NENUPHAR the next generation offshore wind turbines. October 2015

Size: px
Start display at page:

Download "NENUPHAR the next generation offshore wind turbines. October 2015"

Transcription

1 NENUPHAR the next generation offshore wind turbines October 2015

2 Nenuphar is developing the next generation offshore wind turbine Nenuphar in brief Established in 2006 by Charles Smadja and Frédéric Silvert France based developer of a new floating offshore wind turbine concept a large scale vertical axis wind turbine (VAWT) Started the development activities in 2009 and has already completed two large scale onshore prototype test campaigns The last 2 prototypes hold the record for the largest H-shaped vertical axis wind turbine in the world (1250 m 2 of swept area) Commissioned the third onshore prototype in July 2015 and expects a full scale offshore test in 2017/2018 More than 40 employees involved in design, engineering and fabrication Strong relationships with solid industrial players EDF, Technip, Areva/Adwen Target for launch of commercial demonstration farm in 2021 HAWT* Vertical axis wind turbine (VAWT) VAWT Contra-rotating VAWT Nenuphar s wind turbine concept is based on the vertical rotation axis technology, while traditional wind turbines are based on a horizontal rotation axis technology Nenuphar s VAWT concept secures a more substantial electricity generation, simplifies maintenance and reduces CAPEX Nenuphar s contra-rotating dual rotor VAWT architecture provides increased wind farm performance and optimizes floater costs *HAWT = Horizontal Axis Wind Turbine 2

3 Key considerations Novel technology with verified prototypes offering more substantial electricity generation estimated at ~30% lower LCOE than competing floating technologies Potential to obtain a 30%+ market share in a EURbn market Offshore test site already secured clear roadmap to commercialization Strong team and development capabilities, with backing from blue chip investors 3

4 DNV GL has recently made a favorable assessment of Nenuphar s team and the technology s potential The electric energy production of the Nenuphar VAWTs can be expected to be amongst the best in class for VAWTs. DNV GL considers an LCoE in the range of EUR/MWh as achievable in future projects under the provision that Nenuphar s objectives of the developments are met. DNV GL has observed a professional project structure, with a clear product strategy, several distinct design phases for a given product and tollgates between the design phases including listings of priority documents per tollgate. Further, ownership of the various tasks and roles & responsibilities seem well defined. Even more, the Nenuphar technical leadership team has a relevant track record and is supported by ADWEN, a leader in offshore wind. The joint development of the offshore site with EDF EN and access to their offshore specialists, strengthen Nenuphar even more in this role. For the integrated design, Nenuphar has established a design loop methodology which DNV GL considers to be transparent and clearly defined. DNV GL, 02 October

5 Strong support for floating offshore wind from the French Government Tenders for pilot floating offshore wind farms France launched a tender for several floating offshore wind turbine projects in August 2015 Three sites in the Mediterranean and one site off southern Brittany Wind farms with between 3 to 6 turbines and capacity of 5 MW per turbine France will become the first country to test floating offshore wind on a large scale Norway and Portugal has tested a single turbine each The tender will close on April 4, 2016 Nenuphar has good support from the French Government Economic incentives EUR 150m has been made available for the floating offshore wind sector one third as subsidies and two thirds as loan The French tax credit system enables companies to refund 30% of R&D costs Companies such as Nenuphar will receive the tax credits as cash backs The regime is considered the most favorable tax incentive in Europe Visit of the French Republic President Mr Francois Hollande and the Prince of Monaco of the Nenuphar wind turbine model (04/06/15) BERD = Business R&D Source: 5

6 Nenuphar s game changer is the Contra-Rotating wind turbine technology Nenuphar s Contra-Rotating wind turbine technology The technology Two vertical axis wind turbines rotating in opposite directions Improving energy capture by creating a forced flow Nearly eliminating wake losses => Performance on farm level could be increased by 15%~20% Mounted on the same structure Increased capacity per floating structure Novel technology reducing CAPEX Higher stability obtained at significantly lower CAPEX Contra-Rotation reducing forces on the floating structure Reduction in Wind Thrust up to 35% Reduction in Heeling Moment up to 45% CAPEX equivalent to a traditional shallow water solution Specifically designed for floating offshore wind farms Floater concept developed together with turbine for a fully integrated FOWT concept currently under development 6

7 Nenuphar s game changing roadmap A dual rotor concept can fully leverage VAWT properties Single rotor performance similar to HAWT Basic wind turbine performance is based on conservation of mass and momentum through rotor of swept area (Betz law) Nenuphar s single turbine can have similar perfomance as a HAWT First row HAWT Streamtube expansion HAWT wake is a powerful steady swirling structure Other rows Decrease of wind speed for most of farm turbines Contra-Rotating Rotors will improve performance Nenuphar s Contra-Rotating rotors change the mass flow through and past the rotor The power coefficient (Cp) can increase with 10-20% The wake is unsteady an allows full wind speed recovery for other turbines Contra-rotating VAWT Increase of performance at individual turbine level Streamtube contraction between rotors increases upwind resource Increase of performance at farm level CR HAWT wake is unsteady and the contra-rotating rotor creates vortices of opposite sign cancelling each other Full wind speed can be recovered after 10D for other turbines 7

8 Performance on wind farm level significantly increased with Contra-Rotating VAWT Wake losses is a large problem for regular wind farms In large scale farms, the wake loss can represent % of total Annual Energy Production (AEP) Wake and turbulence caused by wind flowing through the turbine reduce the wind potential downwind => Powerful and steady wake swirling structure Requires longer distance between turbines Yields less energy output Nenuphar s VAWT eliminates the majority of wake losses and improves wind farm performance Unsteady wake structure and quick wind speed recovery Wind crosses the rotor twice (upwind and downwind) => the wake generated upwind along the blade is broken downwind Contra-Rotating VAWT increases the wind speed recovery further based on preliminary study Full wind speed recovery after 10x rotor diameter (i.e 600m for 5 MWe CR VAWT) Wake loss ~0% (for standard farm densities) 8

9 Contra-Rotating technology gives lower thrust and heeling moment significant CAPEX reductions Reduction in Wind Thrust up to 35% Reduction of Heeling Moment up to 45% Yaw Moment (Mooring) cancel Thrust Moment (Floater) Ref. Height 82,5m Dual CR CR Thrust 65% Ref. Height 100m HAWT Ref Thrust 100% -35% Wind direction 2x Single CR Moment 82,5 x 65% = 53 Moment 100 x 100% = 100 VAWT: Thrust is not perpendicular to wind direction CR technology cancel perpendicular component of thrust vector leading to a decrease of thrust Dynamic pitch enables VAWT to target similar thrust level similar to HAWT for similar rotor and rated power (before contra-rotating effect) Reduction of Thrust and Moments lower requirements on floater compared to HAWT, thus reducing CAPEX 9

