Determination of the wind pressure distribution on the facade of the triangularly shaped high-rise building structure
|
|
- Audra Wade
- 3 years ago
- Views:
Transcription
1 Determination of the wind pressure distribution on the facade of the triangularly shaped high-rise building structure Norbert Jendzelovsky 1,*, Roland Antal 1 and Lenka Konecna 1 1 STU in Bratislava, Faculty of Civil Engineering, Radlinskeho 11, Bratislava , Slovakia Abstract. Methods for determination of the wind pressure distribution on the facade of the atypically shaped high-rise building structure will be shown. The standard Eurocode 1 [1] does not mention recommendations for calculation of wind pressure distribution on the facade for the most cases of buildings having an irregular cross-section. Analysed object has a shape of the equilateral triangle. For the determination of the pressure distribution two methods were used. Experimental analysis was carried out in the boundary layer wind tunnel and second approach was performed by numerical simulation of wind flow using computational fluid dynamics (CFD) software based on the finite volume method. Both methods used scaled model of the structure. For the wind tunnel experiment, 16 points of interests around an object were monitored in steady wind flow and from those points, results of external pressure coefficients from 2 directions of wind flow were obtained. In conclusion comparison of results of both methods will be shown. 1 Analysis of the wind pressure distribution on the equilateral triangle High-rise structure was considered having a shape of an equilateral triangle (Fig. 1). Fig. 1. Object of Panorama city buildings (Bratislava, Slovakia) and floor plan. * Corresponding author: The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (
2 Analysis of the wind pressure distribution was performed on the triangular cross-section of the scaled model. Length of the edge of the real size building is m. Experimental and numerical model was created in scale 1: Experimental study of pressure distribution in the boundary layer wind tunnel Model for wind tunnel tests was created as a scaled simplification of mentioned high rise building (Fig. 2a). Scale of this experimental model compared to the size of the real building is 1:172. Scale of the analysed object was set in regard to size of wind tunnel and previous measurements related to experimental investigations of an air flow and influences of walls and ceilings in the wind tunnel [2, 3]. Before positioning of sampling points, where wind pressure was measured, preliminary CFD simulations were done. Results of these numerical simulations gave us insight of how the pressure is distributed around an object, and where sampling points for experimental measurements should be positioned. 16 sampling points were created irregularly around the model (Fig. 2b). At these particular points pressure was measured by digital pressure scanner DSA 3217 Scanivalve from two directions of wind flow. Fig. 2. a) Scaled model in wind tunnel and b) positioning of 16 sampling points. For experimental measurements, opened, under-pressure, boundary layer wind tunnel was used. Tunnel has length of 26.3 m and its cross section has shape of rectangle with dimensions 2.6 m 1.6 m. Tunnel consists of two main sections front and rear space. Wind speed is adjustable in a range of m/s. For turbulent flows, where turbulence of wind flow is required, rear space is used. For our purposes, front space of wind tunnel was used. Frontal area is used, when steady wind flow is required. Therefore, analysed object was tested in constant wind speed, without any significant turbulences. Properties of air measured on the day of tests are shown in Table 1. Table 1. Boundary conditions and properties of air in the wind tunnel at the day of measurements. Wind speed [m/s] Temperature of air [ C] Atmospheric pressure [Pa] Density of air [kg/m 3 ]
3 Pressure was measured in 16 sampling point from both directions of wind flow twice, therefore averaged values of measured pressure were calculated. For better illustration, measured pressures were converted to external pressure coefficient, which is a dimensionless variable calculated by formula (1). Pressure coefficient demonstrates, how the pressure is distributed around an object depending on the direction of wind flow. C p p p 1 v 2 2 (1) Where p is the pressure at the point at which pressure coefficient is being evaluated in [Pa], p is the pressure in the free stream in [Pa], ρ is the free stream fluid density in [kg/m3], v is the free stream velocity of the fluid in [m/s]. In the following figure (Fig. 3) distribution of wind pressure around an object in the dimensionless external pressure coefficient for both directions of wind flow is shown. Fig. 3. External pressure coefficient Cp [-] for both analysed wind flow directions. 1.2 Computational fluid dynamic simulation of wind flow Computational model was analysed by software based on finite volume method. Additional software systems for geometry, mesh and results were used. Size of analysed boundaries for an air flow simulation were created as follows (Fig. 4): Length of boundary is 9.4 m, width of boundary is 6.6 m and height of boundary is 5.6 m. Fig. 4. Analysed boundaries for CFD simulation. 3
