Port Jefferson-Bridgeport Ferry Project: Wind Correction

Size: px
Start display at page:

Download "Port Jefferson-Bridgeport Ferry Project: Wind Correction"

Transcription

1 Port Jefferson-Bridgeport Ferry Project: Wind Correction Background Joseph Giannotti SUNY-Stony Brook Dr. Duane Waliser Marine Sciences Research Center SUNY-Stony Brook Jeffrey Tongue National Weather Service Upton, NY Ken Johnson Eastern Region Headquarters National Weather Service Bohemia, NY August 1, 2002 A recent grant from the New York Sea Grant Agency, along with the support and participation of the Bridgeport-Port Jefferson Ferry Company, has provided the opportunity to collect observations of a number of key environmental factors during the routine ferry trips across the Long Island Sound (LIS). This gives researchers at SUNY- Stony Brook the opportunity to receive extremely valuable information in order to address very important regional scientific and environmental issues. These include studying the development of hypoxia as well as establishing a more accurate long-term record of regional climate for the LIS. The National Weather Service s New York City Office, located in Upton, NY, has the responsibility for making forecasts over the Long Island Sound. At present, there are no sources of real-time observations over the Sound, making this forecast task very difficult. The implementation of an atmospheric monitoring station on the (PT Barnum) ferry gives forecasters the resources they need, such as temperature, wind speed, and other meteorological observations over LIS, to improve and validate their forecasts. This document describes the corrections that are needed to make use of the wind observations made from the ferry.

2 Introduction In order to utilize the wind data collected from the ferry, it has to be corrected for the motion and direction of the vessel. The wind instruments on the vessel provide the wind speed and direction with respect to the vessel. The velocity of the boat relative to the ground can be obtained using the Global Positioning System (GPS) or the Acoustic Doppler Current Profiler (ADCP). Using the above information, the wind speed and direction relative to the ground can be determined as follows: Vessel Velocity Relative to the Ground N Vb θo E Here, Vb is the vector for the boat velocity and θo is the angle that the boat heading is relative to the compass coordinate system. (see Coordinate Systems) The diagram of the wind speed relative to the boat: Wind Relative to the Boat Bow Vw ψo Port Starboard Stern Here Vw is the vector for the wind velocity and ψo gives the angle of the wind relative to the bow of the boat, using compass coordinates.

3 Coordinate Systems Given the manner the observations are reported, as well as the methods used to correct the wind observations, it is necessary to utilize two different coordinate systems. First, the National Weather Service (NWS) uses the compass coordinate system. Second, in order to perform the wind correction, the polar coordinate system is needed. The following schematic represents the two coordinate systems: Compass Coordinate System Polar Coordinate System 0 (N) 90 (N) (W) (E) (W) (E) 180 (S) 270 (S) In addition, it should be kept in mind that the NWS uses the convention that the angle of the wind represents the direction the wind is coming from. To convert the NWS angle (ψo) to the more standard vector form (ψi), the angle is modified as follows: ψi = (ψo ) % 360 (1) Now to convert the angle associated with the wind and boat velocities, which are in standard vector form, from their CCS representation to PCS, the following equations are used: θ = ([360 - θo] + 90 ) % 360 (2) ψ = ([360 - ψi] + 90 ) % 360 (3) Here θ and ψ are the boat and wind angles, respectively, in the PCS and % represents the modulus function. For example, if θo is 30, then the quantity in the parenthesis and the result of the % operation gives θ equal to 60. Once the vector quantities are in the PCS, then we can perform the needed vector addition and determine the angle of the corrected wind. When all the mathematical procedures have been completed, the wind has to be converted from the PCS back to CCS, as shown below: αi = ([360 - α] + 90 ) % 360 (4) Furthermore, equation (1) is again required to accommodate the NWS convention.

4 Method Given a wind observation from the boat, the NWS convention is first accounted for (Eq. 1) and then converted into the PCS (Eq. 3). Similarly, the observation of the boat velocity needs to be changed from CCS to PCS (Eq. 2). Now the wind and boat velocities are both in the PCS, and the corrected wind speed can be calculated as follows: The vessel velocity s x-y components relative to the ground are computed as follows: Vbx = Vb cos θ (5) Vby = Vb sin θ (6) The x-y components for the wind velocity relative to the boat are calculated as follows: Vwx1 = Vw cos ψ (7) Vwy1 = Vw sin ψ (8) In order to get the x-y components of the wind velocity, as measured on the boat, in terms of the coordinate system of the ground, a rotation by the angle φ is required: This rotation takes the following form: φ = 90 - θ (9) Vwx = (Vwx1) cos φ + (Vwy1) sin φ (10) Vwy = (-Vwx1) sin φ + (Vwy1) cos φ (11) To account for the motion of the vessel and thus compute the wind relative to the ground, the following vector addition is performed: Vx = Vwx + Vbx (12) Vy = Vwy + Vby (13) The speed of the corrected wind is computed as follows: (W ^ 2) = (Vx ^ 2) + (Vy ^2), (14) or W = ((Vx ^ 2) + (Vy ^2)) ^.5