10 Competitive advantages Significant value potential with LCOE estimated to be at over 30% lower than traditional floating wind Increased turbine performance Net annual energy production increases at farm level Nenuphar s design significantly reduces CAPEX A clear patent strategy and strong IP coverage to protect technology and market position Single VAWT turbine expected to be at par with modern HAWT Contra-Rotating technology will further improve performance Wake losses is a large problem for wind farms Wake losses nearly eliminated with Contra- Rotating technology Net annual energy production increases of 15% - 20% Simplified and lighter floating structures Simplified production Simplified installation lower installation risk and cost Simplified maintenance reduces life time costs Key concepts are covered by patents A clear strategy for retaining valuable intellectual property Source: Siemens 10

11 State-of-the-art simulation program providing optimal designs based on new technology Novel and VAWT-dedicated simulation method Aerodynamics of VAWTs are more complex to model than for HAWTs => traditional methods not optimal for VAWT assessment: Blade Element Momentum (BEM) models not able to model wakes and the flow inside the rotor Computational Flow Dynamics calculations is time consuming and complex, and cannot be used as an engineering tool => used for validation purposes or special investigations Nenuphar has developed a Vortex / Panel method which can be used as an accurate engineering tool for VAWT More complex than BEM but still fast simulation tools State-of-the-art simulation methods able to model the wakes, the 3D effects and viscous flow Developed together with strong partners Adwen for the aerodynamics modules IFP EN for the aero-hydrodynamic coupling simulations (based on Deeplines Wind) Simulation codes and design methodology are under review by DNV-GL to speed up the certification of the first commercial wind turbine Nenuphar s Vortex / Panel method simulation tools Nenuphar engineering tools suit include: An aero-elastic coupling (aerodynamics / structures modelling) An aero-servo coupling (aerodynamics / control system modelling) An aero-hydrodynamic coupling (aerodynamics / hydrodynamics modelling) ARDEMA 2DS / PHARWEN 2.5D (2D simulation tools) PHARWEN 3D (2D/3D simulation tools) ARDEMA 3DS (3D simulation tools) 11

12 Fully approved offshore test site already secured together with EDF Nenuphar test sites in the Fos / Marseille area Offshore test site (MISTRAL) Onshore test site (Fos-sur-Mer) 600 kwe Test site for 2 offshore wind turbines Fully authorized by every local and national authorities 5 km from shore Close to large industrial centers Easy access with any type of boats Suitable also for dual rotor turbine Site owned by Mistral SAS company, which in turn is owned 78% by Nenuphar and 22% by EDF Energies Nouvelles 12

13 Nenuphar has attracted strong partners during the development phase Technip Complete development for a tri-floater / Semisubmersible expertise Design of a first VAWT concept for the Technip floater Joint development of offshore site EDF Access to EDF R&D experts and offshore specialists Areva / Adwen Technical support with several wind energy experts Development, engineering and fabrication of innovative vertical axis wind turbines First onshore prototype test: 35 kw 3 vertical blades North of France (Ferques) Second onshore prototype test: 600 kw (currently the largest H- shaped vertical axis prototype in the world) 3 twisted blades South of France (Fos sur mer) Third onshore prototype test: 600 kw 3 vertical/straight blades South of France (Fos sur mer) 13

14 and is expecting offshore test and full certification within 2020 Numerical simulations with ADWEN Vortex codes validation: CFD simulations and literature Single WTG / dual contra-rotating WTGs numerical wake assessment Project MOQUA Project Contra- Rotating rotors 2 bladed grounded wind tunnel test (funding granted) Static blade pitch Contra-Rotating 2 bladed wind tunnel test Performance improvement optimization Wake dissipation assessment Fourth onshore prototype test: 600 kw 2-bladed rotor with vertical/straight blades with blade pitch system First offshore prototype 2 contra-rotating wind turbines South of France (Port-Saint-Louis-du-Rhône) Second offshore prototype 2 contra-rotating wind turbines >5 MW South of France (Port-Saint-Louis-du- Rhône) Pilot farm Multiple contra-rotating wind turbines South of France (Fos-sur-mer) 14

15 Strong management team with extensive experience from offshore and wind industry Olivier Jaboulay CEO Engineer (Arts & Métiers), with an executive MBA background (HEC) Olivier has over 20 years experience with various responsibilities in project management, business development and administration of legal entities through international positions for the infrastructure industry (Cégélec, Alstom, Areva), including Solar and Offshore Wind. Charles Smadja CCO Engineer in Aeronautics (ISAE), with an executive MBA background (ESSEC) Charles has over 20 years experience years in the Energy sector, where he served in Alstom as project manager and production director. He became then an entrepreneur and co-founded Nenuphar in Frédéric Silvert CTO/System integration Engineer in Aeronautics (ENSICA), with a MSc. in Gas Turbine Technology, a MPhil. in Thermal Power (both in Cranfield University) and an executive MBA (ESSEC) Frederic has over 17 years in the Energy sector, where he served first in Alstom as development engineer, technical project manager, test and production manager, risk manager, quality manager and site manager. He became then an entrepreneur and co-founded Nenuphar in Gwenn Martin CFO MBA & Accounting graduated (Reims Business school & DECF), Chinese speaker (Beijing Language & Culture univ.) Gwenn has over 15 years experience with various responsibilities in Financial control and Controlling through international positions in the industry (ELF Atochem, Veolia Water). She focused on the continuous improvement of financial information and internal control, with notably IFRS transition and SOX compliance.. 15

16 Nenuphar has a strong and dedicated development team Overview of Nenuphar s development team Number of employees Engineering System Integration Draftsman Industrial / Manufacturing 2 Offshore Engineering & Operations Engineers Total Development The development team consists of 32 employees 29 engineers 2 draftsmen The Engineering department has capabilities within both Mechanical and Electrical engineering Mechanical engineering: 8 employees (6 engineers and 2 draftsmen) Electrical, control and auxiliaries engineering: 7 engineers Systems integration also includes «Code Development & Loads Assessment», and «Test & Certification» System integration: 2 engineers Code Development & Loads Assessment: 6 engineers Test & Certification: 4 engineers Industrial / Manufacturing employs 2 engineers and 1 draftsman The Offshore Engineering & Operations department has two engineers 16

17 NENUPHAR the next generation offshore wind turbines 17

Floating offshore wind turbines: a key for blue economy and renewable energies

Floating offshore wind turbines: a key for blue economy and renewable energies Floating offshore wind turbines: a key for blue economy and renewable energies Moderator: Damien Périssé, Director for Maritime Affairs, Conference of Peripheral Maritime Regions (CPMR). Speakers: Anne