4 Mesh generator was used to create following mesh: Element type was set as Hexahedra, which were refined closer to the object of interest. Near analysed model, first boundary layer was created 0.01 mm from object edge. 40 other fine mesh layers were created gradually around an object with growth rate 1.2 (Fig. 5). Largest elements with size of 400 mm were created in the remote surroundings where turbulences of air does not significantly affect flow around an object. For computational simulations, parameters were set according to data measured during wind tunnel tests. Input parameters used for CFD simulation are listed in (Table 1) Parameters and properties, which were not measured (roughness of object, small turbulence of wind flow etc.) were set simplistically by estimation. Fig. 5. Hexahedral mesh near object. Flow simulation was carried out by CFD software module. Selected module calculates variables by finite volume method based on elements EbFVM, with a cell vertex formulation. For the given flow simulation, shear stress transport (SST) mathematical model was selected. It is the two-equation eddy-viscosity model, which combines two mostly used k-ω and k-ε models. The formulation of the SST model is based on wind tunnel experiments and it attempts to predict solutions to typical engineering problems. Equations used in k-ω model work best for near wall treatment through the viscous sub-layers. In the free stream flow, where near wall treatment is not essential, SST model automatically switches to k-ε model and hence, it avoids common k-ω problem, which is too sensitive to the inlet free-stream turbulence properties. Other information about mentioned mathematical models can be found in [4, 5, 6]. Process of calculation was iterative, therefore residuals, imbalances and pressures were monitored until satisfying results were reached. After 90 iterations, results of pressure didn t change significantly and iteration process was complete and solution was found. Results of pressure coefficients for both wind flows are shown in (Fig. 6). For graphical representation wind flows from left to right in both cases. Fig. 6. Results of calculated pressure coefficient Cp [-] for both wind flows. 4
5 1.3 Comparison of wind tunnel measurements with CFD simulation Demonstration of 2 methods used for calculations of wind pressure distribution was a matter of interest here. Results of external pressure coefficient measured in wind tunnel are compared with CFD simulation. Comparison of results are shown in figures (Fig. 7) and (Fig. 8), where values of calculated pressure coefficient in sampling points are compared for both methods and both wind flow directions. On the horizontal axis, numbers of sampling points are shown. On the vertical axis, values of calculated external pressure coefficient are shown. Fig. 7. Comparison of calculated pressure coefficient Cp [-] for wind flow 1. Fig. 8. Comparison of calculated pressure coefficient Cp [-] for wind flow 2. As we can see in both figures (Fig. 7) and (Fig. 8), results measured in the wind tunnel are slightly different to those, which were calculated by CFD simulation. 5
6 As a conclusion, it can be said, that both methods are capable to calculate variables needed to design a high rise building structure. CFD simulation where SST mathematical model was used, proved, that it is very good and relatively accurate tool for calculation of many variables, even for those, which cannot be measured directly in the wind tunnel. Differences between numerical simulation and experiment could be caused by many factors. Main factors responsible for differences in similar cases are: a) small differences between geometry of wind tunnel model and the model used in computational flow simulation just a small difference in geometry in that scale could cause abnormality in results; b) position of model in wind tunnel during air flow even very small rotation or movement of model can cause different results compared to ideal conditions simulated by CFD software; c) Boundary size, mesh size and boundary conditions set in CFD software changes in boundary size, mesh size, number and size of near wall layers and of course changes of properties of air, wind speed, turbulence intensity, will change results significantly. These days, cooperation between wind tunnel tests with addition of CFD simulation is the best way, how to analyse wind effects on irregular shaped buildings and determine wind load for unusual structures. This paper was supported by Grant Agency VEGA of Slovak Republic, project No. 1/0544/15. References 1. EN , Eurocode 1: Actions on structures-part 1 4: General actions-wind actions, (2007) 2. O. Hubová, P. Lobotka, Scientific-Technical Journal 1, 2, (2014) 3. M. Jirsák, Studie budov a konstrukcí ve vetrných tunelech, (ČKAIT, Praha, 2009) 4. F. R. Menter, AIAA Journal, 32, 1598, (1994) 5. J. D. Anderson, Computational Fluid Dynamics: The Basics with Applications. (McGraw-Hill Inc., 1995) 6. T. J. Chung, Computational Fluid Dynamics - Second Edition (Cambridge University Press, New York, 2010) 6
Available online at ScienceDirect. Procedia Engineering 161 (2016 )
Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 161 (216 ) 1845 1851 World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium 216, WMCAUS 216 Experimental
Investigation on 3-D Wing of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent
Investigation on 3-D of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent Rohit Jain 1, Mr. Sandeep Jain 2, Mr. Lokesh Bajpai 3 1PG Student, 2 Associate Professor, 3 Professor & Head 1 2 3
Full scale measurements and simulations of the wind speed in the close proximity of the building skin
Full scale measurements and simulations of the wind speed in the close proximity of the building skin Radoslav Ponechal 1,* and Peter Juras 1 1 University of Zilina, Faculty of Civil Engineering, Department
Workshop 1: Bubbly Flow in a Rectangular Bubble Column. Multiphase Flow Modeling In ANSYS CFX Release ANSYS, Inc. WS1-1 Release 14.