5 To determine the direction of the corrected wind, the following equation is used: α = arctan (Vy / Vx) (15) Once the corrected wind is calculated, it still needs to be converted into the meteorological convention. By using Equation 3, the angle is changed into the CCS. By using Equation 1, the angle is then changed into the NWS convention. Program Implementation The above method for the wind conversion has been implemented into a FORTRAN subroutine.! ! Inputs:! VB: The vessel's speed. (m/s)! AB0: The angle of the vessel velocity using the compass coordinate! system (CCS) in degrees.! VW: The wind speed, that is relative to the ferry. (m/s)! AW0: The angle of the wind velocity in CCS relative to the boat! and using the NWS convention (i.e. direction wind is coming from).! Outputs:! VWC: The corrected wind speed relative to the ground. (m/s)! AWC3: The angle for the corrected wind velocity in the CCS in! degrees, along with using the NWS convention.! UPWIND: This returns a zero if the starboard or bow is upwind.! This returns a one if the port or stern is upwind.! SUBROUTINE Windcorrect (VB, VW, AB0, AW0, VWC, AWC3, UPWIND) REAL, INTENT(IN) :: VB, VW, AB0, AW0 REAL, INTENT(OUT) :: VWC, AWC3 REAL :: VBX, VBY, VWX, VWY, VX0, VY0, VX, VY, AW2, VWX0, VWY0 REAL :: AB1, AW1, PI, AWC, AWC1, AB, AW, AT, AWC2 INTEGER, INTENT(OUT) :: UPWIND INTEGER :: A, B! These modulus functions convert the angle of the velocities from! the compass coordinates system (CCS) into the polar coordinate! system (PCS), in degrees. AB1 = MOD((( AB0) ), 360.0) AW1 = MOD((( AW0) ), 360.0)! The following is the conversion from degrees to radians for the! angle of the boat. PI = AB = AB1 * PI / 180

6 ! Before the angle of the wind with respect to the vessel gets! converted from degrees to radians, the angle needs to be changed! so that the angle of the wind represents the direction the wind is! moving to rather than coming from. AW2 = MOD((AW ), 360.0) AW = AW2 * PI / 180! These are the components for the vessel's velocity relative to the! ground. VBX = ABS(VB) * COS(AB) VBY = ABS(VB) * SIN(AB)! This provides the components for the wind velocity with respect to! the boat in PCS. VWX0 = ABS(VW) * COS(AW) VWY0 = ABS(VW) * SIN(AW)! In order to get the x-y components of the wind velocity, as! measured on the boat, in terms of the coordinate system of the! ground, an angle rotation is required. AT = (PI/2) - AB! This rotation takes the following form: VWX = (COS(AT) * VWX0) + (SIN(AT) * VWY0) VWY = (-SIN(AT) * VWX0) + (COS(AT) * VWY0)! Vector addition is used to account for the motion of the vessel! and calculate the wind relative to the ground. VX0 = VWX + VBX VY0 = VWY + VBY! The NWS convention requires that a 0 m/s wind be reported with! a direction of 0 degrees. If the full machine accuracy is used! to represent VX and VY, then a non-zero wind direction is obtained! in almost all circumstances of very low (i.e. ~0) wind! conditions. To accommodate the NWS convention, only the first 3! significant digits are retained and thus from the following code,! infinitesimal wind values will be reported as 0 and the! direction of the wind will also be computed and reported as 0. VX = VX0 * 1000 A = INT(VX) VX = REAL(A) / 1000 VY = VY0 * 1000 B = INT(VY) VY = REAL(B) / 1000! The following formula calculates the speed of the corrected wind. VWC = SQRT((VX * VX) + (VY * VY))

7 ! The following gives the direction of the corrected wind in PCS. IF (VX.EQ. 0) THEN! The wind direction is retrieved in degrees if this is true. IF (VY.GT. 0) THEN AWC1 = 90.0 IF (VY.LT. 0) THEN AWC1 = AWC1 = 0.0! The wind direction is retrieved in radians if this is true. AWC = ATAN2(VY, VX)! The corrected angle is converted from radians back into! degrees. IF (AWC.LT. 0) THEN AWC1 = (AWC * 180 / PI) AWC1 = AWC * 180 / PI! The wind direction is changed from the PCS back into the CCS. IF (VX.EQ. 0) THEN IF (VY.GT. 0) THEN AWC2 = 0.0 AWC3 = AWC2 = AWC3 = 0.0 AWC2 = MOD((( AWC1) ), 360.0)! The angle of the corrected wind is converted from CCS into! the NWS convention. IF (AWC2.GE. 0.AND. AWC2.LT. 180) THEN AWC3 = AWC AWC3 = AWC

8 IF (AW0.GE. 0.AND. AW0.LT. 180) THEN! The following provides whether the starboard or the bow! is upwind. UPWIND = 0! The following provides whether the port or the stern! is upwind. UPWIND = 1 END SUBROUTINE Windcorrect

Motion, Vectors, and Projectiles Review. Honors Physics

Motion, Vectors, and Projectiles Review. Honors Physics Motion, Vectors, and Projectiles Review Honors Physics The graph below represents the relationship between velocity and time of travel for a toy car moving in a straight line. The shaded area under the

More information

HYDROGRAPHIC AND SITE SURVEY REPORT

HYDROGRAPHIC AND SITE SURVEY REPORT HYDROGRAPHIC AND SITE SURVEY REPORT Proposed Pen Site at Dounie, Sound of Jura Prepared for: Kames Fish Farming Ltd Kilmelford Argyll PA34 4XA Tel: +44 (0)1631 720699 TransTech Limited www.transtechltd.com

More information

ROSE-HULMAN INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Mini-project 3 Tennis ball launcher

ROSE-HULMAN INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Mini-project 3 Tennis ball launcher Mini-project 3 Tennis ball launcher Mini-Project 3 requires you to use MATLAB to model the trajectory of a tennis ball being shot from a tennis ball launcher to a player. The tennis ball trajectory model

More information

Naval Postgraduate School, Operational Oceanography and Meteorology. Since inputs from UDAS are continuously used in projects at the Naval

Naval Postgraduate School, Operational Oceanography and Meteorology. Since inputs from UDAS are continuously used in projects at the Naval How Accurate are UDAS True Winds? Charles L Williams, LT USN September 5, 2006 Naval Postgraduate School, Operational Oceanography and Meteorology Abstract Since inputs from UDAS are continuously used

More information

ATS 351, Spring 2009 Week 10, Lab #8 due April 2 nd What Makes the Wind Blow? - 60 points Please show your work for calculations.

