 Mooring system optimization in the frequency domain (Brommundt 2012)

53 Mooring system optimization in the frequency domain Significant contribution from spectral wind loads: (Brommundt 2012)

54 Outlook

55 Outlook Complex design problem Complex physics Large uncertainties Many loadcases Certain potential for computer-aided optimization Research needs (cf. Efficient numerical models at different levels of fidelity Stochastic / statistical descriptions Reliability-based design optimization Life beyond potential flow and linear wave theory (e.g. CFD, wake structure behind floaters) Validation of numerical tools Alternative materials (concrete, composites) Asset management (e.g. scheduling of inspections and maintenance) Multi-unit moorings and multi-turbine units Ice-resistant designs

56 References S. Butterfield, W. Musial, J. Jonkman, P. Sclavounos: Engineering challenges for floating offshore wind turbines. Technical Report NREL/CP , National Renewable Energy Laboratory (2007). E.E. Bachynski, T. Moan: Design considerations for tension leg platform wind turbines. Marine Structures 29 (2012), M. Brommundt, L. Krause, K. Merz, M. Muskulus: Mooring system optimization for floating wind turbines in the frequency domain. Energy Procedia 24 (2012), D.T. Brown: Mooring systems. In: S. Chakrabarti (ed), Handbook of offshore engineering, Elsevier (2005). T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi: Wind energy handbook. John Wiley & Sons (2001). EWEA: Deep water The next step for offshore wind energy. Report, European Wind Energy Association (2013). O.M. Faltinsen: Sea loads on ships and offshore structures. Cambridge University Press (1990).

57 References I. Fylling, P.A. Berthelsen: WINDOPT An optimization tool for floating support structures for deep water wind turbines. OMAE R. Gasch, J. Twele: Wind power plants. Springer (2012). J.B. Herbich (ed): Developments in offshore engineering Wave phenomena and offshore. Gulf Publishing (1999). J. Jonkman: Dynamics of offshore floating wind turbines Model development and verification. Wind Energy 12 (2009), M. Karimirad, T. Moan: Comparative study of spart-type wind turbines in deep and moderate water depths. OMAE Y. Luo: Optimum design of clump weights for offshore mooring systems. Proc. ISOPE Vol. 2 (1992), M.J. Muliawan, M. Karimirad, T. Moan, Z. Gao: STC (spar-torus combination): A combined spar-type floating wind turbine and large point absorver floating wave energy converter promising and challenging. OMAE (2012).

58 References A. Myhr, T.A. Nygaard: Load reductions and optimizations on tension-leg-buoy offshore wind turbine platforms. Proc. ISOPE Vol. 1 (2012), S. Quallen, T. Xing, P. Carrica, Y. Li, J. Xu: CFD simulation of a floating offshore wind turbine system using a quasi-static crowfoot mooring-line mode. ISOPE Journal of Ocean and Wind Energy, to appear. B. Skaare, T.D. Hanson, F.G. Nielsen: Importance of control strategies on fatigue life of floating wind turbines. OMAE J.O.G. Tande, K. Merz, U.S. Paulsen, H.G. Svendsen: Floating offshore turbines. WIREs Energy and Environment, to appear.

Tension-Leg-Buoy (TLB) Platforms for Offshore Wind Turbines

Tension-Leg-Buoy (TLB) Platforms for Offshore Wind Turbines Tension-Leg-Buoy (TLB) Platforms for Offshore Wind Turbines EERA DeepWind'2014 Deep Sea Offshore Wind R&D Conference, Trondheim, 22-24 January 2014 Tor Anders Nygaard, Institute for Energy Technology (IFE),

More information

Proceedings of the ASME nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France

Proceedings of the ASME nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France OMAE2013-10463 MOTION OF OC4 5MW SEMI-SUBMERSIBLE OFFSHORE

More information

Ameliorating the Negative Damping in the Dynamic Responses of a Tension Leg Spar-Type Support Structure with a Downwind Turbine

Ameliorating the Negative Damping in the Dynamic Responses of a Tension Leg Spar-Type Support Structure with a Downwind Turbine 1 Ameliorating the Negative Damping in the Dynamic Responses of a Tension Leg Spar-Type Support Structure with a Downwind Turbine Madjid Karimirad Torgeir Moan Author CeSOS Centre Centre for Ships for

More information

Performance Calculation of Floating Wind Turbine Tension Leg Platform in the South China Sea

Performance Calculation of Floating Wind Turbine Tension Leg Platform in the South China Sea 568 J. Eng. Technol. Sci., Vol. 47, No. 5, 2015, 568-588 Performance Calculation of Floating Wind Turbine Tension Leg Platform in the South China Sea Hai Feng Wang & You Hua Fan School of Natural Sciences

More information

Dynamic analysis of offshore floating wind turbines

Dynamic analysis of offshore floating wind turbines Dynamic analysis of offshore floating wind turbines Hasan Bagbanci Centre for Marine Technology and Engineering (CENTEC), Instituto Superior Técnico Technical University of Lisbon, Lisboa, Portugal ABSTRACT:

More information

Model Tests for a Floating Wind Turbine on Three Different Floaters

Model Tests for a Floating Wind Turbine on Three Different Floaters Bonjun J. Koo 1 Technip USA, Inc., 11700 Katy Freeway, Suite 150, Houston, TX 77079 e-mail: bkoo@technip.com Andrew J. Goupee Advanced Structures and Composites Center, University of Maine, 35 Flagstaff

More information

Available online at ScienceDirect. Energy Procedia 80 (2015 )

Available online at  ScienceDirect. Energy Procedia 80 (2015 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia ( ) 6 th Deep Sea Offshore Wind R&D Conference, EERA DeepWind' Coupled mooring systems for floating wind farms Marek Goldschmidt*,