Workshop 1: Bubbly Flow in a Rectangular Bubble Column 14. 5 Release Multiphase Flow Modeling In ANSYS CFX 2013 ANSYS, Inc. WS1-1 Release 14.5 Introduction This workshop models the dispersion of air bubbles
CFD Analysis ofwind Turbine Airfoil at Various Angles of Attack
IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 4 Ver. II (Jul. - Aug. 2016), PP 18-24 www.iosrjournals.org CFD Analysis ofwind Turbine
Surrounding buildings and wind pressure distribution on a high rise building
Surrounding buildings and wind pressure distribution on a high rise building Conference or Workshop Item Accepted Version Luo, Z. (2008) Surrounding buildings and wind pressure distribution on a high rise
Analysis of pressure losses in the diffuser of a control valve
Analysis of pressure losses in the diffuser of a control valve Petr Turecký 1, Lukáš Mrózek 2*, Ladislav Taj 2, and Michal Kolovratník 3 1 ENVIROS, s.r.o., Dykova 53/10, 101 00 Praha 10-Vinohrady, Czech
Centre for Offshore Renewable Energy Engineering, School of Energy, Environment and Agrifood, Cranfield University, Cranfield, MK43 0AL, UK 2
Fluid Structure Interaction Modelling of A Novel 10MW Vertical-Axis Wind Turbine Rotor Based on Computational Fluid Dynamics and Finite Element Analysis Lin Wang 1*, Athanasios Kolios 1, Pierre-Luc Delafin
International Journal of Technical Research and Applications e-issn: , Volume 4, Issue 3 (May-June, 2016), PP.
DESIGN AND ANALYSIS OF FEED CHECK VALVE AS CONTROL VALVE USING CFD SOFTWARE R.Nikhil M.Tech Student Industrial & Production Engineering National Institute of Engineering Mysuru, Karnataka, India -570008
OPTIMIZING THE LENGTH OF AIR SUPPLY DUCT IN CROSS CONNECTIONS OF GOTTHARD BASE TUNNEL. Rehan Yousaf 1, Oliver Scherer 1
OPTIMIZING THE LENGTH OF AIR SUPPLY DUCT IN CROSS CONNECTIONS OF GOTTHARD BASE TUNNEL Rehan Yousaf 1, Oliver Scherer 1 1 Pöyry Infra Ltd, Zürich, Switzerland ABSTRACT Gotthard Base Tunnel with its 57 km
Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges
Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges T. Abbas 1 and G. Morgenthal 2 1 PhD candidate, Graduate College 1462, Department of Civil Engineering,
The Effect of Impeller Width on the Location of BEP in a Centrifugal Pump
The Effect of Impeller Width on the Location of BEP in a Centrifugal Pump Vinayak Manur 1, Sharanabasappa 2, M. S. Hebbal 3 P.G.Students, Department of Mechanical Engineering, Basaveshwar Engineering College,
High Swept-back Delta Wing Flow
Advanced Materials Research Submitted: 2014-06-25 ISSN: 1662-8985, Vol. 1016, pp 377-382 Accepted: 2014-06-25 doi:10.4028/www.scientific.net/amr.1016.377 Online: 2014-08-28 2014 Trans Tech Publications,
Aerodynamics of Winglet: A Computational Fluid Dynamics Study Using Fluent
Aerodynamics of : A Computational Fluid Dynamics Study Using Fluent Rohit Jain 1, Mr. Sandeep Jain, Mr. Lokesh Bajpai 1PG Student, Associate Professor, Professor & Head 1 Mechanical Engineering Department
CFD Analysis of Giromill Type Vertical Axis Wind Turbine
242 CFD Analysis Giromill Type Vertical Axis Wind Turbine K. Sainath 1, T. Ravi 2, Suresh Akella 3, P. Madhu Sudhan 4 1 Associate Pressor, Department Mechanical Engineering, Sreyas Inst. Engg. & Tech.,
Australian Journal of Basic and Applied Sciences. Pressure Distribution of Fluid Flow through Triangular and Square Cylinders
AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Pressure Distribution of Fluid Flow through Triangular and Square Cylinders 1 Nasaruddin
CFD AND EXPERIMENTAL STUDY OF AERODYNAMIC DEGRADATION OF ICED AIRFOILS
Colloquium FLUID DYNAMICS 2008 Institute of Thermomechanics AS CR, v.v.i., Prague, October 22-24, 2008 p.1 CFD AND EXPERIMENTAL STUDY OF AERODYNAMIC DEGRADATION OF ICED AIRFOILS Vladimír Horák 1, Dalibor
COMPARISONS OF COMPUTATIONAL FLUID DYNAMICS AND
The Seventh Asia-Pacific Conference on Wind Engineering, November 8-12, 2009, Taipei, Taiwan COMPARISONS OF COMPUTATIONAL FLUID DYNAMICS AND WIND TUNNEL EXPERIMENTS FOR PEDESTRIAN WIND ENVIRONMENTS Chin-Hsien
Available online at ScienceDirect. Procedia Engineering 112 (2015 )
Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 112 (2015 ) 418 423 7th Asia-Pacific Congress on Sports Technology, APCST 2015 Comparison of the aerodynamic performance of
Computational Fluid Flow Analysis of Formula One Racing Car Triya Nanalal Vadgama 1 Mr. Arpit Patel 2 Dr. Dipali Thakkar 3 Mr.
IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 02, 2015 ISSN (online): 2321-0613 Computational Fluid Flow Analysis of Formula One Racing Car Triya Nanalal Vadgama 1 Mr.