ATS 351, Spring 2009 Week 10, Lab #8 due April 2 nd What Makes the Wind Blow? - 60 points Please show your work for calculations. ATS 351, Spring 2009 Week 10, Lab #8 due April 2 nd What Makes the Wind Blow? - 60 points Please show your work for calculations. Question #1: Sea Level Pressure (10 points) a) (4 points) How does sea-level

More information

Geophysical Model Functions for the Retrieval of Ocean Surface Winds

Geophysical Model Functions for the Retrieval of Ocean Surface Winds Geophysical Model Functions for the Retrieval of Ocean Surface Winds Donald R. Thompson and Frank M. Monaldo Johns Hopkins University Applied Physics Laboratory 11100 Johns Hopkins Road, Laurel, MD 20708

More information

Integrated control system for ship motion in inland navigation

Integrated control system for ship motion in inland navigation Integrated control system for ship motion in inland navigation J. Kulczyk, T. Bielihski Institute ofmachines Desing and Operation, Technical University of Wroclaw, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw,

More information

COMPLEX NUMBERS. Powers of j. Consider the quadratic equation; It has no solutions in the real number system since. j 1 ie. j 2 1

COMPLEX NUMBERS. Powers of j. Consider the quadratic equation; It has no solutions in the real number system since. j 1 ie. j 2 1 COMPLEX NUMBERS Consider the quadratic equation; x 0 It has no solutions in the real number system since x or x j j ie. j Similarly x 6 0 gives x 6 or x 6 j Powers of j j j j j. j j j j.j jj j j 5 j j

More information

Practice Test: Vectors and Projectile Motion

Practice Test: Vectors and Projectile Motion ame: Practice Test: Vectors and Projectile Motion Part A: Multiple Choice [15 points] 1. A projectile is launched at an angle of 30 0 above the horizontal. eglecting air resistance, what are the projectile

More information

Average speed is calculated by taking the total distance travelled and dividing it by the total time:

Average speed is calculated by taking the total distance travelled and dividing it by the total time: Speed Calculations Now that you know your definitions, you ll learn how to calculate some of the quantities. The following formulas are all very similar, but their slight differences are important since

More information

Interim Operating Procedures for SonTek RiverSurveyor M9/S5

Interim Operating Procedures for SonTek RiverSurveyor M9/S5 Hydroacoustics Technical Working Group: Task 2.3 Fully operationalize auto-adapting ADCPs Interim Operating Procedures for SonTek RiverSurveyor M9/S5 P Campbell, E. Jamieson, F Rainville, A Du Cap, 2014

More information

AN ISOLATED SMALL WIND TURBINE EMULATOR

AN ISOLATED SMALL WIND TURBINE EMULATOR AN ISOLATED SMALL WIND TURBINE EMULATOR Md. Arifujjaman Graduate Student Seminar: Master of Engineering Faculty of Engineering and Applied Science Memorial University of Newfoundland St. John s, NL, Canada

More information

Project 1 Those amazing Red Sox!

Project 1 Those amazing Red Sox! MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.001 Structure and Interpretation of Computer Programs Spring Semester, 2005 Project 1 Those amazing Red

More information

Temperature, salinity, density, and the oceanic pressure field

Temperature, salinity, density, and the oceanic pressure field Chapter 2 Temperature, salinity, density, and the oceanic pressure field The ratios of the many components which make up the salt in the ocean are remarkably constant, and salinity, the total salt content

More information

EE 364B: Wind Farm Layout Optimization via Sequential Convex Programming

EE 364B: Wind Farm Layout Optimization via Sequential Convex Programming EE 364B: Wind Farm Layout Optimization via Sequential Convex Programming Jinkyoo Park 1 Introduction In a wind farm, the wakes formed by upstream wind turbines decrease the power outputs of downstream

More information

Title: Direction and Displacement

Title: Direction and Displacement Title: Direction and Displacement Subject: Mathematics Grade Level: 10 th 12 th Rational or Purpose: This activity will explore students knowledge on directionality and displacement. With the use angle

More information

Long-Term Autonomous Measurement of Ocean Dissipation with EPS-MAPPER

Long-Term Autonomous Measurement of Ocean Dissipation with EPS-MAPPER Long-Term Autonomous Measurement of Ocean Dissipation with EPS-MAPPER Neil S. Oakey Bedford Institute of Oceanography Dartmouth, Nova Scotia Canada B2Y 4A2 phone: (902) 426-3147 fax: (902) 426-7827 e-mail:

More information

APPENDIX G WEATHER DATA SELECTED EXTRACTS FROM ENVIRONMENTAL DATA FOR BCFS VESSEL REPLACEMENT PROGRAM DRAFT REPORT

APPENDIX G WEATHER DATA SELECTED EXTRACTS FROM ENVIRONMENTAL DATA FOR BCFS VESSEL REPLACEMENT PROGRAM DRAFT REPORT APPENDIX G WEATHER DATA SELECTED EXTRACTS FROM ENVIRONMENTAL DATA FOR BCFS VESSEL REPLACEMENT PROGRAM DRAFT REPORT Prepared for: B.C. Ferries Services Inc. Prepared by: George Roddan, P.Eng. Roddan Engineering

More information

1.6.1 Inertial Reference Frames

1.6.1 Inertial Reference Frames 1.6.1 Inertial Reference Frames The laws of physics which apply when you are at rest on the earth also apply when you are in any reference frame which is moving at a constant velocity with respect to the

More information

SWIFT. The Stratospheric Wind Interferometer for Transport Studies

SWIFT. The Stratospheric Wind Interferometer for Transport Studies The Stratospheric Wind Interferometer for Transport Studies SWIFT I. McDade, C. Haley, J. Drummond, K. Strong, B. Solheim, T. Shepherd, Y. Rochon, and the SWIFT Team ESA What is SWIFT? SWIFT is the Stratospheric

More information

Kinematics and Luffing Moment of Lemniscate Type Crane with Boom. Driving

Kinematics and Luffing Moment of Lemniscate Type Crane with Boom. Driving dvanced Materials Research Online: 2012-04-12 ISSN: 1662-8985, Vols. 503-504, pp 923-926 doi:10.4028/www.scientific.net/mr.503-504.923 2012 Trans Tech ublications, Switzerland Kinematics and Luffing Moment