More information

EFFECT OF DIFFERENT MOORING SYSTEMS ON HYDRODYNAMIC ANALYSIS OF AN OFFSHORE WIND TURBINE

EFFECT OF DIFFERENT MOORING SYSTEMS ON HYDRODYNAMIC ANALYSIS OF AN OFFSHORE WIND TURBINE EFFECT OF DIFFERENT MOORING SYSTEMS ON HYDRODYNAMIC ANALYSIS OF AN OFFSHORE WIND TURBINE Sabri ALKAN 1, Ayhan Mentes 2, Ismail H. Helvacioglu 2, Nagihan Turkoglu 2 1 Department of Mechanical Engineering,

More information

EXPERIMENTAL INVESTIGATIONS OF BARGE FLOATER WITH MOONPOOL FOR 5 MW WIND TURBINE

EXPERIMENTAL INVESTIGATIONS OF BARGE FLOATER WITH MOONPOOL FOR 5 MW WIND TURBINE EXPERIMENTAL INVESTIGATIONS OF BARGE FLOATER WITH MOONPOOL FOR 5 MW WIND TURBINE 1 MR. G.VIJAYA KUMAR, 2 DR. R. PANNEER SELVAM 1 M.S. Research Scholar, Department of Ocean Engineering, IIT Madras, Chennai,

More information

COUPLED AND UNCOUPLED ANALYSIS OF Y-WIND SEMI WIND TURBINE FOUNDATION

COUPLED AND UNCOUPLED ANALYSIS OF Y-WIND SEMI WIND TURBINE FOUNDATION COUPLED AND UNCOUPLED ANALYSIS OF Y-WIND SEMI WIND TURBINE FOUNDATION HYOUNGCHUL KIM VL OFFSHORE (GRADUATE INTERN) SUNG YOUN BOO VL OFFSHORE (VICE PRESIDENT) Proceedings of the 23 rd Offshore Symposium,

More information

A NOVEL FLOATING OFFSHORE WIND TURBINE CONCEPT: NEW DEVELOPMENTS

A NOVEL FLOATING OFFSHORE WIND TURBINE CONCEPT: NEW DEVELOPMENTS A NOVEL FLOATING OFFSHORE WIND TURBINE CONCEPT: NEW DEVELOPMENTS L. Vita, U.S.Paulsen, T.F.Pedersen Risø-DTU Technical University of Denmark, Roskilde, Denmark luca.vita@risoe.dk Abstract: A novel concept

More information

Coupled Aero-hydrodynamic Analysis on a Floating Offshore Wind Turbine under Extreme Sea Conditions

Coupled Aero-hydrodynamic Analysis on a Floating Offshore Wind Turbine under Extreme Sea Conditions Proceedings of the Twenty-seventh (2017) International Ocean and Polar Engineering Conference San Francisco, CA, USA, June 25-30, 2017 Copyright 2017 by the International Society of Offshore and Polar

More information

EXPERIMENTAL COMPARISON OF THREE FLOATING WIND TURBINE CONCEPTS

EXPERIMENTAL COMPARISON OF THREE FLOATING WIND TURBINE CONCEPTS Proceedings of the 31 st International Conference on Ocean, Offshore and Arctic Engineering OMAE2012 Rio de Janeiro, Brazil June 10-15, 2012 OMAE2012-83645 EXPERIMENTAL COMPARISON OF THREE FLOATING WIND

More information

Experimental Comparison of Three Floating Wind Turbine Concepts

Experimental Comparison of Three Floating Wind Turbine Concepts Andrew J. Goupee 1 Advanced Structures and Composites Center, University of Maine, 35 Flagstaff Road, Orono, ME 04469 e-mail: agoupe91@maine.edu Bonjun J. Koo Technip USA, Inc., 11700 Katy Freeway, Suite

More information

Catenary Mooring Chain Eigen Modes and the Effects on Fatigue Life

Catenary Mooring Chain Eigen Modes and the Effects on Fatigue Life Catenary Mooring Chain Eigen Modes and the Effects on Fatigue Life Tor Anders Nygaard and Jacobus de Vaal, IFE Morten Hviid Madsen and Håkon Andersen, Dr.techn Olav Olsen AS Jorge Altuzarra, Vicinay Marine

More information

Deepwater Floating Production Systems An Overview

Deepwater Floating Production Systems An Overview Deepwater Floating Production Systems An Overview Introduction In addition to the mono hull, three floating structure designs Tension leg Platform (TLP), Semisubmersible (Semi), and Truss Spar have been

More information

Experimental Results for Tension-Leg-Buoy Offshore Wind Turbine Platforms

Experimental Results for Tension-Leg-Buoy Offshore Wind Turbine Platforms Journal of Ocean and Wind Energy (ISSN 2310-3604) Copyright by The International Society of Offshore and Polar Engineers Vol. 1, No. 4, November 2014, pp. 217 224 http://www.isope.org/publications Experimental

More information

Offshore Oil and Gas Platforms for Deep Waters

Offshore Oil and Gas Platforms for Deep Waters Offshore Oil and Gas Platforms for Deep Waters Atilla Incecik Department of Naval Architecture, Ocean and Marine Engineering University of Strathclyde, Glasgow, UK (atilla.incecik@strath.ac.uk) Summary

More information

Aero-Hydro-Servo-Elastic Analysis of Floating Wind. Leg Moorings. January ar 7, 2013

Aero-Hydro-Servo-Elastic Analysis of Floating Wind. Leg Moorings. January ar 7, 2013 1 Aero-Hydro-Servo-Elastic Analysis of Floating Wind Turbines with Tension Leg Moorings Erin Bachynski, PhD candidate at CeSOS erin.bachynski@ntnu.no January ar 7, 2013 Erin Bachynski CeSOS Centre for