FLOW CONSIDERATIONS IN INDUSTRIAL SILENCER DESIGN
FLOW CONSIDERATIONS IN INDUSTRIAL SILENCER DESIGN George Feng, Kinetics Noise Control, Inc., 3570 Nashua Drive, Mississauga, Ontario Vadim Akishin, Kinetics Noise Control, Inc., 3570 Nashua Drive, Mississauga,
Pressure coefficient on flat roofs of rectangular buildings
Pressure coefficient on flat roofs of rectangular buildings T. Lipecki 1 1 Faculty of Civil Engineering and Architecture, Lublin University of Technology, Poland. t.lipecki@pollub.pl Abstract The paper
Aerodynamic Analysis of a Symmetric Aerofoil
214 IJEDR Volume 2, Issue 4 ISSN: 2321-9939 Aerodynamic Analysis of a Symmetric Aerofoil Narayan U Rathod Department of Mechanical Engineering, BMS college of Engineering, Bangalore, India Abstract - The
Numerical Investigation of Multi Airfoil Effect on Performance Increase of Wind Turbine
International Journal of Engineering & Applied Sciences (IJEAS) International Journal of Engineering Applied Sciences (IJEAS) Vol.9, Issue 3 (2017) 75-86 Vol.x, Issue x(201x)x-xx http://dx.doi.org/10.24107/ijeas.332075
The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul
The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration M. Burak Şamşul ITU AYOC 2014 - Milper Pervane Teknolojileri Company Profile MILPER is established in 2011 as a Research and Development
Numerical Simulation And Aerodynamic Performance Comparison Between Seagull Aerofoil and NACA 4412 Aerofoil under Low-Reynolds 1
Advances in Natural Science Vol. 3, No. 2, 2010, pp. 244-20 www.cscanada.net ISSN 171-7862 [PRINT] ISSN 171-7870 [ONLINE] www.cscanada.org *The 3rd International Conference of Bionic Engineering* Numerical
CFD SIMULATION STUDY OF AIR FLOW AROUND THE AIRFOIL USING THE MAGNUS EFFECT
Magnus effect, simulation, air flow Patryk SOKOŁOWSKI *, Jacek CZARNIGOWSKI **, Paweł MAGRYTA *** CFD SIMULATION STUDY OF AIR FLOW AROUND THE AIRFOIL USING THE MAGNUS EFFECT Abstract The article presents
Effect of Diameter on the Aerodynamics of Sepaktakraw Balls, A Computational Study
ISSN 1750-9823 (print) International Journal of Sports Science and Engineering Vol. 03 (2009) No. 01, pp. 017-021 Effect of Diameter on the Aerodynamics of Sepaktakraw Balls, A Computational Study Zahari
Effects of seam and surface texture on tennis balls aerodynamics
Available online at www.sciencedirect.com Procedia Engineering 34 (2012 ) 140 145 9 th Conference of the International Sports Engineering Association (ISEA) Effects of seam and surface texture on tennis
Numerical simulation of radial compressor stages with seals and technological holes
EPJ Web of Conferences 67, 02115 (2014) DOI: 10.1051/ epjconf/ 20146702115 C Owned by the authors, published by EDP Sciences, 2014 Numerical simulation of radial compressor stages with seals and technological
PhD student, January 2010-December 2013
Numerical modeling of wave current interactions ata a local scaleand and studyof turbulence closuremodel effects MARIA JOÃO TELES PhD student, January 2010-December 2013 Supervisor: António Pires-Silva,
AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE
- 247 - AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE J D Castro a, C W Pope a and R D Matthews b a Mott MacDonald Ltd, St Anne House,
Measurement and simulation of the flow field around a triangular lattice meteorological mast
Measurement and simulation of the flow field around a triangular lattice meteorological mast Matthew Stickland 1, Thomas Scanlon 1, Sylvie Fabre 1, Andrew Oldroyd 2 and Detlef Kindler 3 1. Department of
Aerodynamic study of a cyclist s moving legs using an innovative approach
Aerodynamic study of a cyclist s moving legs using an innovative approach Francesco Pozzetti 30 September 2017 Abstract During a period of four weeks in September, I completed a research project in fluid
Wind tunnel effects on wingtip vortices
48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 4-7 January 2010, Orlando, Florida AIAA 2010-325 Wind tunnel effects on wingtip vortices Xin Huang 1, Hirofumi
Free Surface Flow Simulation with ACUSIM in the Water Industry
Free Surface Flow Simulation with ACUSIM in the Water Industry Tuan Ta Research Scientist, Innovation, Thames Water Kempton Water Treatment Works, Innovation, Feltham Hill Road, Hanworth, TW13 6XH, UK.
NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOUR IN A MODERN TRAFFIC TUNNEL IN CASE OF FIRE INCIDENT
- 277 - NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOUR IN A MODERN TRAFFIC TUNNEL IN CASE OF FIRE INCIDENT Iseler J., Heiser W. EAS GmbH, Karlsruhe, Germany ABSTRACT A numerical study of the flow behaviour
Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators
Second International Symposium on Marine Propulsors smp 11, Hamburg, Germany, June 2011 Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the
EXPERIMENTAL STUDY OF WIND PRESSURES ON IRREGULAR- PLAN SHAPE BUILDINGS
BBAA VI International Colloquium on: Bluff Bodies Aerodynamics & Applications Milano, Italy, July, 2-24 8 EXPERIMENTAL STUDY OF WIND PRESSURES ON IRREGULAR- PLAN SHAPE BUILDINGS J. A. Amin and A. K. Ahuja
Numerical simulation and analysis of aerodynamic drag on a subsonic train in evacuated tube transportation
Journal of Modern Transportation Volume 20, Number 1, March 2012, Page 44-48 Journal homepage: jmt.swjtu.edu.cn DOI: 10.1007/BF03325776 1 Numerical simulation and analysis of aerodynamic drag on a subsonic
CFD Analysis of Effect of Variation in Angle of Attack over NACA 2412 Airfoil through the Shear Stress Transport Turbulence Model
IJSRD - International Journal for Scientific Research & Development Vol. 5, Issue 02, 2017 ISSN (online): 2321-0613 CFD Analysis of Effect of Variation in Angle of Attack over NACA 2412 Airfoil through
MODELING AND SIMULATION OF VALVE COEFFICIENTS AND CAVITATION CHARACTERISTICS IN A BALL VALVE
Proceedings of the 37 th International & 4 th National Conference on Fluid Mechanics and Fluid Power FMFP2010 December 16-18, 2010, IIT Madras, Chennai, India FMFP2010 341 MODELING AND SIMULATION OF VALVE
Numerical analysis of surface pressure coefficients for a building with balconies
Numerical analysis of surface pressure coefficients for a building with balconies Montazeri H., Blocken B. Building Physics and Services, Eindhoven University of Technology, P.O. box 513, 5600 MB Eindhoven,
Unsteady Aerodynamics of Tandem Airfoils Pitching in Phase
Unsteady Aerodynamics of Tandem Airfoils Pitching in Phase Ravindra A Shirsath and Rinku Mukherjee Abstract This paper presents the results of a numerical simulation of unsteady, incompressible and viscous
Wind resource assessment over a complex terrain covered by forest using CFD simulations of neutral atmospheric boundary layer with OpenFOAM
Wind resource assessment over a complex terrain covered by forest using CFD simulations of neutral atmospheric boundary layer with OpenFOAM Nikolaos Stergiannis nstergiannis.com nikolaos.stergiannis@vub.ac.be
INTERACTION BETWEEN WIND-DRIVEN AND BUOYANCY-DRIVEN NATURAL VENTILATION Bo Wang, Foster and Partners, London, UK
INTERACTION BETWEEN WIND-DRIVEN AND BUOYANCY-DRIVEN NATURAL VENTILATION Bo Wang, Foster and Partners, London, UK ABSTRACT Ventilation stacks are becoming increasingly common in the design of naturally
AIRFLOW AND TEMPERATURE FIELD CALCULATIONS FOR WINTER SPORTS FACILITIES
AIRFLOW AND TEMPERATURE FIELD CALCULATIONS FOR WINTER SPORTS FACILITIES Andrea Frisque* Stantec Consulting, Vancouver BC V6B6A3, Canada Rowan, Williams, Davies & Irwin (RWDI), Vancouver, BC, V5Z 1K5, Canada**
External Pressure Coefficients on Saw-tooth and Mono-sloped Roofs
External Pressure Coefficients on Saw-tooth and Mono-sloped Roofs Authors: Bo Cui, Ph.D. Candidate, Clemson University, 109 Lowry Hall, Clemson, SC 9634-0911, boc@clemson.edu David O. Prevatt, Assistant
Numerical Simulations of a Train of Air Bubbles Rising Through Stagnant Water
Numerical Simulations of a Train of Air Bubbles Rising Through Stagnant Water Hong Xu, Chokri Guetari ANSYS INC. Abstract Transient numerical simulations of the rise of a train of gas bubbles in a liquid
Available online at ScienceDirect. Procedia Engineering 147 (2016 ) 74 80
Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 147 (2016 ) 74 80 11th conference of the International Sports Engineering Association, ISEA 2016 Comparison of the aerodynamic
An Impeller Blade Analysis of Centrifugal Gas Compressor Using CFD
An Impeller Blade Analysis of Centrifugal Gas Compressor Using CFD Vivek V. Kulkarni Department of Mechanical Engineering KLS Gogte Institute of Technology, Belagavi, Karnataka Dr. Anil T.R. Department
Wind Directional Effect on a Single Storey House Using Educational Wind Tunnel
Wind Directional Effect on a Single Storey House Using Educational Wind Tunnel S S Zaini 1, N Rossli 1, T A Majid 1, S N C Deraman 1 and N A Razak 2 1 Disaster Research Nexus, School of Civil Engineering,
Pressure distribution of rotating small wind turbine blades with winglet using wind tunnel
Journal of Scientific SARAVANAN & Industrial et al: Research PRESSURE DISTRIBUTION OF SMALL WIND TURBINE BLADES WITH WINGLET Vol. 71, June 01, pp. 45-49 45 Pressure distribution of rotating small wind
The effect of back spin on a table tennis ball moving in a viscous fluid.