More information

LECTURE 18 WIND POWER SYSTEMS. ECE 371 Sustainable Energy Systems

LECTURE 18 WIND POWER SYSTEMS. ECE 371 Sustainable Energy Systems LECTURE 18 WIND POWER SYSTEMS ECE 371 Sustainable Energy Systems 1 HISTORICAL DEVELOPMENT The first wind turbine used to generate electricity was built by La Cour of Denmark in 1891 2 HISTORICAL DEVELOPMENT

More information

CFD development for wind energy aerodynamics

CFD development for wind energy aerodynamics CFD development for wind energy aerodynamics Hamid Rahimi, Bastian Dose, Bernhard Stoevesandt Fraunhofer IWES, Germany IEA Task 40 Kick-off Meeting 12.11.2017 Tokyo Agenda BEM vs. CFD for wind turbine

More information

WESEP 594 Research Seminar

WESEP 594 Research Seminar WESEP 594 Research Seminar Aaron J Rosenberg Department of Aerospace Engineering Iowa State University Major: WESEP Co-major: Aerospace Engineering Motivation Increase Wind Energy Capture Betz limit: 59.3%

More information

Innovative and Robust Design. With Full Extension of Offshore Engineering and Design Experiences.

Innovative and Robust Design. With Full Extension of Offshore Engineering and Design Experiences. Innovative and Robust Design by VL Offshore With Full Extension of Offshore Engineering and Design Experiences www.vloffshore.com Y Wind Semi Designed by VL Offshore The Y Wind Semi platform (foundation)

More information

Modulation of Vertical Axis Wind Turbine

Modulation of Vertical Axis Wind Turbine Modulation of Vertical Axis Wind Turbine Apurwa Gokhale 1, Nehali Gosavi 2, Gurpreet Chhabda 3, Vikrant Ghadge 4, Dr. A.P.Kulkarni 5 1,2,3,4 Vishwakarma Institute of Information Technology, Pune. 5 Professor,

More information

Alstom Ocean Energy Path towards Industrailsation. Ken Street 18 th April 2013

Alstom Ocean Energy Path towards Industrailsation. Ken Street 18 th April 2013 Alstom Ocean Energy Path towards Industrailsation Ken Street 18 th April 2013 Three main activities in four Sectors Equipment & services for power generation Equipment & services for rail transport ALSTOM

More information

Increased Project Bankability : Thailand's First Ground-Based LiDAR Wind Measurement Campaign

Increased Project Bankability : Thailand's First Ground-Based LiDAR Wind Measurement Campaign Increased Project Bankability : Thailand's First Ground-Based LiDAR Wind Measurement Campaign Authors: Velmurugan. k, Durga Bhavani, Ram kumar. B, Karim Fahssis As wind turbines size continue to grow with

More information

CACTUS MOON EDUCATION, LLC

CACTUS MOON EDUCATION, LLC CACTUS MOON EDUCATION, LLC ENERGY FROM THE WIND WIND ENERGY TECHNOLOGIES EDUCATION MODULE www.cactusmooneducation.com TEACHER S NOTES (wnd01tn) _ Cactus Moon Education, LLC. ENERGY FROM THE WIND WIND ENERGY

More information

Technology and innovation challenges for UK Offshore Wind Energy Andrew Scott

Technology and innovation challenges for UK Offshore Wind Energy Andrew Scott Technology and innovation challenges for UK Offshore Wind Energy Andrew Scott Offshore Wind Operations/Science Meets Industry, Bergen 2013 10 September 2013 2013 Energy Technologies Institute LLP The information

More information

Computational Fluid Dynamics

Computational Fluid Dynamics Computational Fluid Dynamics A better understanding of wind conditions across the whole turbine rotor INTRODUCTION If you are involved in onshore wind you have probably come across the term CFD before

More information

A NOVEL FLOATING OFFSHORE WIND TURBINE CONCEPT: NEW DEVELOPMENTS

A NOVEL FLOATING OFFSHORE WIND TURBINE CONCEPT: NEW DEVELOPMENTS A NOVEL FLOATING OFFSHORE WIND TURBINE CONCEPT: NEW DEVELOPMENTS L. Vita, U.S.Paulsen, T.F.Pedersen Risø-DTU Technical University of Denmark, Roskilde, Denmark luca.vita@risoe.dk Abstract: A novel concept

More information

TOPICS TO BE COVERED

TOPICS TO BE COVERED UNIT-3 WIND POWER TOPICS TO BE COVERED 3.1 Growth of wind power in India 3.2 Types of wind turbines Vertical axis wind turbines (VAWT) and horizontal axis wind turbines (HAWT) 3.3 Types of HAWTs drag and

More information

Aerodynamic Control of Flexible Structures in the Natural Wind

Aerodynamic Control of Flexible Structures in the Natural Wind Ian Castro 65 th Birthday Workshop, Southampton University, 28-29. 3. 12. Aerodynamic Control of Flexible Structures in the Natural Wind Mike Graham Department of Aeronautics, Imperial College London.

More information

Measurement and simulation of the flow field around a triangular lattice meteorological mast

Measurement and simulation of the flow field around a triangular lattice meteorological mast Measurement and simulation of the flow field around a triangular lattice meteorological mast Matthew Stickland 1, Thomas Scanlon 1, Sylvie Fabre 1, Andrew Oldroyd 2 and Detlef Kindler 3 1. Department of

More information

INFLUENCE OF AERODYNAMIC MODEL FIDELITY ON ROTOR LOADS DURING FLOATING OFFSHORE WIND TURBINE MOTIONS

INFLUENCE OF AERODYNAMIC MODEL FIDELITY ON ROTOR LOADS DURING FLOATING OFFSHORE WIND TURBINE MOTIONS INFLUENCE OF AERODYNAMIC MODEL FIDELITY ON ROTOR LOADS DURING FLOATING OFFSHORE WIND TURBINE MOTIONS DENIS MATHA 1,2*, LEVIN KLEIN 3, DIMITRIOS BEKIROPOULOS 3, PO WEN CHENG 2 1 RAMBOLL WIND, GERMANY *

More information

Steady State Comparisons HAWC2 v12.5 vs HAWCStab2 v2.14: Integrated and distributed aerodynamic performance

Steady State Comparisons HAWC2 v12.5 vs HAWCStab2 v2.14: Integrated and distributed aerodynamic performance Downloaded from orbit.dtu.dk on: Jan 29, 219 Steady State Comparisons v12.5 vs v2.14: Integrated and distributed aerodynamic performance Verelst, David Robert; Hansen, Morten Hartvig; Pirrung, Georg Publication

More information

Modelling the Output of a Flat-Roof Mounted Wind Turbine with an Edge Mounted Lip

Modelling the Output of a Flat-Roof Mounted Wind Turbine with an Edge Mounted Lip Modelling the Output of a Flat-Roof Mounted Wind Turbine with an Edge Mounted Lip S. J. Wylie 1, S. J. Watson 1, D. G. Infield 2 1 Centre for Renewable Energy Systems Technology, Department of Electronic