More information

Feasibility study of a semi floating spar buoy wind turbine anchored with a spherical joint to the sea floor

Feasibility study of a semi floating spar buoy wind turbine anchored with a spherical joint to the sea floor Feasibility study of a semi floating spar buoy wind turbine anchored with a spherical joint to the sea floor María Sanz Martínez DTU Wind Energy DK-4000 Roskilde, Denmark msma@dtu.dk Anand Natarajan DTU

More information

Available online at ScienceDirect. Energy Procedia 53 (2014 ) 2 12

Available online at  ScienceDirect. Energy Procedia 53 (2014 ) 2 12 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 53 (24 ) 2 2 EERA DeepWind 24, th Deep Sea Offshore Wind R&D Conference Concept design verification of a semi-submersible floating

More information

ADDITIONAL WIND/WAVE BASIN TESTING OF THE DEEPCWIND SEMI- SUBMERSIBLE WITH A PERFORMANCE-MATCHED WIND TURBINE

ADDITIONAL WIND/WAVE BASIN TESTING OF THE DEEPCWIND SEMI- SUBMERSIBLE WITH A PERFORMANCE-MATCHED WIND TURBINE Proceedings of the ASME 214 33rd International Conference on Ocean, Offshore and Arctic Engineering OMAE214 June 8-13, 214, San Francisco, California, USA OMAE214-24172 ADDITIONAL WIND/WAVE BASIN TESTING

More information

Aero-Elastic-Control-Floater-Mooring Coupled Dynamic Analysis of Floating Offshore Wind Turbines

Aero-Elastic-Control-Floater-Mooring Coupled Dynamic Analysis of Floating Offshore Wind Turbines Proceedings of the Twenty-first () International Offshore and Polar Engineering Conference Maui, Hawaii, USA, June 9-, Copyright by the International Society of Offshore and Polar Engineers (ISOPE) ISBN

More information

Innovative and Robust Design. With Full Extension of Offshore Engineering and Design Experiences.

Innovative and Robust Design. With Full Extension of Offshore Engineering and Design Experiences. Innovative and Robust Design by VL Offshore With Full Extension of Offshore Engineering and Design Experiences www.vloffshore.com Y Wind Semi Designed by VL Offshore The Y Wind Semi platform (foundation)

More information

SuperGen UK Centre for Marine Energy Research Progress Meeting 2018

SuperGen UK Centre for Marine Energy Research Progress Meeting 2018 SuperGen UK Centre for Marine Energy Research Progress Meeting 2018 Extreme loads and survivability Cameron Johnstone, Stephanie Ordonez-Sanchez, Song Fu and Rodrigo Martinez Energy Systems Research Unit,

More information

TLP Minimum tendon tension design and tendon down-stroke investigation

TLP Minimum tendon tension design and tendon down-stroke investigation Published by International Association of Ocean Engineers Journal of Offshore Engineering and Technology Available online at www.iaoejoet.org TLP Minimum tendon tension design and tendon down-stroke investigation

More information

Coupled Dynamic Modeling of Floating Wind Turbine Systems

Coupled Dynamic Modeling of Floating Wind Turbine Systems National Renewable Energy Laboratory Innovation for Our Energy Future A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Coupled Dynamic Modeling of Floating

More information

INSIGHT INTO THE UNSTEADY AERODYNAMICS OF FLOATING WIND TURBINES WITH TENSION LEG PLATFORMS (TLP) USING A BLADE ELEMENT MOMENTUM (BEM) BASED MODEL

INSIGHT INTO THE UNSTEADY AERODYNAMICS OF FLOATING WIND TURBINES WITH TENSION LEG PLATFORMS (TLP) USING A BLADE ELEMENT MOMENTUM (BEM) BASED MODEL HEFAT212 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 212 Malta INSIGHT INTO THE UNSTEADY AERODYNAMICS OF FLOATING WIND TURBINES WITH TENSION LEG PLATFORMS

More information

Coupling and Analysis of 981 Deep Water Semi-submersible. Drilling Platform and the Mooring System

Coupling and Analysis of 981 Deep Water Semi-submersible. Drilling Platform and the Mooring System 4th International Conference on Renewable Energy and Environmental Technology (ICREET 2016) Coupling and Analysis of 981 Deep Water Semi-submersible Drilling Platform and the Mooring System XuDong Wang1,

More information

COUPLED DYNAMIC ANALYSIS OF FLOATING OFFSHORE WIND FARMS. A Thesis SANGYUN SHIM

COUPLED DYNAMIC ANALYSIS OF FLOATING OFFSHORE WIND FARMS. A Thesis SANGYUN SHIM COUPLED DYNAMIC ANALYSIS OF FLOATING OFFSHORE WIND FARMS A Thesis by SANGYUN SHIM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the

More information

MINIMUM DECK HEIGHT OF A SEMI-SUBMERSIBLE PLATFORM ACCORDING TO BLACK SEA ENVIRONMENT

MINIMUM DECK HEIGHT OF A SEMI-SUBMERSIBLE PLATFORM ACCORDING TO BLACK SEA ENVIRONMENT MINIMUM DECK HEIGHT OF A SEMI-SUBMERSIBLE PLATFORM ACCORDING TO BLACK SEA ENVIRONMENT Ionuț-Cristian SCURTU Principal instructor, Navy Academy Mircea cel Batran Constanta, Romania Abstract-The fast evolution

More information

A comprehensive method for the structural design and verification of the INNWIND 10MW tri-spar floater