How can planes fly? The phenomenon of lift can be produced in an ideal (non-viscous) fluid by the addition of a free vortex (circulation) around a cylinder in a rectilinear flow stream. This is known as
PRESSURE DISTRIBUTION OF SMALL WIND TURBINE BLADE WITH WINGLETS ON ROTATING CONDITION USING WIND TUNNEL
International Journal of Mechanical and Production Engineering Research and Development (IJMPERD ) ISSN 2249-6890 Vol.2, Issue 2 June 2012 1-10 TJPRC Pvt. Ltd., PRESSURE DISTRIBUTION OF SMALL WIND TURBINE
CFD ANALYSIS AND COMPARISON USING ANSYS AND STAR-CCM+ OF MODEL AEROFOIL SELIG 1223
International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 11, November 2017, pp. 312 318, Article ID: IJMET_08_11_034 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=11
AIRFOIL PROFILE OPTIMIZATION OF AN AIR SUCTION EQUIPMENT WITH AN AIR DUCT
THERMAL SCIENCE, Year 2015, Vol. 19, No. 4, pp. 1217-1222 1217 AIRFOIL PROFILE OPTIMIZATION OF AN AIR SUCTION EQUIPMENT WITH AN AIR DUCT by Li QIU a,b, Rui WANG a,*, Xiao-Dong CHEN b, and De-Peng WANG
Wind pressure coefficient determination for greenhouses built in a reclaimed land using CFD technique
Ref: 1064 Wind pressure coefficient determination for greenhouses built in a reclaimed land using CFD technique Hyun-seob Hwang and In-bok Lee, Department of Rural Systems Engineering, Research Institute
CFD Simulation and Experimental Validation of a Diaphragm Pressure Wave Generator
CFD Simulation and Experimental Validation of a Diaphragm Pressure Wave Generator T. Huang 1, A. Caughley 2, R. Young 2 and V. Chamritski 1 1 HTS-110 Ltd Lower Hutt, New Zealand 2 Industrial Research Ltd
AERODYNAMIC CHARACTERISTICS OF AIRFOIL WITH SINGLE SLOTTED FLAP FOR LIGHT AIRPLANE WING
HENRI COANDA AIR FORCE ACADEMY ROMANIA INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER AFASES 2015 Brasov, 28-30 May 2015 GENERAL M.R. STEFANIK ARMED FORCES ACADEMY SLOVAK REPUBLIC AERODYNAMIC CHARACTERISTICS
Development of virtual 3D human manikin with integrated breathing functionality
SAT-9.2-2-HT-06 Development of virtual 3D human manikin with integrated breathing functionality Martin Ivanov Development of virtual 3D human manikin with integrated breathing functionality: The presented
A Study on the Effects of Wind on the Drift Loss of a Cooling Tower
A Study on the Effects of Wind on the Drift Loss of a Cooling Tower Wanchai Asvapoositkul 1* 1 Department of Mechanical Engineering, Faculty of Engineering, King Mongkut s University of Technology Thonburi
Influence of rounding corners on unsteady flow and heat transfer around a square cylinder
Influence of rounding corners on unsteady flow and heat transfer around a square cylinder S. K. Singh Deptt. of Mech. Engg., M. B. M. Engg. College / J. N. V. University, Jodhpur, Rajasthan, India Abstract
The Study on the Influence of Gust Wind on Vehicle Stability Chen Wang a, Haibo Huang b*, Shaofang Xu c
Applied Mechanics and Materials Submitted: 214-6-4 ISSN: 1662-7482, Vol. 598, pp 198-21 Accepted: 214-6-4 doi:1.428/www.scientific.net/amm.598.198 Online: 214-7-16 214 Trans Tech Publications, Switzerland
CFD ANALYSIS OF AIRFOIL SECTIONS
CFD ANALYSIS OF AIRFOIL SECTIONS Vinayak Chumbre 1, T. Rushikesh 2, Sagar Umatar 3, Shirish M. Kerur 4 1,2,3 Student, Jain College of Engineering, Belagavi, Karnataka, INDIA 4Professor, Dept. of Mechanical
International Journal of Innovative Research in Science, Engineering and Technology Vol. 2, Issue 5, May 2013
PERFORMANCE PREDICTION OF HORIZONTAL AXIS WIND TURBINE BLADE HardikPatel 1, SanatDamania 2 Master of Engineering Student, Department of Mechanical Engineering, Government Engineering College, Valsad, Gujarat,
Modelling the Output of a Flat-Roof Mounted Wind Turbine with an Edge Mounted Lip
Modelling the Output of a Flat-Roof Mounted Wind Turbine with an Edge Mounted Lip S. J. Wylie 1, S. J. Watson 1, D. G. Infield 2 1 Centre for Renewable Energy Systems Technology, Department of Electronic
Effect of Co-Flow Jet over an Airfoil: Numerical Approach
Contemporary Engineering Sciences, Vol. 7, 2014, no. 17, 845-851 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ces.2014.4655 Effect of Co-Flow Jet over an Airfoil: Numerical Approach Md. Riajun