More information

wave energy, reloaded series 25 - wave energy converters

wave energy, reloaded series 25 - wave energy converters wave energy, reloaded series 25 - wave energy converters Michele Grassi is a mathematician who graduated from Scuola Normale Superiore in Pisa, Italy, and gained a PhD in mathematics from the University

More information

Windmills using aerodynamic drag as propelling force; a hopeless concept. ing. A. Kragten. April 2009 KD 416

Windmills using aerodynamic drag as propelling force; a hopeless concept. ing. A. Kragten. April 2009 KD 416 Windmills using aerodynamic drag as propelling force; a hopeless concept It is allowed to copy this report for private use. ing. A. Kragten April 2009 KD 416 Engineering office Kragten Design Populierenlaan

More information

WindProspector TM Lockheed Martin Corporation

WindProspector TM Lockheed Martin Corporation WindProspector TM www.lockheedmartin.com/windprospector 2013 Lockheed Martin Corporation WindProspector Unparalleled Wind Resource Assessment Industry Challenge Wind resource assessment meteorologists

More information

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration M. Burak Şamşul ITU AYOC 2014 - Milper Pervane Teknolojileri Company Profile MILPER is established in 2011 as a Research and Development

More information

EFFECT OF GURNEY FLAPS AND WINGLETS ON THE PERFORMANCE OF THE HAWT

EFFECT OF GURNEY FLAPS AND WINGLETS ON THE PERFORMANCE OF THE HAWT Chapter-6 EFFECT OF GURNEY FLAPS AND WINGLETS ON THE PERFORMANCE OF THE HAWT 6.1 Introduction The gurney flap (wicker bill) was a small flat tab projecting from the trailing edge of a wing. Typically it

More information

Wind Energy Technology. What works & what doesn t

Wind Energy Technology. What works & what doesn t Wind Energy Technology What works & what doesn t Orientation Turbines can be categorized into two overarching classes based on the orientation of the rotor Vertical Axis Horizontal Axis Vertical Axis Turbines

More information

Energy from wind and water extracted by Horizontal Axis Turbine

Energy from wind and water extracted by Horizontal Axis Turbine Energy from wind and water extracted by Horizontal Axis Turbine Wind turbines in complex terrain (NREL) Instream MHK turbines in complex bathymetry (VP East channel NewYork) Common features? 1) horizontal

More information

Norway s solution: Hywind- world s first full scale floating turbine Dr. Nenad Keseric Asset Manager/Specialist Statoil ASA MPR RE Operations

Norway s solution: Hywind- world s first full scale floating turbine Dr. Nenad Keseric Asset Manager/Specialist Statoil ASA MPR RE Operations Norway s solution: Hywind- world s first full scale floating turbine Dr. Nenad Keseric Asset Manager/Specialist Statoil ASA MPR RE Operations Strategy and Support Leveraging Statoil s offshore oil and

More information

Inves&ga&on of Dynamic Loading for 13.2 MW Downwind Pre- Aligned Rotor

Inves&ga&on of Dynamic Loading for 13.2 MW Downwind Pre- Aligned Rotor NAWEA 2015 Symposium Virginia Tech in Blacksburg, VA June 9-11, 2015 Inves&ga&on of Dynamic Loading for 13.2 MW Downwind Pre- Aligned Rotor Chao Qin (Research Associate) Eric Loth (Professor) Sang Lee

More information

Dual pitch revisited: Overspeed avoidance by independent control of two blade sections

Dual pitch revisited: Overspeed avoidance by independent control of two blade sections Dual pitch revisited: Overspeed avoidance by independent control of two blade sections P. Brosche, B. Fischer, P. Loepelmann, M. Shan {philipp.brosche, boris.fischer, peter.loepelmann, martin.shan}@iwes.fraunhofer.de

More information

Wind Farm Blockage: Searching for Suitable Validation Data

Wind Farm Blockage: Searching for Suitable Validation Data ENERGY Wind Farm Blockage: Searching for Suitable Validation Data James Bleeg, Mark Purcell, Renzo Ruisi, and Elizabeth Traiger 09 April 2018 1 DNV GL 2014 09 April 2018 SAFER, SMARTER, GREENER Wind turbine

More information

Centre for Offshore Renewable Energy Engineering, School of Energy, Environment and Agrifood, Cranfield University, Cranfield, MK43 0AL, UK 2

Centre for Offshore Renewable Energy Engineering, School of Energy, Environment and Agrifood, Cranfield University, Cranfield, MK43 0AL, UK 2 Fluid Structure Interaction Modelling of A Novel 10MW Vertical-Axis Wind Turbine Rotor Based on Computational Fluid Dynamics and Finite Element Analysis Lin Wang 1*, Athanasios Kolios 1, Pierre-Luc Delafin

More information

Vestas Cold Climate Solutions and next stepsclimate Offerings

Vestas Cold Climate Solutions and next stepsclimate Offerings 06-02-2018 Vestas Cold Climate Solutions and next stepsclimate Offerings Brian Daugbjerg Nielsen, Product Management Winterwind 2019 VESTAS COLD CLIMATE OFFERINGS FEATURING MODULAR ANTI-ICING ON ENVENTUS

More information

Wind and Drivetrain Applications using SIMULIA XFlow LBM

Wind and Drivetrain Applications using SIMULIA XFlow LBM 3DS.COM Dassault Systèmes 4/24/2018 ref.: 3DS_Document_2017 Wind and Drivetrain Applications using SIMULIA XFlow LBM 4th Wind and Drivetrain Conference Hamburg, April 19 th 2018 Zaki Abiza XFlow Business

More information

Wind loads investigations of HAWT with wind tunnel tests and site measurements

Wind loads investigations of HAWT with wind tunnel tests and site measurements loads investigations of HAWT with wind tunnel tests and site measurements Shigeto HIRAI, Senior Researcher, Nagasaki R&D Center, Technical Headquarters, MITSUBISHI HEAVY INDSUTRIES, LTD, Fukahori, Nagasaki,

More information

COMPUTER-AIDED DESIGN AND PERFORMANCE ANALYSIS OF HAWT BLADES

COMPUTER-AIDED DESIGN AND PERFORMANCE ANALYSIS OF HAWT BLADES 5 th International Advanced Technologies Symposium (IATS 09), May 13-15, 2009, Karabuk, Turkey COMPUTER-AIDED DESIGN AND PERFORMANCE ANALYSIS OF HAWT BLADES Emrah KULUNK a, * and Nadir YILMAZ b a, * New