A comprehensive method for the structural design and verification of the INNWIND 10MW tri-spar floater NATIONAL TECHNICAL UNIVERSITY of ATHENS (NTUA) A comprehensive method for the structural design and verification of the INNWIND 10MW tri-spar floater DI Manolas, CG Karvelas, IA Kapogiannis, VA Riziotis,

More information

Proceedings of the ASME nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France

Proceedings of the ASME nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France Proceedings of the ASME 23 32nd International Conference on Ocean, Offshore and Arctic Engineering OMAE23 June 9-4, 23, Nantes, France OMAE23-289 A METHOD FOR MODELING OF FLOATING VERTICAL AXIS WIND TURBINE

More information

Comparison of coupled aero-hydro-servo-elastic simulations for floating wind turbines with model tests

Comparison of coupled aero-hydro-servo-elastic simulations for floating wind turbines with model tests Comparison of coupled aero-hydro-servo-elastic for floating wind turbines with Georgios Chrysagis Delft University of Technology, The Netherlands Email: georgechrysagis@hotmail.com September 2016 Key words:

More information

Hywind. Deep offshore wind operational experience. Finn Gunnar Nielsen, Statoil RDI

Hywind. Deep offshore wind operational experience. Finn Gunnar Nielsen, Statoil RDI Hywind. Deep offshore wind operational experience. Finn Gunnar Nielsen, Statoil RDI The starting point -2001 Inspired by floating sailing marks. Seawind matured during 2002 Tong, K.C. OWEMES seminar, Atena,

More information

INFLUENCE OF AERODYNAMIC MODEL FIDELITY ON ROTOR LOADS DURING FLOATING OFFSHORE WIND TURBINE MOTIONS

INFLUENCE OF AERODYNAMIC MODEL FIDELITY ON ROTOR LOADS DURING FLOATING OFFSHORE WIND TURBINE MOTIONS INFLUENCE OF AERODYNAMIC MODEL FIDELITY ON ROTOR LOADS DURING FLOATING OFFSHORE WIND TURBINE MOTIONS DENIS MATHA 1,2*, LEVIN KLEIN 3, DIMITRIOS BEKIROPOULOS 3, PO WEN CHENG 2 1 RAMBOLL WIND, GERMANY *

More information

Response Analysis of a Spar-Type Floating Offshore Wind Turbine Under Atmospheric Icing Conditions

Response Analysis of a Spar-Type Floating Offshore Wind Turbine Under Atmospheric Icing Conditions Journal of Ocean and Wind Energy (ISSN 2310-3604) Copyright by The International Society of Offshore and Polar Engineers Vol. 1, No. 4, November 2014, pp. 193 201 http://www.isope.org/publications Response

More information

Floating Wind Turbines

Floating Wind Turbines FINAL REPORT Floating Wind Turbines May 212 Prepared by American Bureau of Shipping Corporate Offshore Technology, Renewables 16855 Northchase Drive Houston, Texas 776 www.eagle.org Submitted to U.S. Department

More information

Mooring for floating offshore renewable energy platforms classification

Mooring for floating offshore renewable energy platforms classification International Conference on Renewable Energies and Power Quality (ICREPQ 13) Bilbao (Spain), 20 th to 22 th March, 2013 exçxãtuäx XÇxÜzç tçw céãxü dâtä àç ]ÉâÜÇtÄ (RE&PQJ) ISSN 2172-038 X, No.11, March

More information

The 5 MW Deepwind Floating Offshore Vertical Wind Turbine Concept Design - Status And Perspective. Uwe Schmidt Paulsen

The 5 MW Deepwind Floating Offshore Vertical Wind Turbine Concept Design - Status And Perspective. Uwe Schmidt Paulsen The 5 MW Deepwind Floating Offshore Vertical Wind Turbine Concept Design - Status And Perspective Uwe Schmidt Paulsen uwpa@dtu.dk Contents What is DeepWind Motivation and Background Concept Design Status

More information

Control System for Start-up and Shut-down of a Floating Vertical Axis Wind Turbine

Control System for Start-up and Shut-down of a Floating Vertical Axis Wind Turbine Available online at www.sciencedirect.com ScienceDirect Energy Procedia 35 (2013 ) 33 42 Control System for Start-up and Shut-down of a Floating Vertical Axis Wind Turbine Harald G. Svendsen, Karl O. Merz

More information

2MW baseline wind turbine: model development and verification (WP1) The University of Tokyo & Hitachi, Ltd.

2MW baseline wind turbine: model development and verification (WP1) The University of Tokyo & Hitachi, Ltd. 2MW baseline wind turbine: model development and verification (WP1) The University of Tokyo & Hitachi, Ltd. Downwind turbine technology, IEA Wind Task 40 First Progress Meeting, Tokyo, Japan 11 Dec, 2017

More information

Control Strategies for operation of pitch regulated turbines above cut-out wind speeds

Control Strategies for operation of pitch regulated turbines above cut-out wind speeds Control Strategies for operation of pitch regulated turbines above cut-out wind speeds Helen Markou 1 Denmark and Torben J. Larsen, Risø-DTU, P.O.box 49, DK-4000 Roskilde, Abstract The importance of continuing

More information

Integrated System Design for a Large Wind Turbine Supported on a Moored Semi-Submersible Platform

Integrated System Design for a Large Wind Turbine Supported on a Moored Semi-Submersible Platform Journal of Marine Science and Engineering Article Integrated System Design for a Large Wind Turbine Supported on a Moored Semi-Submersible Platform Jinsong Liu, Edwin Thomas, Lance Manuel, * ID, D. Todd

More information

Hydrodynamic Analysis of a Heavy Lift Vessel during Offshore Installation Operations