More information

Sample Solution for Problem 1.a

Sample Solution for Problem 1.a Sample Solution for Problem 1.a 1 Inverted Pendulum Model (IPM) 1.1 Equations of Motion and Ground Reaction Forces Figure 1: Scheme of the Inverted Pendulum Model (IPM). The equations of motion of this

More information

ESTABLISHING MORE TRUTH IN TRUE WINDS

ESTABLISHING MORE TRUTH IN TRUE WINDS ESTABLISHING MORE TRUTH IN TRUE WINDS Shawn R. Smith, Mark A. Bourassa and Ryan J. Sharp, Center for Ocean- Atmospheric Prediction Studies (COAPS)* ABSTRACT 1. INTRODUCTION Techniques are presented for

More information

Position and displacement

Position and displacement /1/14 Position and displacement Objectives Describe motion in 1D using position, distance, and displacement. Analyze motion in 1D using position, distance, and displacement. Correctly use and interpret

More information

Sontek RiverSurveyor Test Plan Prepared by David S. Mueller, OSW February 20, 2004

Sontek RiverSurveyor Test Plan Prepared by David S. Mueller, OSW February 20, 2004 Sontek RiverSurveyor Test Plan Prepared by David S. Mueller, OSW February 20, 2004 INTRODUCTION Sontek/YSI has introduced new firmware and software for their RiverSurveyor product line. Firmware changes

More information

Note to Shipbuilders, shipowners, ship Managers and Masters. Summary

Note to Shipbuilders, shipowners, ship Managers and Masters. Summary MARINE GUIDANCE NOTE MGN 301 (M+F) Manoeuvring Information on Board Ships Note to Shipbuilders, shipowners, ship Managers and Masters This note supersedes Marine Guidance Note MGN 201 (M+F) Summary The

More information

Computer Integrated Manufacturing (PLTW) TEKS/LINKS Student Objectives One Credit

Computer Integrated Manufacturing (PLTW) TEKS/LINKS Student Objectives One Credit Computer Integrated Manufacturing (PLTW) TEKS/LINKS Student Objectives One Credit Suggested Time Ranges First Six Weeks History of Manufacturing PFD 1.1(A) The student will describe why and how manufacturing

More information

PART 5 - OPTIONS CONTENTS 5.1 SYSTEM EXPANSION 5-3

PART 5 - OPTIONS CONTENTS 5.1 SYSTEM EXPANSION 5-3 PART 5 - OPTIONS CONTENTS Para Page 5.1 SYSTEM EXPANSION 5-3 5.2 SENSORS 5-3 5.2.1 Trim Angle Sensor 5-3 5.2.2 Mast Rotation Sensor 5-3 5.2.3 Heel Angle Sensor 5-3 5.2.4 Barometric Pressure Sensor 5-3

More information

CALCULATING IN-FLIGHT WINDS

CALCULATING IN-FLIGHT WINDS CALCULATING IN-FLIGHT WINDS SITUATION: The TH of your aircraft is 350 with the TAS of 150 kts. GS has been determined to be 160 kts, and the Track is 355. What is the wind? ESTIMATE! First compare TAS

More information

NSST SPECIAL EVOLUTIONS TRAINING INSTRUCTIONAL MODULE MODULE MATH FOR THE OOD (I) (APPLICATIONS FOR UNREP OPS) REVISION DATE: 6 NOVEMBER 2015

NSST SPECIAL EVOLUTIONS TRAINING INSTRUCTIONAL MODULE MODULE MATH FOR THE OOD (I) (APPLICATIONS FOR UNREP OPS) REVISION DATE: 6 NOVEMBER 2015 NSST SPECIAL EVOLUTIONS TRAINING INSTRUCTIONAL MODULE MODULE MATH FOR THE OOD (I) (APPLICATIONS FOR UNREP OPS) REVISION DATE: 6 NOVEMBER 2015 1 This page has been intentionally left blank. 2 BEST PRACTICES

More information

M-06 Nitrogen Generator (Nitrogen Making Machine)

M-06 Nitrogen Generator (Nitrogen Making Machine) Guideline No.M-06 (201510) M-06 Nitrogen Generator (Nitrogen Making Machine) Issued date: 20 th October, 2015 China Classification Society Foreword This Guideline is a part of CCS Rules, which contains

More information

Review of Equivalent Neutral Winds and Stress

Review of Equivalent Neutral Winds and Stress Review of Equivalent Neutral Winds and Stress Mark A. Bourassa Center for Ocean-Atmospheric Prediction Studies, Geophysical Fluid Dynamics Institute & Department of Earth, Ocean and Atmospheric Science

More information

5. The magnitude of a vector cannot be smaller than the magnitude of any of its components. TRUE FALSE

5. The magnitude of a vector cannot be smaller than the magnitude of any of its components. TRUE FALSE Physics 1 Exam 2 Practice S14 Name: Show work for ANY credit. Box answers. Assume 3 significant figures! Ignore air resistance. NEATNESS COUNTS. Conceptual Questions. (2 points each) 1. A 100 g ball rolls

More information

Gait Analysis of Wittenberg s Women s Basketball Team: The Relationship between Shoulder Movement and Injuries

Gait Analysis of Wittenberg s Women s Basketball Team: The Relationship between Shoulder Movement and Injuries Gait Analysis of Wittenberg s Women s Basketball Team: The Relationship between Shoulder Movement and Injuries Katie Bondy Senior Presentation May 1 st 2013 Research Question Among basketball players,

More information

Tactical Compass Overview

Tactical Compass Overview Tactical Compass Overview Clay Babcock Mar 8 th, 2018 3/9/18 1 Overview WYC Philosophy Compass Background Types of Compasses The Art of Going Upwind Well Other Device Functions Tactical Compasses Reviewed

More information

Constant Acceleration: The physics of sailing

Constant Acceleration: The physics of sailing Constant Acceleration: The physics of sailing Sailing gives examples of physics: Newton's laws, vector subtraction, Archimedes' principle and others. This support page from Physclips asks How can a boat

More information

3 1 PRESSURE. This is illustrated in Fig. 3 3.