CFD Analysis and Experimental Study on Impeller of Centrifugal Pump Alpeshkumar R Patel 1 Neeraj Dubey 2
IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 2, 21 ISSN (online): 2321-613 Alpeshkumar R Patel 1 Neeraj Dubey 2 1 PG Student 2 Associate Professor 1,2 Department of
The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7) Shanghai, China; September 2-6, 2012 Wind tunnel measurements
The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7) Shanghai, China; September 2-6, 2012 Wind tunnel measurements of aeroelastic guyed mast models a, Tomasz Lipecki
EFFECT OF CORNER CUTOFFS ON FLOW CHARACTERISTICS AROUND A SQUARE CYLINDER
EFFECT OF CORNER CUTOFFS ON FLOW CHARACTERISTICS AROUND A SQUARE CYLINDER Yoichi Yamagishi 1, Shigeo Kimura 1, Makoto Oki 2 and Chisa Hatayama 3 ABSTRACT It is known that for a square cylinder subjected
CFD Study of Solid Wind Tunnel Wall Effects on Wing Characteristics
Indian Journal of Science and Technology, Vol 9(45), DOI :10.17485/ijst/2016/v9i45/104585, December 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 CFD Study of Solid Wind Tunnel Wall Effects on
OPTIMIZATION OF SINGLE STAGE AXIAL FLOW COMPRESSOR FOR DIFFERENT ROTATIONAL SPEED USING CFD
http:// OPTIMIZATION OF SINGLE STAGE AXIAL FLOW COMPRESSOR FOR DIFFERENT ROTATIONAL SPEED USING CFD Anand Kumar S malipatil 1, Anantharaja M.H 2 1,2 Department of Thermal Power Engineering, VTU-RO Gulbarga,
Hydrodynamic analysis of submersible robot
International Journal of Advanced Research and Development ISSN: 2455-4030, Impact Factor: RJIF 5.24 www.advancedjournal.com Volume 1; Issue 9; September 2016; Page No. 20-24 Hydrodynamic analysis of submersible
APPLICATION OF COMPUTATIONAL FLUID DYNAMICS (CFD) IN WIND ANALYSIS OF TALL BUILDINGS. Damith Mohotti, Priyan Mendis, Tuan Ngo
APPLICATION OF COMPUTATIONAL FLUID DYNAMICS (CFD) IN WIND ANALYSIS OF TALL BUILDINGS Damith Mohotti, Priyan Mendis, Tuan Ngo Department of Infrastructures Engineering, The University of Melbourne, Victoria,
WIND FLOW CHARACTERISTICS AROUND ROOFTOP SOLAR ARRAY - A NUMERICAL STUDY
The Eighth Asia-Pacific Conference on Wind Engineering, December 10 14, 2013, Chennai, India WIND FLOW CHARACTERISTICS AROUND ROOFTOP SOLAR ARRAY - A NUMERICAL STUDY D.Ghosh 1, A. K. Mittal 2, S. Behera
Development of Technology to Estimate the Flow Field around Ship Hull Considering Wave Making and Propeller Rotating Effects
Development of Technology to Estimate the Flow Field around Ship Hull Considering Wave Making and Propeller Rotating Effects 53 MAKOTO KAWABUCHI *1 MASAYA KUBOTA *1 SATORU ISHIKAWA *2 As can be seen from
2-D Computational Analysis of a Vertical Axis Wind Turbine Airfoil
2-D Computational Analysis of a Vertical Axis Wind Turbine Airfoil Akshay Basavaraj1 Student, Department of Aerospace Engineering, Amrita School of Engineering, Coimbatore 641 112, India1 Abstract: This
COMPUTATIONAL FLUID DYNAMIC ANALYSIS OF AIRFOIL NACA0015
International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 2, February 2017, pp. 210 219 Article ID: IJMET_08_02_026 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=2
AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK
AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK SUPREETH NARASIMHAMURTHY GRADUATE STUDENT 1327291 Table of Contents 1) Introduction...1 2) Methodology.3 3) Results...5
Computational Analysis of Cavity Effect over Aircraft Wing
World Engineering & Applied Sciences Journal 8 (): 104-110, 017 ISSN 079-04 IDOSI Publications, 017 DOI: 10.589/idosi.weasj.017.104.110 Computational Analysis of Cavity Effect over Aircraft Wing 1 P. Booma
Numerical Analysis of Wind loads on Tapered Shape Tall Buildings
IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 11 May 2015 ISSN (online): 2349-784X Numerical Analysis of Wind loads on Tapered Shape Tall Buildings Ashwin G Hansora Assistant
WIND-INDUCED LOADS OVER DOUBLE CANTILEVER BRIDGES UNDER CONSTRUCTION
WIND-INDUCED LOADS OVER DOUBLE CANTILEVER BRIDGES UNDER CONSTRUCTION S. Pindado, J. Meseguer, J. M. Perales, A. Sanz-Andres and A. Martinez Key words: Wind loads, bridge construction, yawing moment. Abstract.