Hydrodynamic Analysis of a Heavy Lift Vessel during Offshore Installation Operations Presentation for Defense of Master Thesis Hydrodynamic Analysis of a Heavy Lift Vessel during Offshore Installation Operations Speaker: Bin Wang Supervisor: Prof. Robert Bronsart 23 rd Feb, 2015 Nantes

More information

Wind-Wave Misalignment Effects on Floating Wind Turbines: Motions and Tower Load Effects

Wind-Wave Misalignment Effects on Floating Wind Turbines: Motions and Tower Load Effects Erin E. Bachynski 1 Centre for Ships and Ocean Structures, NOWITECH, Centre for Autonomous Marine Operations and Systems, Trondheim NO-7491, Norway e-mail: erin.bachynski@ntnu.no Marit I. Kvittem Centre

More information

Copyright by Jinsong Liu 2015

Copyright by Jinsong Liu 2015 Copyright by Jinsong Liu 2015 The Thesis Committee for Jinsong Liu certifies that this is the approved version of the following thesis: On the Development of a Semi-Submersible Offshore Floating Platform

More information

OFFSHORE WIND: A CRASH COURSE

OFFSHORE WIND: A CRASH COURSE OFFSHORE WIND: A CRASH COURSE OFFSHORE WIND: DEFINED OFFSHORE WIND: Construction of wind farms in bodies of water to generate electricity from wind. Unlike the typical usage of the term offshore in the

More information

Basic Design and Finite Element Analysis of Substructure of 2.5MW. Floating-type Offshore Wind Turbine. O-Kaung Lim 3)

Basic Design and Finite Element Analysis of Substructure of 2.5MW. Floating-type Offshore Wind Turbine. O-Kaung Lim 3) The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-30, 2012 Basic Design and Finite Element Analysis of Substructure of 2.5MW Floating-type

More information

COMPUTER-AIDED DESIGN AND PERFORMANCE ANALYSIS OF HAWT BLADES

COMPUTER-AIDED DESIGN AND PERFORMANCE ANALYSIS OF HAWT BLADES 5 th International Advanced Technologies Symposium (IATS 09), May 13-15, 2009, Karabuk, Turkey COMPUTER-AIDED DESIGN AND PERFORMANCE ANALYSIS OF HAWT BLADES Emrah KULUNK a, * and Nadir YILMAZ b a, * New

More information

Parametric Investigation of Dynamic Characteristics of Mooring Cable of Floating-type Offshore Wind Turbine

Parametric Investigation of Dynamic Characteristics of Mooring Cable of Floating-type Offshore Wind Turbine The 0 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM ) Seoul, Korea, August 6-30, 0 Parametric Investigation of Dynamic Characteristics of Mooring Cable of Floating-type

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October ISSN

International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October ISSN International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October-2016 172 DYNAMIC ANALYSIS OF MINI TENSION LEG PLATFORMS UNDER RANDOM WAVES Shibin P Shaji, Dr. Jayalekshmi R. Abstract

More information

Technology and innovation challenges for UK Offshore Wind Energy Andrew Scott

Technology and innovation challenges for UK Offshore Wind Energy Andrew Scott Technology and innovation challenges for UK Offshore Wind Energy Andrew Scott Offshore Wind Operations/Science Meets Industry, Bergen 2013 10 September 2013 2013 Energy Technologies Institute LLP The information

More information

Dynamic Stability of Ships in Waves

Dynamic Stability of Ships in Waves Gourlay, T.P. & Lilienthal, T. 2002 Dynamic stability of ships in waves. Proc. Pacific 2002 International Maritime Conference, Sydney, Jan 2002. ABSTRACT Dynamic Stability of Ships in Waves Tim Gourlay

More information

Research on Small Wind Power System Based on H-type Vertical Wind Turbine Rong-Qiang GUAN a, Jing YU b

Research on Small Wind Power System Based on H-type Vertical Wind Turbine Rong-Qiang GUAN a, Jing YU b 06 International Conference on Mechanics Design, Manufacturing and Automation (MDM 06) ISBN: 978--60595-354-0 Research on Small Wind Power System Based on H-type Vertical Wind Turbine Rong-Qiang GUAN a,

More information

COUPLED DYNAMIC ANALYSIS OF MOORING LINES FOR DEEP WATER FLOATING SYSTEMS

COUPLED DYNAMIC ANALYSIS OF MOORING LINES FOR DEEP WATER FLOATING SYSTEMS Proceedings of International Conference in Ocean Engineering, ICOE Proceedings 2009 of ICOE 2009 Coupled Dynamic Analysis IIT Madras, of Chennai, Mooring India. Lines for Deep Water Floating Systems 1-5

More information

The Application of Wave Energy Converter in Hybrid Energy System

The Application of Wave Energy Converter in Hybrid Energy System Send Orders for Reprints to reprints@benthamscience.ae 936 The Open Mechanical Engineering Journal, 2014, 8, 936-940 Open Access The Application of Wave Energy Converter in Hybrid Energy System Song Ding

More information

FPSO MOORING CONFIGURATION BASED ON MALAYSIA S ENVIRONMENTAL CRITERIA

FPSO MOORING CONFIGURATION BASED ON MALAYSIA S ENVIRONMENTAL CRITERIA FPSO MOORING CONFIGURATION BASED ON MALAYSIA S ENVIRONMENTAL CRITERIA Mazlan Muslim and Md Salim Kamil Marine and Design Technology Section, University Kuala Lumpur MIMET, Lumut, Perak, Malaysia E-Mail

More information

Norway s solution: Hywind- world s first full scale floating turbine Dr. Nenad Keseric Asset Manager/Specialist Statoil ASA MPR RE Operations