3 1 PRESSURE. This is illustrated in Fig. 3 3. P = 3 psi 66 FLUID MECHANICS 150 pounds A feet = 50 in P = 6 psi P = s W 150 lbf n = = 50 in = 3 psi A feet FIGURE 3 1 The normal stress (or pressure ) on the feet of a chubby person is much greater than

More information

APPLICATION NOTE: MARINE APPLICATIONS Trim, Roll and Leeway.

APPLICATION NOTE: MARINE APPLICATIONS Trim, Roll and Leeway. APPLICATION NOTE: MARINE APPLICATIONS Trim, Roll and Leeway. An Alternative VBOX Application Examples of Trim Angle effects Traditionally, the VBOX has been used by automotive markets but the wealth of

More information

Dynamics of the Wind Field

Dynamics of the Wind Field Dynamics of the Wind Field Balanced Wind Approximations Meteorology 411 Iowa State University Week 4 Bill Gallus Why use balanced wind approximations? Real atmosphere is very complex, making it hard to

More information

Implementation of Height Measurement System Based on Pressure Sensor BMP085

Implementation of Height Measurement System Based on Pressure Sensor BMP085 017 nd International Conference on Test, Measurement and Computational Method (TMCM 017) ISBN: 978-1-60595-465-3 Implementation of Height Measurement System Based on Pressure Sensor BMP085 Gao-ping LIU

More information

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Fluid statics Fluid statics is the study of fluids in

More information

The objectives of this tutorial are: significant figures in a measured quantity.

The objectives of this tutorial are: significant figures in a measured quantity. Tutorial on the Use of Significant Figures The objectives of this tutorial are: 1. Explain the concept of significant figures. 2. Define rules for deciding the number of significant figures in a measured

More information

Ship waves in Tallinn Bay: Experimental and numerical study

Ship waves in Tallinn Bay: Experimental and numerical study Ship waves in Tallinn Bay: Experimental and numerical study Tomas Torsvik Bergen Center for Computational Science UNIFOB AS In collaboration with Tarmo Soomere Wave Engineering Centre for Nonlinear studies

More information

INTRODUCTION TO NETWORK WIND 3 MOUNTING THE UNIT 14 SELECTING THE DISPLAY MODE 5 ABBREVIATIONS AND DEFINITIONS 17

INTRODUCTION TO NETWORK WIND 3 MOUNTING THE UNIT 14 SELECTING THE DISPLAY MODE 5 ABBREVIATIONS AND DEFINITIONS 17 CONTENTS CONTENTS 1 INSTALLATION 14 GENERAL INTRODUCTION TO B&G NETWORK 2 SITING THE UNIT 14 INTRODUCTION TO NETWORK WIND 3 MOUNTING THE UNIT 14 EXAMPLE SYSTEMS USING NETWORK WIND 4 SPECIFICATION 16 SELECTING

More information

AP Physics 1 Summer Packet Review of Trigonometry used in Physics

AP Physics 1 Summer Packet Review of Trigonometry used in Physics AP Physics 1 Summer Packet Review of Trigonometry used in Physics For some of you this material will seem pretty familiar and you will complete it quickly. For others, you may not have had much or any

More information

Relative Velocity Practice + Special Relativity. Grab a reference table

Relative Velocity Practice + Special Relativity. Grab a reference table Relative Velocity Practice + Special Relativity Grab a reference table Note: Answer all of these questions with respect to the spaceship. Announcements Lab Report is due Friday (Late = 55, No submission

More information

Failure Detection in an Autonomous Underwater Vehicle

Failure Detection in an Autonomous Underwater Vehicle Failure Detection in an Autonomous Underwater Vehicle Alec Orrick, Make McDermott, Department of Mechanical Engineering David M. Barnett, Eric L. Nelson, Glen N. Williams, Department of Computer Science

More information

Pressure Measurement

Pressure Measurement Pressure Measurement Absolute and Gage Pressure P abs = P gage + P atm where P abs = Absolute pressure P abs = Gage pressure P abs = atmospheric pressure A perfect vacuum is the lowest possible pressure.

More information

Development of SAR-Derived Ocean Surface Winds at NOAA/NESDIS

Development of SAR-Derived Ocean Surface Winds at NOAA/NESDIS Development of SAR-Derived Ocean Surface Winds at NOAA/NESDIS Pablo Clemente-Colón, William G. Pichel, NOAA/NESDIS Frank M. Monaldo, Donald R. Thompson The Johns Hopkins University Applied Physics Laboratory

More information

DP Ice Model Test of Arctic Drillship

DP Ice Model Test of Arctic Drillship Author s Name Name of the Paper Session DYNAMIC POSITIONING CONFERENCE October 11-12, 211 ICE TESTING SESSION DP Ice Model Test of Arctic Drillship Torbjørn Hals Kongsberg Maritime, Kongsberg, Norway Fredrik

More information

Yacht Racing Rules Seminar Part III TACTICS

Yacht Racing Rules Seminar Part III TACTICS Yacht Racing Rules Seminar Part III TACTICS slide show written by: Garry Cooke G.Cooke Tactics: The main topics covered here will be tactics for: Preparation Starting Upwind Downwind Lifts & Knocks Tactics:

More information

CHAPTER 6 PROJECTILE MOTION

CHAPTER 6 PROJECTILE MOTION CHAPTER 6 PROJECTILE MOTION 1 Basic principle of analyzing projecting motion Independency of vertical and horizontal motion 2 A simple case: Horizontally projected motion An angry bird is fired horizontally

More information

ORF 201 Computer Methods in Problem Solving. Final Project: Dynamic Programming Optimal Sailing Strategies

ORF 201 Computer Methods in Problem Solving. Final Project: Dynamic Programming Optimal Sailing Strategies Princeton University Department of Operations Research and Financial Engineering ORF 201 Computer Methods in Problem Solving Final Project: Dynamic Programming Optimal Sailing Strategies Due 11:59 pm,