More information

EXPERIMENTAL INVESTIGATIONS OF BARGE FLOATER WITH MOONPOOL FOR 5 MW WIND TURBINE

EXPERIMENTAL INVESTIGATIONS OF BARGE FLOATER WITH MOONPOOL FOR 5 MW WIND TURBINE EXPERIMENTAL INVESTIGATIONS OF BARGE FLOATER WITH MOONPOOL FOR 5 MW WIND TURBINE 1 MR. G.VIJAYA KUMAR, 2 DR. R. PANNEER SELVAM 1 M.S. Research Scholar, Department of Ocean Engineering, IIT Madras, Chennai,

More information

Validation of Measurements from a ZephIR Lidar

Validation of Measurements from a ZephIR Lidar Validation of Measurements from a ZephIR Lidar Peter Argyle, Simon Watson CREST, Loughborough University, Loughborough, United Kingdom p.argyle@lboro.ac.uk INTRODUCTION Wind farm construction projects

More information

Upgrading Vestas V47-660kW

Upgrading Vestas V47-660kW Guaranteed performance gains and efficiency improvements Upgrading Vestas V47-660kW Newly developed controller system enables increased Annual Energy Production up to 6.1% and safe turbine lifetime extension

More information

2MW baseline wind turbine: model development and verification (WP1) The University of Tokyo & Hitachi, Ltd.

2MW baseline wind turbine: model development and verification (WP1) The University of Tokyo & Hitachi, Ltd. 2MW baseline wind turbine: model development and verification (WP1) The University of Tokyo & Hitachi, Ltd. Downwind turbine technology, IEA Wind Task 40 First Progress Meeting, Tokyo, Japan 11 Dec, 2017

More information

A Novel Vertical-Axis Wind Turbine for Distributed & Utility Deployment

A Novel Vertical-Axis Wind Turbine for Distributed & Utility Deployment A Novel Vertical-Axis Wind Turbine for Distributed & Utility Deployment J.-Y. Park*, S. Lee* +, T. Sabourin**, K. Park** * Dept. of Mechanical Engineering, Inha University, Korea + KR Wind Energy Research

More information

Dynamic analysis of offshore floating wind turbines

Dynamic analysis of offshore floating wind turbines Dynamic analysis of offshore floating wind turbines Hasan Bagbanci Centre for Marine Technology and Engineering (CENTEC), Instituto Superior Técnico Technical University of Lisbon, Lisboa, Portugal ABSTRACT:

More information

Vertical Wind Energy Engineering Design and Evaluation of a Twisted Savonius Wind Turbine

Vertical Wind Energy Engineering Design and Evaluation of a Twisted Savonius Wind Turbine Design and Evaluation of a Twisted Savonius Wind Turbine Ian Duffett Jeff Perry Blaine Stockwood Jeremy Wiseman Outline Problem Definition Introduction Concept Selection Design Fabrication Testing Results

More information

MEMO CC: Summary. ESMWT16419: _MEM_RVO_HKZ floating LiDAR uncertainty_v3.docx 1/8

MEMO CC: Summary. ESMWT16419: _MEM_RVO_HKZ floating LiDAR uncertainty_v3.docx 1/8 MEMO Prepared: Anthony Crockford 23.02.2016 Reviewed: Erik Holtslag 24.02.2016 Approved: Michiel Müller 29.02.2016 Filename 20160224_MEM_RVO_HKZ floating LiDAR uncertainty_v3.docx Pages 8 Version Author

More information

Aerodynamic Analyses of Horizontal Axis Wind Turbine By Different Blade Airfoil Using Computer Program

Aerodynamic Analyses of Horizontal Axis Wind Turbine By Different Blade Airfoil Using Computer Program ISSN : 2250-3021 Aerodynamic Analyses of Horizontal Axis Wind Turbine By Different Blade Airfoil Using Computer Program ARVIND SINGH RATHORE 1, SIRAJ AHMED 2 1 (Department of Mechanical Engineering Maulana

More information

UNSTEADY AERODYNAMICS OF OFFSHORE FLOATING WIND TURBINES IN PLATFORM PITCHING MOTION USING VORTEX LATTICE METHOD

UNSTEADY AERODYNAMICS OF OFFSHORE FLOATING WIND TURBINES IN PLATFORM PITCHING MOTION USING VORTEX LATTICE METHOD UNSTEADY AERODYNAMICS OF OFFSHORE FLOATING WIND TURBINES IN PLATFORM PITCHING MOTION USING VORTEX LATTICE METHOD Min U Jeon a *, Seung Min Lee a, Hong Seok Jeong a, Soo Gab Lee a a Department of Mechanical

More information

Offshore wind power in the Baltic sea

Offshore wind power in the Baltic sea Offshore wind power in the Baltic sea Conditions for profitability Henrik Malmberg 2014-09-27 Content BACKGROUND... 2 PURPOSE... 2 ABOUT THE AUTHOR... 2 RELEVANT ISSUES... 3 WIND CONDITIONS AND ENERGY

More information

Effect of wind flow direction on the loads at wind farm. Romans Kazacoks Lindsey Amos Prof William Leithead

Effect of wind flow direction on the loads at wind farm. Romans Kazacoks Lindsey Amos Prof William Leithead Effect of wind flow direction on the loads at wind farm Romans Kazacoks Lindsey Amos Prof William Leithead Objectives: Investigate the effect of wind flow direction on the wind turbine loads (fatigue)

More information

AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE

AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE - 247 - AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE J D Castro a, C W Pope a and R D Matthews b a Mott MacDonald Ltd, St Anne House,

More information

Experience with the design, manufacture, test and commercialisation of the REpower 6M turbine

Experience with the design, manufacture, test and commercialisation of the REpower 6M turbine Experience with the design, manufacture, test and commercialisation of the REpower 6M turbine UK Offshore Wind Danish Embassy in London 4th of December 2012 Norbert Giese, REpower Systems SE REpower founded

More information

Efficiency Improvement of a New Vertical Axis Wind Turbine by Individual Active Control of Blade Motion

Efficiency Improvement of a New Vertical Axis Wind Turbine by Individual Active Control of Blade Motion Efficiency Improvement of a New Vertical Axis Wind Turbine by Individual Active Control of Blade Motion In Seong Hwang, Seung Yong Min, In Oh Jeong, Yun Han Lee and Seung Jo Kim* School of Mechanical &

More information

Ameliorating the Negative Damping in the Dynamic Responses of a Tension Leg Spar-Type Support Structure with a Downwind Turbine

Ameliorating the Negative Damping in the Dynamic Responses of a Tension Leg Spar-Type Support Structure with a Downwind Turbine 1 Ameliorating the Negative Damping in the Dynamic Responses of a Tension Leg Spar-Type Support Structure with a Downwind Turbine Madjid Karimirad Torgeir Moan Author CeSOS Centre Centre for Ships for

More information

The 5 MW Deepwind Floating Offshore Vertical Wind Turbine Concept Design - Status And Perspective. Uwe Schmidt Paulsen