Norway s solution: Hywind- world s first full scale floating turbine Dr. Nenad Keseric Asset Manager/Specialist Statoil ASA MPR RE Operations Norway s solution: Hywind- world s first full scale floating turbine Dr. Nenad Keseric Asset Manager/Specialist Statoil ASA MPR RE Operations Strategy and Support Leveraging Statoil s offshore oil and

More information

Dynamic Response Analysis of Three Floating Wind Turbine Concepts with a Two-Bladed Darrieus Rotor

Dynamic Response Analysis of Three Floating Wind Turbine Concepts with a Two-Bladed Darrieus Rotor Journal of Ocean and Wind Energy (ISSN 2310-3604) Copyright by The International Society of Offshore and Polar Engineers Vol. 2, No. 4, November 2015, pp. 213 222; http://dx.doi.org/10.17736/jowe.2015.jcr33

More information

Analysis and Research of Mooring System. Jiahui Fan*

Analysis and Research of Mooring System. Jiahui Fan* nd International Conference on Computer Engineering, Information Science & Application Technology (ICCIA 07) Analysis and Research of Mooring System Jiahui Fan* School of environment, North China Electric

More information

Extended Onshore Control of a Floating Wind Turbine with Wave Disturbance Reduction

Extended Onshore Control of a Floating Wind Turbine with Wave Disturbance Reduction Journal of Physics: Conference Series OPEN ACCESS Extended Onshore Control of a Floating Wind Turbine with Wave Disturbance Reduction To cite this article: S Christiansen et al 214 J. Phys.: Conf. Ser.

More information

Japan s Floating Offshore Wind Projects

Japan s Floating Offshore Wind Projects Japan s Floating Offshore Wind Projects An Overview Annette Bossler Main(e) International Consulting LLC Bremen, ME USA Japan s Wind Resources Onshore and Offshore Source: Japan FEPC Onshore wind potential

More information

ITTC Recommended Procedures Testing and Extrapolation Methods Loads and Responses, Seakeeping Experiments on Rarely Occurring Events

ITTC Recommended Procedures Testing and Extrapolation Methods Loads and Responses, Seakeeping Experiments on Rarely Occurring Events Loads and Responses, Seakeeping Page 1 of 5 CONTENTS 1. PURPOSE OF PROCEDURE 2. STANDARDS FOR EXPERIMENTS ON RARELY OCCURRING EVENTS 2.1 Previous Recommendations of ITTC 2.2 Model Design and Construction

More information

Ocean Engineering Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras

Ocean Engineering Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras Ocean Engineering Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras Module - 1 Lecture - 3 Compliant type offshore structures -1 Welcome to the

More information

REVISITING GLOBAL RESPONSE OF FPSOS IN SHALLOW WATER AND THE RISER ANALYSIS REQUIREMENTS

REVISITING GLOBAL RESPONSE OF FPSOS IN SHALLOW WATER AND THE RISER ANALYSIS REQUIREMENTS REVISITING GLOBAL RESPONSE OF FPSOS IN SHALLOW WATER AND THE RISER ANALYSIS REQUIREMENTS AMIR H. IZADPARAST SENIOR RESEARCH ENGINEER, HYDRODYNAMICS AND MOORING TECHNOLOGY, SOFEC JIAXING CHEN RESEARCH ENGINEER,

More information

Design and Dynamic Performances of Y-Wind Floating Offshore Wind Turbine Platform

Design and Dynamic Performances of Y-Wind Floating Offshore Wind Turbine Platform Proceedings of the Twenty-seventh (7) International Ocean and Polar Engineering Conference San Francisco, CA, USA, June -3, 7 Copyright 7 by the International Society of Offshore and Polar Engineers (ISOPE)

More information

Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines

Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines Anand Natarajan Senior Scientist Wind Energy Department, Risø DTU Denmark Introduction IEC 61400-1

More information

Numerical study on a hybrid mooring system with clump weights and buoys

Numerical study on a hybrid mooring system with clump weights and buoys Numerical study on a hybrid mooring system with clump weights and buoys * Zhiming Yuan a, Atilla Incecik a, Chunyan Ji b a Department of Naval Architecture, Ocean & Marine Engineering, University of Strathclyde,

More information

Madjid Karimirad. Stochastic Dynamic Response Analysis of Spar-Type Wind Turbines with Catenary or Taut Mooring Systems

Madjid Karimirad. Stochastic Dynamic Response Analysis of Spar-Type Wind Turbines with Catenary or Taut Mooring Systems Madjid Karimirad Doctoral theses at NTNU, 2011:8 Madjid Karimirad Stochastic Dynamic Response Analysis of Spar-Type Wind Turbines with Catenary or Taut Mooring Systems ISBN 978-82-471-2526-7 (printed ver.)

More information

Copyright by Mohit Soni 2014

Copyright by Mohit Soni 2014 Copyright by Mohit Soni 4 The Thesis Committee for Mohit Soni Certifies that this is the approved version of the following thesis: Dynamic Response Analysis of an Offshore Wind Turbine Supported by a Moored

More information

A COMPARISON BETWEEN THE PRELIMINARY DESIGN STUDIES OF A FIXED AND A FLOATING SUPPORT STRUCTURE FOR A 5 MW OFFSHORE WIND TURBINE IN THE NORTH SEA

A COMPARISON BETWEEN THE PRELIMINARY DESIGN STUDIES OF A FIXED AND A FLOATING SUPPORT STRUCTURE FOR A 5 MW OFFSHORE WIND TURBINE IN THE NORTH SEA A COMPARISON BETWEEN THE PRELIMINARY DESIGN STUDIES OF A FIXED AND A FLOATING SUPPORT STRUCTURE FOR A 5 MW OFFSHORE WIND TURBINE IN THE NORTH SEA M Collu, A J Kolios, A Chahardehi, F Brennan, Cranfield