More information

Exercise 2-2. Second-Order Interacting Processes EXERCISE OBJECTIVE DISCUSSION OUTLINE. The actual setup DISCUSSION

Exercise 2-2. Second-Order Interacting Processes EXERCISE OBJECTIVE DISCUSSION OUTLINE. The actual setup DISCUSSION Exercise 2-2 Second-Order Interacting Processes EXERCISE OBJECTIVE Familiarize yourself with second-order interacting processes and experiment with the finer points of controller tuning to gain a deeper

More information

Technical note: Averaging wind speeds and directions

Technical note: Averaging wind speeds and directions Technical note: Averaging wind speeds and directions Stuart K. Grange a,b a School of Environment, the University of Auckland, Auckland, New Zealand b School of Population Health, the University of Auckland,

More information

How to set up and use DeWiggler Analyst

How to set up and use DeWiggler Analyst The most important mission of an instrument system is correctly reporting wind direction (see http://www.ockam.com/functrue.html). DeWiggler Analyst is an application for determining wind direction change

More information

Analysis of Pressure Rise During Internal Arc Faults in Switchgear

Analysis of Pressure Rise During Internal Arc Faults in Switchgear Analysis of Pressure Rise During Internal Arc Faults in Switchgear ASANUMA, Gaku ONCHI, Toshiyuki TOYAMA, Kentaro ABSTRACT Switchgear include devices that play an important role in operations such as electric

More information

PHY 221: Wavefunction, Wave Superposition, Standing Waves on a String

PHY 221: Wavefunction, Wave Superposition, Standing Waves on a String PHY 221: Wavefunction, Wave Superposition, Standing Waves on a String Objective Write a mathematical function to describe the wave. Describe a transverse wave and a longitudinal wave. Describe frequency,

More information

Fluid Flow. Link. Flow» P 1 P 2 Figure 1. Flow Model

Fluid Flow. Link. Flow» P 1 P 2 Figure 1. Flow Model Fluid Flow Equipment: Water reservoir, output tubes of various dimensions (length, diameter), beaker, electronic scale for each table. Computer and Logger Pro software. Lots of ice.temperature probe on

More information

Vectors. Wind is blowing 15 m/s East. What is the magnitude of the wind s velocity? What is the direction?

Vectors. Wind is blowing 15 m/s East. What is the magnitude of the wind s velocity? What is the direction? Physics R Scalar: Vector: Vectors Date: Examples of scalars and vectors: Scalars Vectors Wind is blowing 15 m/s East. What is the magnitude of the wind s velocity? What is the direction? Magnitude: Direction:

More information

Courseware Sample F0

Courseware Sample F0 Electric Power / Controls Courseware Sample 85303-F0 A ELECTRIC POWER / CONTROLS COURSEWARE SAMPLE by the Staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this publication

More information

Lesson 5. Section 2.2: Trigonometric Functions of an Acute Angle 1 = 1

Lesson 5. Section 2.2: Trigonometric Functions of an Acute Angle 1 = 1 Lesson 5 Diana Pell March 6, 2014 Section 2.2: Trigonometric Functions of an Acute Angle 1 = 1 360 We can divide 1 into 60 equal parts, where each part is called 1 minute, denoted 1 (so that 1 minute is

More information

COMPASS DIRECTION AND BEARINGS

COMPASS DIRECTION AND BEARINGS Mathematics Revision Guides Compass Direction and Bearings Page 1 of 7 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Foundation Tier COMPASS DIRECTION AND BEARINGS Version: 1.1 Date: 06-02-2009

More information

S0300-A6-MAN-010 CHAPTER 2 STABILITY

S0300-A6-MAN-010 CHAPTER 2 STABILITY CHAPTER 2 STABILITY 2-1 INTRODUCTION This chapter discusses the stability of intact ships and how basic stability calculations are made. Definitions of the state of equilibrium and the quality of stability

More information

Modelling and Simulation of Environmental Disturbances

Modelling and Simulation of Environmental Disturbances Modelling and Simulation of Environmental Disturbances (Module 5) Dr Tristan Perez Centre for Complex Dynamic Systems and Control (CDSC) Prof. Thor I Fossen Department of Engineering Cybernetics 18/09/2007

More information

LINEAR AND ANGULAR KINEMATICS Readings: McGinnis Chapters 2 and 6 DISTANCE, DISPLACEMENT, SPEED, VELOCITY, AND ACCELERATION:

LINEAR AND ANGULAR KINEMATICS Readings: McGinnis Chapters 2 and 6 DISTANCE, DISPLACEMENT, SPEED, VELOCITY, AND ACCELERATION: LINEAR AND ANGULAR KINEMATICS Readings: McGinnis Chapters 2 and 6 1 DISTANCE, DISPLACEMENT, SPEED, VELOCITY, AND ACCELERATION: How far? Describing change in linear or angular position Distance (Scalar

More information

Acoustical Modeling of Reciprocating Compressors With Stepless Valve Unloaders

Acoustical Modeling of Reciprocating Compressors With Stepless Valve Unloaders Acoustical Modeling of Reciprocating Compressors With Stepless Valve Unloaders Kelly Eberle, P.Eng. Principal Engineer keberle@betamachinery.com Brian C. Howes, M.Sc., P.Eng. Chief Engineer bhowes@betamachinery.com

More information

Name Date Period. (D) 4 π. 3. One revolution per minute is about: (A) rad/s (B) rad/s (C) 0.95 rad/s (D) 1.57 rad/s (E) 6.