The 5 MW Deepwind Floating Offshore Vertical Wind Turbine Concept Design - Status And Perspective. Uwe Schmidt Paulsen The 5 MW Deepwind Floating Offshore Vertical Wind Turbine Concept Design - Status And Perspective Uwe Schmidt Paulsen uwpa@dtu.dk Contents What is DeepWind Motivation and Background Concept Design Status

More information

Japan s Floating Offshore Wind Projects

Japan s Floating Offshore Wind Projects Japan s Floating Offshore Wind Projects An Overview Annette Bossler Main(e) International Consulting LLC Bremen, ME USA Japan s Wind Resources Onshore and Offshore Source: Japan FEPC Onshore wind potential

More information

Aerodynamic Measures for the Vortex-induced Vibration of π-shape Composite Girder in Cable-stayed Bridge

Aerodynamic Measures for the Vortex-induced Vibration of π-shape Composite Girder in Cable-stayed Bridge Aerodynamic Measures for the Vortex-induced Vibration of π-shape Composite Girder in Cable-stayed Bridge *Feng Wang 1), Jialing Song 2), Tuo Wu 3), and Muxiong Wei 4) 1), 2, 3), 4) Highway School, Chang

More information

Executive Summary of Accuracy for WINDCUBE 200S

Executive Summary of Accuracy for WINDCUBE 200S Executive Summary of Accuracy for WINDCUBE 200S The potential of offshore wind energy has gained significant interest due to consistent and strong winds, resulting in very high capacity factors compared

More information

Wind resource assessment over a complex terrain covered by forest using CFD simulations of neutral atmospheric boundary layer with OpenFOAM

Wind resource assessment over a complex terrain covered by forest using CFD simulations of neutral atmospheric boundary layer with OpenFOAM Wind resource assessment over a complex terrain covered by forest using CFD simulations of neutral atmospheric boundary layer with OpenFOAM Nikolaos Stergiannis nstergiannis.com nikolaos.stergiannis@vub.ac.be

More information

Development of TEU Type Mega Container Carrier

Development of TEU Type Mega Container Carrier Development of 8 700 TEU Type Mega Container Carrier SAKAGUCHI Katsunori : P. E. Jp, Manager, Ship & Offshore Basic Design Department, IHI Marine United Inc. TOYODA Masanobu : P. E, Jp, Ship & Offshore

More information

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL L Boddy and T Clarke, Austal Ships, Australia SUMMARY CFD analysis has been conducted on a 100m catamaran hull

More information

Offshore Energy Årsmøde Offshore Wind Energy in Europe

Offshore Energy Årsmøde Offshore Wind Energy in Europe Analyst PRESENTATION Årsmøde Offshore Wind Energy in Europe Michael Guldbrandtsen mg@consultmake.com Offshore wind development Offshore wind farms have grown significantly 1991 22 22 Vindeby Horns Rev

More information

Offshore Oil and Gas Platforms for Deep Waters

Offshore Oil and Gas Platforms for Deep Waters Offshore Oil and Gas Platforms for Deep Waters Atilla Incecik Department of Naval Architecture, Ocean and Marine Engineering University of Strathclyde, Glasgow, UK (atilla.incecik@strath.ac.uk) Summary

More information

Research on Small Wind Power System Based on H-type Vertical Wind Turbine Rong-Qiang GUAN a, Jing YU b

Research on Small Wind Power System Based on H-type Vertical Wind Turbine Rong-Qiang GUAN a, Jing YU b 06 International Conference on Mechanics Design, Manufacturing and Automation (MDM 06) ISBN: 978--60595-354-0 Research on Small Wind Power System Based on H-type Vertical Wind Turbine Rong-Qiang GUAN a,

More information

The effect of the number of blades on wind turbine wake - a comparison between 2-and 3-bladed rotors

The effect of the number of blades on wind turbine wake - a comparison between 2-and 3-bladed rotors Journal of Physics: Conference Series PAPER OPEN ACCESS The effect of the number of blades on wind turbine wake - a comparison between 2-and 3-bladed rotors To cite this article: Franz Mühle et al 2016

More information

The EllipSys2D/3D code and its application within wind turbine aerodynamics

The EllipSys2D/3D code and its application within wind turbine aerodynamics The EllipSys2D/3D code and its application within wind turbine aerodynamics Niels N. Sørensen Wind Energy Department, Risø DTU National Laboratory for Sustainable Energy and Dep. Civil Engineering, Aalborg

More information

WIND TURBINE DESIGN. Dušan Medveď

WIND TURBINE DESIGN. Dušan Medveď WIND TURBINE DESIGN ABSTRACT Dušan Medveď This paper deals with main design of wind turbine concerning with structure of wind turbines, option between vertical and horizontal axis wind turbines to optimising

More information

Terms and Definitions for Small Wind Site Assessor

Terms and Definitions for Small Wind Site Assessor Terms and Definitions for Small Wind Site Assessor AEO/ AEP: Annual energy output, also known as AEP, annual energy production of the wind electric system. Alpha: Surface friction coefficient, used to

More information

EFFECT OF DIFFERENT MOORING SYSTEMS ON HYDRODYNAMIC ANALYSIS OF AN OFFSHORE WIND TURBINE

EFFECT OF DIFFERENT MOORING SYSTEMS ON HYDRODYNAMIC ANALYSIS OF AN OFFSHORE WIND TURBINE EFFECT OF DIFFERENT MOORING SYSTEMS ON HYDRODYNAMIC ANALYSIS OF AN OFFSHORE WIND TURBINE Sabri ALKAN 1, Ayhan Mentes 2, Ismail H. Helvacioglu 2, Nagihan Turkoglu 2 1 Department of Mechanical Engineering,

More information

FUTURE Flutter-Free Turbomachinery Blades

FUTURE Flutter-Free Turbomachinery Blades Aero Days 2011, Madrid. FUTURE Flutter-Free Turbomachinery Blades Torsten Fransson, KTH Damian Vogt, KTH 2011-03-31 1 A Typical Turbomachine RR Trent 1000 Picture courtesy of RR 2 What is it flutter? 3

More information

Contributions from a multidisciplinary university Finn Gunnar Nielsen Professor Geophysical Institute

Contributions from a multidisciplinary university Finn Gunnar Nielsen Professor Geophysical Institute Workshop Floating Offshore Wind Norwegian Offshore Wind Cluster Dublin 4 th and 5 th December 2018 Contributions from a multidisciplinary university Finn Gunnar Nielsen Professor Geophysical Institute

More information

Evaluation of aerodynamic criteria in the design of a small wind turbine with the lifting line model