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 6 Table of Contents 1. PURPOSE...2 2. PARAMETERS...2 2.1 General Considerations...2 3 DESCRIPTION OF PROCEDURE...2 3.1 Model Design and Construction...2 3.2 Measurements...3 3.5 Execution of

More information

Wind Turbine Shuttle. Ferdinand van Heerd

Wind Turbine Shuttle. Ferdinand van Heerd Wind Turbine Shuttle Ferdinand van Heerd Contents Introduction Concept Resistance Seakeeping Vessel motion compensation system Hoisting motion compensation system Landing the wind turbine Workability Efficiency

More information

Control of surge and pitch motions of a rectangular floating body using internal sloshing phenomena. Minho Ha and *Cheolung Cheong 1)

Control of surge and pitch motions of a rectangular floating body using internal sloshing phenomena. Minho Ha and *Cheolung Cheong 1) Control of surge and pitch motions of a rectangular floating body using internal sloshing phenomena Minho Ha and *Cheolung Cheong 1) School of Mechanical Engineering, PNU, Busan 609-735, Korea 1) ccheong@pusan.ac.kr

More information

The EllipSys2D/3D code and its application within wind turbine aerodynamics

The EllipSys2D/3D code and its application within wind turbine aerodynamics The EllipSys2D/3D code and its application within wind turbine aerodynamics Niels N. Sørensen Wind Energy Department, Risø DTU National Laboratory for Sustainable Energy and Dep. Civil Engineering, Aalborg

More information

Development of Self-Installing Deepwater Spar. Ashit Jadav February 2017

Development of Self-Installing Deepwater Spar. Ashit Jadav February 2017 Development of Self-Installing Deepwater Spar Ashit Jadav February 2017 Contents Introduction & Background ACE Spar breakdown Installation Sequence Main particulars, Hull design and Weight control Stability

More information

Offshore Wind Turbine monopile in 50 year storm conditions

Offshore Wind Turbine monopile in 50 year storm conditions TMR7 Experimental methods in marine hydrodynamics - lab exercise 3 2017 Offshore Wind Turbine monopile in 50 year storm conditions Trygve Kristiansen and Erin Bachynski, Trondheim, 20.09.2017 Background

More information

WESEP 594 Research Seminar

WESEP 594 Research Seminar WESEP 594 Research Seminar Aaron J Rosenberg Department of Aerospace Engineering Iowa State University Major: WESEP Co-major: Aerospace Engineering Motivation Increase Wind Energy Capture Betz limit: 59.3%

More information

Stiesdal. Physical model testing of the TetraSpar floater in two configurations

Stiesdal. Physical model testing of the TetraSpar floater in two configurations Physical model testing of the TetraSpar floater in two configurations M Borg a, H Bredmose a, H Stiesdal b, B Jensen c, RF Mikkelsen a, M Mirzaei a, A Pegalajar-Jurado a, FJ Madsen a, TRL Nielsen a, AK

More information

The Impact of Composites on Future Deepwater Riser Configurations

The Impact of Composites on Future Deepwater Riser Configurations The Impact of Composites on Future Deepwater Riser Configurations Thomas Brown 2H Offshore Engineering Ltd NH GRAND HOTEL KRASNAPOLSKY AMSTERDAM 3-5 APRIL 2017 Deepwater Riser Technology Today s deepwater

More information

EFFECTS OF MOORING LINE WITH BUOYS SYSTEM ON THE GLOBAL RESPONSES OF A SEMI-SUBMERSIBLE PLATFORM

EFFECTS OF MOORING LINE WITH BUOYS SYSTEM ON THE GLOBAL RESPONSES OF A SEMI-SUBMERSIBLE PLATFORM Dongsheng Qiao Jun Yan Jinping Ou ISSN 0007-215X eissn 1845-5859 EFFECTS OF MOORING LINE WITH BUOYS SYSTEM ON THE GLOBAL RESPONSES OF A SEMI-SUBMERSIBLE PLATFORM Summary UDC 629.5.077.3 Original scientific

More information

Operations. On The Use of Safety Moorings in DP Operations

Operations. On The Use of Safety Moorings in DP Operations Return to Session Directory DYNAMIC POSITIONING CONFERENCE October 7-8, 28 Operations On The Use of Safety Moorings in DP Operations Nils Albert Jenssen Kongsberg Maritime, (Kongsberg Norway) Abstract

More information

RIGID RISERS FOR TANKER FPSOs

RIGID RISERS FOR TANKER FPSOs RIGID RISERS FOR TANKER FPSOs Stephen A. Hatton 2H Offshore Engineering Ltd. SUMMARY Recent development work on the subject of dynamic rigid (steel pipe) risers demonstrates that their scope of application

More information

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration M. Burak Şamşul ITU AYOC 2014 - Milper Pervane Teknolojileri Company Profile MILPER is established in 2011 as a Research and Development

More information

Evaluation of aerodynamic criteria in the design of a small wind turbine with the lifting line model

Evaluation of aerodynamic criteria in the design of a small wind turbine with the lifting line model Evaluation of aerodynamic criteria in the design of a small wind turbine with the lifting line model Nicolas BRUMIOUL Abstract This thesis deals with the optimization of the aerodynamic design of a small

More information

Contributions from a multidisciplinary university Finn Gunnar Nielsen Professor Geophysical Institute

Contributions from a multidisciplinary university Finn Gunnar Nielsen Professor Geophysical Institute Workshop Floating Offshore Wind Norwegian Offshore Wind Cluster Dublin 4 th and 5 th December 2018 Contributions from a multidisciplinary university Finn Gunnar Nielsen Professor Geophysical Institute