Name Date Period. (D) 4 π. 3. One revolution per minute is about: (A) rad/s (B) rad/s (C) 0.95 rad/s (D) 1.57 rad/s (E) 6. Name Date Period Worksheet 5.2 Applications of Angles Show all work. All answers must be given as either simplified, exact answers. A calculator is permitted unless otherwise stated. Unless stated otherwise,

More information

Development of Fish type Robot based on the Analysis of Swimming Motion of Bluefin Tuna Comparison between Tuna-type Fin and Rectangular Fin -

Development of Fish type Robot based on the Analysis of Swimming Motion of Bluefin Tuna Comparison between Tuna-type Fin and Rectangular Fin - Development of Fish type Robot based on the Analysis of Swimming Motion of Bluefin Tuna Comparison between Tuna-type Fin and Rectangular Fin - Katsuya KUGAI* Abstract The swimming motion of Tuna type fishes

More information

WeatherStation Monitoring for Industrial marine Applications

WeatherStation Monitoring for Industrial marine Applications WeatherStation Monitoring for Industrial marine Applications PB200 WeatherStation Instrument Applications: Industrial marine weather monitoring Features: True and Apparent Wind Speed and Direction Barometric

More information

Computer Aided Drafting, Design and Manufacturing Volume 26, Number 2, June 2016, Page 53. The design of exoskeleton lower limbs rehabilitation robot

Computer Aided Drafting, Design and Manufacturing Volume 26, Number 2, June 2016, Page 53. The design of exoskeleton lower limbs rehabilitation robot Computer Aided Drafting, Design and Manufacturing Volume 26, Number 2, June 2016, Page 53 CADDM The design of exoskeleton lower limbs rehabilitation robot Zhao Xiayun 1, Wang Zhengxing 2, Liu Zhengyu 1,3,

More information

The Estimation Of Compressor Performance Using A Theoretical Analysis Of The Gas Flow Through the Muffler Combined With Valve Motion

The Estimation Of Compressor Performance Using A Theoretical Analysis Of The Gas Flow Through the Muffler Combined With Valve Motion Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering The Estimation Of Compressor Performance Using A Theoretical Analysis Of The Gas Flow Through

More information

Using Markov Chains to Analyze a Volleyball Rally

Using Markov Chains to Analyze a Volleyball Rally 1 Introduction Using Markov Chains to Analyze a Volleyball Rally Spencer Best Carthage College sbest@carthage.edu November 3, 212 Abstract We examine a volleyball rally between two volleyball teams. Using

More information

DEPARTMENT OF THE NAVY DIVISION NEWPORT OFFICE OF COUNSEL PHONE: FAX: DSN:

DEPARTMENT OF THE NAVY DIVISION NEWPORT OFFICE OF COUNSEL PHONE: FAX: DSN: IMAVSBA WARFARE CENTERS NEWPORT DEPARTMENT OF THE NAVY NAVAL UNDERSEA WARFARE CENTER DIVISION NEWPORT OFFICE OF COUNSEL PHONE: 401 832-3653 FAX: 401 832-4432 DSN: 432-3653 Attorney Docket No. 85031 Date:

More information

2018/05/14 15:56 1/13 NMEAconverter

2018/05/14 15:56 1/13 NMEAconverter 2018/05/14 15:56 1/13 NMEAconverter NMEAconverter Links Source: https://github.com/rooiedirk/nmeaconverter_pi Release: RooieDirk Release TAB Download: Website Download Forum: http://www.cruisersforum.com/forums/f134/new-plugin-nmeaconvertor-145073.html

More information

JR. GENIUS EDUCATIONAL SERVICES INC.

JR. GENIUS EDUCATIONAL SERVICES INC. 1 Name: 1. Multiple Choice: 25 marks Copy to Scantron Card after finding the answer on the sheet. Fill in the Scantron card in the last 5 min. of the test. Do Short section first. 1. You are riding your

More information

Atmospheric Forces and Force Balances METR Introduction

Atmospheric Forces and Force Balances METR Introduction Atmospheric Forces and Force Balances METR 2021 Introduction In this lab you will be introduced to the forces governing atmospheric motions as well as some of the common force balances. A common theme

More information

Physics 122 Class #6 Outline

Physics 122 Class #6 Outline Physics 122 Class #6 Outline Announcements/Reading Assignment Speed of waves in a string Wave energy and intensity History and snapshot plots Properties of sinusoidal waves Velocity of the string (not

More information

Optimization of a Wing-Sail shape for a small boat

Optimization of a Wing-Sail shape for a small boat STAR Global Conference 2014 Vienna, March 17-19 Optimization of a Wing-Sail shape for a small boat G. Lombardi, F. Cartoni, M. Maganzi Dept. of Civil and Industrial Engineering of Pisa Aeronautical Section

More information

Sediment transport. Sediment transport. Boundary layer stress. τ : This lecture

Sediment transport. Sediment transport. Boundary layer stress. τ : This lecture Sediment transport GEO3-4306: oastal Morphodynamics Sediment transport This lecture background modes of sediment transport cross-shore transport longshore transport sediment balance oundary layer stress

More information

WIND RESOURCE ASSESSMENT FOR THE STATE OF WYOMING

WIND RESOURCE ASSESSMENT FOR THE STATE OF WYOMING WIND RESOURCE ASSESSMENT FOR THE STATE OF WYOMING Performed by Sriganesh Ananthanarayanan under the guidance of Dr. Jonathan Naughton, Professor, Department of Mechanical Engineering University of Wyoming,

More information

Fluid Machinery Introduction to the laboratory measurements

Fluid Machinery Introduction to the laboratory measurements Fluid Machinery Introduction to the laboratory measurements Csaba H s (csaba.hos@hds.bme.hu) Ferenc Hegedus (hegedusf@hds.bme.hu) February 21, 2014 1 Requirements related to the measurement part of the

More information

InstrumentationTools.com

InstrumentationTools.com Author: Instrumentation Tools Categories: Level Measurement Basics of DP Level Measurement Level the parameters that exist in virtually every industrial process, there are many ways to measure the level,

More information

Barge MM 46 Response Natchez, MS Lower Mississippi River Mile Marker 363

Barge MM 46 Response Natchez, MS Lower Mississippi River Mile Marker 363 UNCLASSIFIED Barge MM 46 Response Natchez, MS Lower Mississippi River Mile Marker 363 UNCLASSIFIED RRT Activation: Type of Product & Amount spilled: Cause of Spill: None Catalytic Cracked Clarified Oil