Design & Analysis of Natural Laminar Flow Supercritical Aerofoil for Increasing L/D Ratio Using Gurney Flap
Design & Analysis of Natural Laminar Flow Supercritical Aerofoil for Increasing L/D Ratio Using Gurney Flap U.Praveenkumar 1, E.T.Chullai 2 M.Tech Student, School of Aeronautical Science, Hindustan University,
Experimental Investigation Of Flow Past A Rough Surfaced Cylinder
(AET- 29th March 214) RESEARCH ARTICLE OPEN ACCESS Experimental Investigation Of Flow Past A Rough Surfaced Cylinder Monalisa Mallick 1, A. Kumar 2 1 (Department of Civil Engineering, National Institute
FLUID MECHANICS Time: 1 hour (ECE-301) Max. Marks :30
B.Tech. [SEM III(ME&CE)] QUIZ TEST-1 (Session : 2013-14) Time: 1 hour (ECE-301) Max. Marks :30 Note: Attempt all questions. PART A Q1. The velocity of the fluid filling a hollow cylinder of radius 0.1
Journal of Engineering Science and Technology Review 9 (5) (2016) Research Article. CFD Simulations of Flow Around Octagonal Shaped Structures
Jestr Journal of Engineering Science and Technology Review 9 (5) (2016) 72-76 Research Article JOURNAL OF Engineering Science and Technology Review www.jestr.org CFD Simulations of Flow Around Octagonal
COMPUTATIONAL FLOW MODEL OF WESTFALL'S LEADING TAB FLOW CONDITIONER AGM-09-R-08 Rev. B. By Kimbal A. Hall, PE
COMPUTATIONAL FLOW MODEL OF WESTFALL'S LEADING TAB FLOW CONDITIONER AGM-09-R-08 Rev. B By Kimbal A. Hall, PE Submitted to: WESTFALL MANUFACTURING COMPANY September 2009 ALDEN RESEARCH LABORATORY, INC.
A Numerical Simulation of Fluid-Structure Interaction for Refrigerator Compressors Suction and Exhaust System Performance Analysis
1131, Page 1 A Numerical Simulation of Fluid-Structure Interaction for Refrigerator Compressors Suction and Exhaust System Performance Analysis Shoufei Wu*, Zonghuai Wang Jiaxipera Compressor Co., Ltd.,
A Numerical Study of the Flow through a Safety Butterfly Valve in a Hydro-Electric Power Scheme
16th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 2007 A Numerical Study of the Flow through a Safety Butterfly Valve in a Hydro-Electric Power Scheme A. D. Henderson
Irrigation &Hydraulics Department lb / ft to kg/lit.
CAIRO UNIVERSITY FLUID MECHANICS Faculty of Engineering nd Year CIVIL ENG. Irrigation &Hydraulics Department 010-011 1. FLUID PROPERTIES 1. Identify the dimensions and units for the following engineering
Critical Gust Pressures on Tall Building Frames-Review of Codal Provisions
Dr. B.Dean Kumar Dept. of Civil Engineering JNTUH College of Engineering Hyderabad, INDIA bdeankumar@gmail.com Dr. B.L.P Swami Dept. of Civil Engineering Vasavi College of Engineering Hyderabad, INDIA
Application of Simulation Technology to Mitsubishi Air Lubrication System
50 Application of Simulation Technology to Mitsubishi Air Lubrication System CHIHARU KAWAKITA *1 SHINSUKE SATO *2 TAKAHIRO OKIMOTO *2 For the development and design of the Mitsubishi Air Lubrication System
CFD Analysis of Supersonic Nozzle with Varying Divergent Profile
CFD Analysis of Supersonic Nozzle with Varying Divergent Profile Kaviya sundar #1, Thanikaivel Murugan. D *2 # UG Degree holder, B.E. Aeronautical Engineering, Jeppiaar Engineering college, Chennai, India,
Návrh vratného kanálu u dvoustupňového kompresoru Return channel design of the two stage compressor
Návrh vratného kanálu u dvoustupňového kompresoru Return channel design of the two stage compressor J. Hrabovský, J. Vacula, M. Komárek L. K. Engineering, s.r.o C. Drápela, M. Vacek, J. Klíma PBS Turbo
Numerical simulation of aerodynamic performance for two dimensional wind turbine airfoils
Available online at www.sciencedirect.com Procedia Engineering 31 (2012) 80 86 International Conference on Advances in Computational Modeling and Simulation Numerical simulation of aerodynamic performance
ANALYSES OF THERMAL COMFORT AND INDOOR AIR QUALITY UNDER STRATUM, DISPLACEMENT, AND MIXING VENTILATION SYSTEMS
3 rd International Conference on Energy Systems and Technologies 16 19 Feb. 2015, Cairo, Egypt ANALYSES OF THERMAL COMFORT AND INDOOR AIR QUALITY UNDER STRATUM, DISPLACEMENT, AND MIXING VENTILATION SYSTEMS
ScienceDirect. Aerodynamic body position of the brakeman of a 2-man bobsleigh
Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 112 (2015 ) 424 429 7th Asia-Pacific Congress on Sports Technology, APCST 2015 Aerodynamic body position of the brakeman of
Welke daalhouding is het meest aerodynamisch?
Welke daalhouding is het meest aerodynamisch? Bert Blocken a,b a Faculteit Bouwkunde, Technische Universiteit Eindhoven, Nederland b Departement Burgerlijke Bouwkunde, KU Leuven, België Welke daalhouding
THE PERFORMANCE OF PLANING HULLS IN TRANSITION SPEEDS
THE PERFORMANCE OF PLANING HULLS IN TRANSITION SPEEDS BY DOYOON KIM UNIVERSITY OF SOUTHAMPTON LIST OF CONTENTS AIM & OBJECTIVE HYDRODYNAMIC PHENOMENA OF PLANING HULLS TOWING TANK TEST RESULTS COMPUTATIONAL