Evaluation of aerodynamic criteria in the design of a small wind turbine with the lifting line model Evaluation of aerodynamic criteria in the design of a small wind turbine with the lifting line model Nicolas BRUMIOUL Abstract This thesis deals with the optimization of the aerodynamic design of a small

More information

Wind Plant Simulation and Validation Jonathan Naughton Department of Mechanical Engineering University of Wyoming

Wind Plant Simulation and Validation Jonathan Naughton Department of Mechanical Engineering University of Wyoming Wind Plant Simulation and Validation Jonathan Naughton Department of Mechanical Engineering University of Wyoming 1 Overview Wind s Success Wind s Challenges Wind Plant Simulation and Validation Summary

More information

Blade Design and Performance Analysis of Wind Turbine

Blade Design and Performance Analysis of Wind Turbine International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.5, No.2, pp 1054-1061, April-June 2013 ICGSEE-2013[14 th 16 th March 2013] International Conference on Global Scenario

More information

OFFSHORE CREDENTIALS. Accepted for wind resource assessment onshore and offshore by leading Banks Engineers, globally

OFFSHORE CREDENTIALS. Accepted for wind resource assessment onshore and offshore by leading Banks Engineers, globally OFFSHORE CREDENTIALS Accepted for wind resource assessment onshore and offshore by leading Banks Engineers, globally ZEPHIR OFFSHORE CREDENTIALS Accepted for wind resource assessment onshore and offshore

More information

OFFSHORE WIND Kosten heute und morgen welche Potentiale zur Kostensenkung gibt es

OFFSHORE WIND Kosten heute und morgen welche Potentiale zur Kostensenkung gibt es OFFSHORE WIND Kosten heute und morgen welche Potentiale zur Kostensenkung gibt es Koordinierungsstelle Erneuerbare Energien 15th of November 2012, Paris Botschaft der Bundesrepublik Deutschland Norbert

More information

Control Strategies for operation of pitch regulated turbines above cut-out wind speeds

Control Strategies for operation of pitch regulated turbines above cut-out wind speeds Control Strategies for operation of pitch regulated turbines above cut-out wind speeds Helen Markou 1 Denmark and Torben J. Larsen, Risø-DTU, P.O.box 49, DK-4000 Roskilde, Abstract The importance of continuing

More information

Test Summary Report Giraffe 2.0 Hybrid Wind-Solar Power Station - for wind: according to IEC Annex M - for solar: measurement report

Test Summary Report Giraffe 2.0 Hybrid Wind-Solar Power Station - for wind: according to IEC Annex M - for solar: measurement report Contact person Tanja Tränkle 2016-06-29 4P05805-R01 rev. 1 1 (7) Safety +46 10 516 57 19 Tanja.Trankle@sp.se Innoventum AB Morgan Widung / Marcus Ulmefors Turning Torso office 275 Lilla Varvsgatan 14 211

More information

ADVANCES IN AERODYNAMICS OF WIND TURBINE BLADES

ADVANCES IN AERODYNAMICS OF WIND TURBINE BLADES ADVANCES IN AERODYNAMICS OF WIND TURBINE BLADES Herning / October 3 / 2017 By Jesper Madsen Chief Engineer, Aerodynamics & Acoustics WIND ENERGY DENMARK Annual Event 2017 Agenda 1. Aerodynamic design and

More information

Offshore wind in COWI

Offshore wind in COWI EWEA OFFSHORE 2015 Offshore wind in COWI Jasmin Bejdic (JABC), Project Manager 1 Agenda Introduction COWI Wind Offshore wind in COWI Project development Feasibility studies Due diligence Power curve measurement

More information

Challenges of up-scaling to a grid connected array. PECC Energy Transition June Arturo Troncoso, Director CWE Chile

Challenges of up-scaling to a grid connected array. PECC Energy Transition June Arturo Troncoso, Director CWE Chile Challenges of up-scaling to a grid connected array PECC Energy Transition 2013-2014 24 June 2014 Arturo Troncoso, Director CWE Chile Copyright Carnegie Wave Energy Limited 2014 1 Disclaimer The information

More information

2013 Wall of Wind (WoW) Contest Informational Workshop

2013 Wall of Wind (WoW) Contest Informational Workshop 2013 Wall of Wind (WoW) Contest Informational Workshop Presented By: Ioannis Zisis February 22, 2013 With Contributions By: Dr. Girma Bitsuamlak, Roy Liu, Walter Conklin, Dr. Arindam Chowdhury, Jimmy Erwin,

More information

Sea-going vessel versus wind turbine

Sea-going vessel versus wind turbine Collision risk at high sea Sea-going vessel versus wind turbine Offshore wind power: Wind turbines off the German coast generally represent obstacles in the traffic routes of ships. What if a large sea-going

More information

Aerodynamic Performance Optimization Of Wind Turbine Blade By Using High Lifting Device

Aerodynamic Performance Optimization Of Wind Turbine Blade By Using High Lifting Device Aerodynamic Performance Optimization Of Wind Turbine Blade By Using High Lifting Device Razeen Ridhwan, Mohamed Alshaleeh, Arunvinthan S Abstract: In the Aerodynamic performance of wind turbine blade by

More information

Active Wake Control: loads trends

Active Wake Control: loads trends Active Wake Control: loads trends Kanev, S.K. Savenije, F.J. January 2015 ECN-E--15-004 Abstract Active Wake Control (AWC) is a strategy, developed and patented by ECN, for operating wind farms in an economically

More information

APPLICATION OF RESEARCH RESULTS AT LM WIND POWER

APPLICATION OF RESEARCH RESULTS AT LM WIND POWER APPLICATION OF RESEARCH RESULTS AT LM WIND POWER Herning / March 27 / 2014 By Jesper Madsen Chief Engineer Aerodynamics and Acoustics AGENDA 1. EUDP Projects 1. DANAERO MW 2. Optimization of vortex generators

More information

Farm Energy IQ. Farms Today Securing Our Energy Future. Wind Energy on Farms

Farm Energy IQ. Farms Today Securing Our Energy Future. Wind Energy on Farms Farm Energy IQ Farms Today Securing Our Energy Future Wind Energy on Farms Farm Energy IQ Wind Energy on Farms Ed Johnstonbaugh, Penn State Extension Objectives of this Module At the conclusion of this

More information

Aerodynamic study of a cyclist s moving legs using an innovative approach

Aerodynamic study of a cyclist s moving legs using an innovative approach Aerodynamic study of a cyclist s moving legs using an innovative approach Francesco Pozzetti 30 September 2017 Abstract During a period of four weeks in September, I completed a research project in fluid

More information

Návrh vratného kanálu u dvoustupňového kompresoru Return channel design of the two stage compressor

Návrh vratného kanálu u dvoustupňového kompresoru Return channel design of the two stage compressor Návrh vratného kanálu u dvoustupňového kompresoru Return channel design of the two stage compressor J. Hrabovský, J. Vacula, M. Komárek L. K. Engineering, s.r.o C. Drápela, M. Vacek, J. Klíma PBS Turbo

More information

Can Wind Energy Be Captured in New York City? Case Study on Urban Wind based on a Feasibility Study by Orange Line Studio. Spark 101 Educator Resource

Can Wind Energy Be Captured in New York City? Case Study on Urban Wind based on a Feasibility Study by Orange Line Studio. Spark 101 Educator Resource Can Wind Energy Be Captured in New York City? Case Study on Urban Wind based on a Feasibility Study by Orange Line Studio Spark 101 Educator Resource Copyright 2013 Defining Key Concepts What is wind power?