More information

Cover Page for Lab Report Group Portion. Pump Performance

Cover Page for Lab Report Group Portion. Pump Performance Cover Page for Lab Report Group Portion Pump Performance Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 02 March 2012 Name 1: Name 2: Name 3: [Name 4: ] Date: Section number:

More information

Control System Nur Istianah-THP-FTP-UB-2014

Control System Nur Istianah-THP-FTP-UB-2014 Control System Control System Control is the process of causing a system variable to conform to some desired value. Manual control Automatic control (involving machines only). A control system is an interconnection

More information

Acoustical approach to analysis of energy conversions in an oscillating bubble

Acoustical approach to analysis of energy conversions in an oscillating bubble 6. 8. října 2009 Acoustical approach to analysis of energy conversions in an oscillating bubble Karel Vokurka a, Silvano Buogo b a Physics Department, Technical University of Liberec, Studentská 2, 461

More information

FORECASTING OF ROLLING MOTION OF SMALL FISHING VESSELS UNDER FISHING OPERATION APPLYING A NON-DETERMINISTIC METHOD

FORECASTING OF ROLLING MOTION OF SMALL FISHING VESSELS UNDER FISHING OPERATION APPLYING A NON-DETERMINISTIC METHOD 8 th International Conference on 633 FORECASTING OF ROLLING MOTION OF SMALL FISHING VESSELS UNDER FISHING OPERATION APPLYING A NON-DETERMINISTIC METHOD Nobuo Kimura, Kiyoshi Amagai Graduate School of Fisheries

More information

Calibration of a spinner anemometer for wind speed measurements

Calibration of a spinner anemometer for wind speed measurements Downloaded from orbit.dtu.dk on: Sep 30, 2018 Calibration of a spinner anemometer for wind speed measurements Demurtas, Giorgio; Pedersen, Troels Friis; Zahle, Frederik Published in: Wind Energy Link to

More information

STUDIES ON THE TRANQUILITY INSIDE THE GOPALPUR PORT

STUDIES ON THE TRANQUILITY INSIDE THE GOPALPUR PORT STUDIES ON THE TRANQUILITY INSIDE THE GOPALPUR PORT INTRODUCTION Sundar. V 1, Sannasiraj. S. A 2 and John Ashlin. S 3 Gopalpur port is an artificial harbor located in Odisha state. The geographical location

More information

Lab 1c Isentropic Blow-down Process and Discharge Coefficient

Lab 1c Isentropic Blow-down Process and Discharge Coefficient 058:080 Experimental Engineering Lab 1c Isentropic Blow-down Process and Discharge Coefficient OBJECTIVES - To study the transient discharge of a rigid pressurized tank; To determine the discharge coefficients

More information

Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825/05873 Unit 3: Principles of mechanical engineering

Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825/05873 Unit 3: Principles of mechanical engineering Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825/05873 Unit 3: Principles of mechanical engineering Monday 16 January 2017 Afternoon Time allowed: 1 hour 30 minutes You must have: the

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines 02 - Page 1 of 17 Table of Contents.....2 1. PURPOSE OF PROCEDURE... 2 2. RECOMMENDED PROCEDURES FOR MANOEUVRING TRIAL... 2 2.1 Trial Conditions... 2 2.1.1 Environmental Restrictions... 2 2.1.2 Loading

More information

Preliminary Research on Modelling and Control of Two Line Kites for Power Generation

Preliminary Research on Modelling and Control of Two Line Kites for Power Generation Preliminary Research on Modelling and Control of Two Line Kites for Power Generation Ashley Yan Electrical Engineering Department Unitec Institute of Technology Private Bag 92025, Victoria Street West,

More information

Relative Motion. New content!

Relative Motion. New content! Relative Motion New content! Task: Draw the speed vs time graphs for the six toy cars 2-D Kinematics Relative Motion Projectile Motion Angled Projectiles Announcements Meet in the lab tomorrow (bring

More information

Validation of Measurements from a ZephIR Lidar

Validation of Measurements from a ZephIR Lidar Validation of Measurements from a ZephIR Lidar Peter Argyle, Simon Watson CREST, Loughborough University, Loughborough, United Kingdom p.argyle@lboro.ac.uk INTRODUCTION Wind farm construction projects

More information

CMIMC 2018 Official Contest Information

CMIMC 2018 Official Contest Information CMIMC 2018 Official Contest Information CMIMC Staff Latest version: January 14, 2018 1 Introduction 1. This document is the official contest information packet for the 2018 Carnegie Mellon Informatics

More information

An underwater autonomous platform/vehicle

An underwater autonomous platform/vehicle An underwater autonomous platform/vehicle R S Bradbeer 1, H F Lai 2, M H Lee 2, T W Ying 2 1 Department of Electronic Engineering, 2 Department of Manufacturing Engineering and Engineering Management City

More information

Research of Sail Height Adjustment on Sail-Assisted Ship in Different Loading and Wind Conditions

Research of Sail Height Adjustment on Sail-Assisted Ship in Different Loading and Wind Conditions Journal of Shipping and Ocean Engineering 6 (016) 313-3 doi 10.1765/159-5879/016.06.001 D DAVID PUBLISHING Research of Sail Height Adjustment on Sail-Assisted Ship in Different Loading and Wind Conditions

More information

Basic Hydraulics. Module 4: Flow Control Valves & Pressure Relief Valves. Academic Services PREPARED BY. January 2012

Basic Hydraulics. Module 4: Flow Control Valves & Pressure Relief Valves. Academic Services PREPARED BY. January 2012 Basic Hydraulics Module 4: Flow Control Valves & Pressure Relief Valves PREPARED BY Academic Services January 2012 Applied Technology High Schools, 2011 ATM 1122 Basic Hydraulics Module 4: Flow control

More information