More information

On mooring line tension and fatigue prediction for offshore vertical axis wind turbines: a comparison of lumped-mass and quasi-static approaches

On mooring line tension and fatigue prediction for offshore vertical axis wind turbines: a comparison of lumped-mass and quasi-static approaches 9 th European Seminar OWEMES 217 On mooring line tension and fatigue prediction for offshore vertical axis wind turbines: a comparison of lumped-mass and quasi-static approaches D. Cevasco 1, M. Collu

More information

Abstract. 1 Introduction

Abstract. 1 Introduction A computational method for calculatingthe instantaneous restoring coefficients for a ship moving in waves N. El-Simillawy College of Engineering and Technology, Arab Academyfor Science and Technology,

More information

A comparison of two fully coupled codes for integrated dynamic analysis of floating vertical axis wind turbines

A comparison of two fully coupled codes for integrated dynamic analysis of floating vertical axis wind turbines Delft University of Technology A comparison of two fully coupled codes for integrated dynamic analysis of floating vertical axis wind turbines Koppenol, Boy; Cheng, Zhengshun; Gao, Zhen; Ferreira, Carlos;

More information

OMAE A COMPARISON OF TWO COUPLED MODEL OF DYNAMICS FOR OFFSHORE FLOATING VERTICAL AXIS WIND TURBINES (VAWT)

OMAE A COMPARISON OF TWO COUPLED MODEL OF DYNAMICS FOR OFFSHORE FLOATING VERTICAL AXIS WIND TURBINES (VAWT) Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineeing OMAE2014 June 8-13, 2014, San Francisco, California, USA OMAE2014-23301 A COMPARISON OF TWO COUPLED MODEL

More information

OMAE INVESTIGATION ON THE USE OF DIFFERENT APPROACHES TO MOORING ANALYSIS AND APPROPRIATE SAFETY FACTORS

OMAE INVESTIGATION ON THE USE OF DIFFERENT APPROACHES TO MOORING ANALYSIS AND APPROPRIATE SAFETY FACTORS Proceedings of the ASME 212 31 st International Conference on Ocean, Offshore and Arctic Engineering OMAE212 June 1-15, 212, Rio de Janeiro, Brazil OMAE212-84121 INVESTIGATION ON THE USE OF DIFFERENT APPROACHES

More information

New Innovative Anchor Solution for Deepwater Mooring Gravity Intalled Anchors Reduce Time and Costs of Marine Operations Jon Tore Lieng CTO

New Innovative Anchor Solution for Deepwater Mooring Gravity Intalled Anchors Reduce Time and Costs of Marine Operations Jon Tore Lieng CTO New Innovative Anchor Solution for Deepwater Mooring Gravity Intalled Anchors Reduce Time and Costs of Marine Operations Jon Tore Lieng CTO Wokshop on Deepwater Subsea TieBack Damai Puri Resort & Spa,

More information

Design of a Linear Electrical Machine for a Wave Generation System in the Maltese Waters

Design of a Linear Electrical Machine for a Wave Generation System in the Maltese Waters Design of a Linear Electrical Machine for a Wave Generation System in the Maltese Waters Xuereb Annalise 1, Spiteri Staines Cyril 1, Sant Tonio 1, Mule` Stagno Luciano 2 1 Faculty of Engineering 2 Institute

More information

Assessment of 3D aerodynamic effects on the behaviour of floating wind turbines

Assessment of 3D aerodynamic effects on the behaviour of floating wind turbines Journal of Physics: Conference Series OPEN ACCESS Assessment of 3D aerodynamic effects on the behaviour of floating wind turbines To cite this article: D Manolas et al 2014 J. Phys.: Conf. Ser. 555 012067

More information

Analysis of Factors Affecting Extreme Ship Motions in Following and Quartering Seas

Analysis of Factors Affecting Extreme Ship Motions in Following and Quartering Seas Analysis of Factors Affecting Extreme Ship Motions in Following and Quartering Seas Chang Seop Kwon *, Dong Jin Yeo **, Key Pyo Rhee *** and Sang Woong Yun *** Samsung Heavy Industries Co., td. * Maritime

More information

STATION KEEPING EXTENSIVE MODEL TESTING OF A DRY-TREE SPREAD-MOORED BARGE IN BRAZILLIAN WATERS

STATION KEEPING EXTENSIVE MODEL TESTING OF A DRY-TREE SPREAD-MOORED BARGE IN BRAZILLIAN WATERS STATION KEEPING EXTENSIVE MODEL TESTING OF A DRY-TREE SPREAD-MOORED BARGE IN BRAZILLIAN WATERS Arjan Voogt (MARIN) and Mamoun Naciri (SBM) Deep Offshore Technology XIV (DOT-2002) ABSTRACT This paper describes

More information

Design Challenges & Solutions for Large Diameter Export Risers

Design Challenges & Solutions for Large Diameter Export Risers Design Challenges & Solutions for Large Diameter Export Risers Elizabeth Tellier, Hugh Howells & Mark Cerkovnik 2H Offshore Engineering AOG 2011 Agenda WA export riser design challenges Development options

More information

Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) 30-31,December, 2014, Ernakulam, India

Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) 30-31,December, 2014, Ernakulam, India INTERNATIONAL JOURNAL OF DESIGN AND MANUFACTURING TECHNOLOGY (IJDMT) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976 6995 (Print) ISSN

More information

OTC Copyright 2003, Offshore Technology Conference

OTC Copyright 2003, Offshore Technology Conference OTC 54 Model Test Experience on Vortex Induced Vibrations of Truss Spars Radboud van Dijk, Maritime Research Institute Netherlands, Allan Magee, Technip Offshore, Inc., Steve Perryman, BP Americas, Inc.,

More information