More information

Expertise, Innovation and reduction of cost of energy: Vestas experience

Expertise, Innovation and reduction of cost of energy: Vestas experience Expertise, Innovation and reduction of cost of energy: Vestas experience Nicolas Wolff, VP General Manager Vestas France Conference on Cost of Wind Energy, Embassy of Germany in Paris 15 November 2012

More information

Advanced Applications in Naval Architecture Beyond the Prescriptions in Class Society Rules

Advanced Applications in Naval Architecture Beyond the Prescriptions in Class Society Rules Advanced Applications in Naval Architecture Beyond the Prescriptions in Class Society Rules CAE Naval 2013, 13/06/2013 Sergio Mello Norman Neumann Advanced Applications in Naval Architecture Introduction

More information

Introducing The Gemma One

Introducing The Gemma One Introducing The Gemma One The Gemma One is a new generation clean vessel: a practical, safe, conservatively styled, amenity-rich, and highly automated boat that can be 100% powered by renewable energy,

More information

OPTIMIZING THE LENGTH OF AIR SUPPLY DUCT IN CROSS CONNECTIONS OF GOTTHARD BASE TUNNEL. Rehan Yousaf 1, Oliver Scherer 1

OPTIMIZING THE LENGTH OF AIR SUPPLY DUCT IN CROSS CONNECTIONS OF GOTTHARD BASE TUNNEL. Rehan Yousaf 1, Oliver Scherer 1 OPTIMIZING THE LENGTH OF AIR SUPPLY DUCT IN CROSS CONNECTIONS OF GOTTHARD BASE TUNNEL Rehan Yousaf 1, Oliver Scherer 1 1 Pöyry Infra Ltd, Zürich, Switzerland ABSTRACT Gotthard Base Tunnel with its 57 km

More information

Aero-Hydro-Servo-Elastic Analysis of Floating Wind. Leg Moorings. January ar 7, 2013

Aero-Hydro-Servo-Elastic Analysis of Floating Wind. Leg Moorings. January ar 7, 2013 1 Aero-Hydro-Servo-Elastic Analysis of Floating Wind Turbines with Tension Leg Moorings Erin Bachynski, PhD candidate at CeSOS erin.bachynski@ntnu.no January ar 7, 2013 Erin Bachynski CeSOS Centre for

More information

Pre Feasibility Study Report Citiwater Cleveland Bay Purification Plant

Pre Feasibility Study Report Citiwater Cleveland Bay Purification Plant SOLAR POWER SPECIALISTS.Pure Power ACN 074 127 718 ABN 85 074 127 718 POWER MAGIC PTY LTD 245 INGHAM RD GARBUTT QLD 4814 Phone: 1800 068 977 Fax: 07 4725 2479 Email: FNQSOLAR@bigpond.com Pre Feasibility

More information

Dutch tender system and future perspectives. Ir. F.C.W. (Frank) van Erp. Roadmap towards 4,500 MW offshore wind power in the Netherlands

Dutch tender system and future perspectives. Ir. F.C.W. (Frank) van Erp. Roadmap towards 4,500 MW offshore wind power in the Netherlands Dutch tender system and future perspectives Roadmap towards 4,500 MW offshore wind power in the Netherlands Ir. F.C.W. (Frank) van Erp Expert meeting 'Experience from the Borssele offshore wind tenders'

More information

Wind turbine Varying blade length with wind speed

Wind turbine Varying blade length with wind speed IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, PP 01-05 www.iosrjournals.org Wind turbine Varying blade length with wind speed Mohammed Ashique

More information

Comparing the calculated coefficients of performance of a class of wind turbines that produce power between 330 kw and 7,500 kw

Comparing the calculated coefficients of performance of a class of wind turbines that produce power between 330 kw and 7,500 kw World Transactions on Engineering and Technology Education Vol.11, No.1, 2013 2013 WIETE Comparing the calculated coefficients of performance of a class of wind turbines that produce power between 330

More information

That is why. April 24, 2008

That is why. April 24, 2008 That is why Page 1 Our Vision: Wind, Oil and Gas Page 2 Our Product R&D and manufacture Assembly and testing Sales and planning Transport Installation Maintenance A 100% focused value chain Producing turbines

More information

PREDICTION THE EFFECT OF TIP SPEED RATIO ON WIND TURBINE GENERATOR OUTPUT PARAMETER

PREDICTION THE EFFECT OF TIP SPEED RATIO ON WIND TURBINE GENERATOR OUTPUT PARAMETER Int. J. Mech. Eng. & Rob. Res. 2012 Hari Pal Dhariwal et al., 2012 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 1, No. 3, October 2012 2012 IJMERR. All Rights Reserved PREDICTION THE EFFECT OF TIP

More information

IIIYEAR/VISEMESTER ME2023 RENEWABLE SOURCES OF ENERGY UNIT II WIND ENERGY

IIIYEAR/VISEMESTER ME2023 RENEWABLE SOURCES OF ENERGY UNIT II WIND ENERGY Department Of Mechanical Engineering IIIYEAR/VISEMESTER ME2023 RENEWABLE SOURCES OF ENERGY UNIT II WIND ENERGY 9 Wind Data and Energy Estimation wind Energy Conversion Systems Wind Energy generators and

More information

Evaluation of wind loads by a passive yaw control at the extreme wind speed condition and its verification by measurements

Evaluation of wind loads by a passive yaw control at the extreme wind speed condition and its verification by measurements Evaluation of wind loads by a passive yaw control at the extreme wind speed condition and its verification by measurements Dec/11/2017 Soichiro Kiyoki Takeshi Ishihara Mitsuru Saeki Ikuo Tobinaga (Hitachi,

More information

WIND DIRECTION ERROR IN THE LILLGRUND OFFSHORE WIND FARM

WIND DIRECTION ERROR IN THE LILLGRUND OFFSHORE WIND FARM WIND DIRECTION ERROR IN THE LILLGRUND OFFSHORE WIND FARM * Xi Yu*, David Infield*, Eoghan Maguireᵜ Wind Energy Systems Centre for Doctoral Training, University of Strathclyde, R3.36, Royal College Building,

More information