GL GH Offshore Wind Measurements

Size: px
Start display at page:

Download "GL GH Offshore Wind Measurements"

Transcription

1 GL GH Offshore Wind Measurements Akademia OFFSHORE PTMEW Gdansk Detlef Stein

2 1. GL Garrad Hassan in a nut shell 2. FINO platforms: wind measurements / O&M 3. Offshore wind sensing: Met Tower & LiDAR 4. Final Remarks GLGH / Wilhelm Heckmann

3 Experts in Renewable Energy Onshore & Offshore Wind Wave & Tidal Solar PV & CSP

4 GL Garrad Hassan is the largest global dedicated renewables consultancy 950+ staff, in 42 locations, across 24 countries Over 100 offshore staff worldwide

5 Overview of Offshore Wind Practice Leveraging Offshore Experience Across the GL Group GL Group Employees in 80 Countries 767 million turnover (2011) GL Noble Denton Oil & Gas Project management & marine warranty survey Germanischer Lloyd Maritime Services Vessel support GL Garrad Hassan Renewable energy Technical consultancy related to resource, technology & project GL Renewables Certification Independent third-party review of design, fabrication, manufacturing & installation OFFSHORE WIND PRACTICE

6 Providing Lifecycle Support to All Stakeholders Project Developers Owner/Operators Investors Manufacturers Governments/NGOs

7 Experience matters Energy assessment analyzing 20,000 MW of new projects per year 25% of all projects worldwide 70% of UK installed capacity 75% of Irish installed capacity Operational assessment 15% of the world s installed capacity Due diligence over 25% of the world s project financed wind farms world s largest wind farm portfolio acquisition world s first wind energy bond deal Independent engineer 45% of US wind farms the world s five largest wind farm financings the first project financed offshore wind farm Short-term forecasting over 20% of the world s operational wind capacity Measurements wind sensing by met. tower measurements: boom layout, system design, O&M, refit wind remote sensing LiDAR / SoDAR power curve measurements on 500+ turbines load measurements on 100+ turbines founding member of MEASNET first ever load measurements on offshore wind farm Products/ software solutions industry standard wind turbine design software - Bladed Bladed used to design world s largest turbine World s largest independent SCADA supplier 6,000 MW Offshore Wind Project Management Project management of world s largest offshore wind farm Thanet current PM Borkum West 2,

8 Support Across the Offshore Wind Project Lifecycle

9 Key offshore wind skills and expertise Due diligence for banks & investors Commercial analysis / market strategy Transportation & installation management Turbine technology Structures and foundations Geotechnical engineering Power transmission & control / communications cables High voltage electrical system design / grid connection Health & safety Project management Client representation offshore and onshore Marine warranty services for insurance underwriters Marine engineering, Met-Ocean services Offshore in-situ wind measurements Met Towers, RS LiDAR Wind yield analysis, EPAs

10 1. GL Garrad Hassan in a nut shell 2. FINO platforms: wind measurements / O&M 3. Offshore wind sensing: Met Tower & LiDAR 4. Final Remarks GLGH / Wilhelm Heckmann

11 FINO Platforms in the North Sea and Baltic Sea Baltic Sea BARD km North Sea Baltic 1 Baltic 2, 13 Alpha Ventus 10 Platforms built Wind farms realized 2010/

12 FINO 1 2 3: Facts, Specs & GL GH Involvements FINO1: Scoping, technical design, tendering, construction since 2001, installation & commissioning 2003, O&M since 2003 to 2011 FINO2: O&M since 2010 FINO3: wind meas. since 2009: design, engineering, installation of meteorological meas. system, O&M, data collection / processing ID / Location Mast shape Height Depth to coast Foundation Platform size Heli FINO 1 North Sea Square 101 m 28 m 45 km Jacket 16 x 16 m yes FINO 2 Baltic Sea Square 101 m 24 m 31 km Monopile 12 x 12 m no FINO 3 North Sea Triangular 106 m (120 m) 23 m 80 km Monopile 13 x 13 m yes

13 Operation and Maintenance of FINO 1 and FINO 2 Main Objectives Secure un-manned operation Guarantee seamless energy supply and function of platform equipment Coordination and guidance of research personal on platform for measurement services (by boat & helicopter) Operate all technical facilities Coordination and performance of maintenance and repairs HSE requirements, safety drills etc. Periodic inspections

14 Storm Sören, 04 October 2009 Hs = 6,40 m Hmax = 10,24 m wave periode 11,8 s wave length of about 200 m wave direction 320

15 Extreme Wave Heights Storm Britta on 1 st Nov 2006 Hs = 9,77 m (by wave buoy) Hmax = ~16 m (derived) close to 50 year design wave some damage to platform 20 m FINO m C.D. Lower platform +15 m C.D. Photo: GL 10 m 0 m Hmax ~16 m C.D. = LAT Hs = 9.77m similar event a year later design wave reached in two successive years review of wave climate prediction needed

16 1. GL Garrad Hassan in a nut shell 2. FINO platforms: wind measurements / O&M 3. Offshore wind sensing: classical met. tower 4. Final Remarks GLGH / Wilhelm Heckmann

17 Offshore Met Masts GL Garrad Hassan provides extensive met mast services. This service includes complete project management for procurement, installation and operations as well as technical measurements and design. GLGH has performed wind measurements offshore using cup anemometry and LIDAR technology. Example reference projects include: FINO 1: Project Management along the complete project life cycle FINO 2: Project Management of the met. mast and research FINO 3: Consultancy for measurement strategy and performance of wind measurements Naikun Project (Canada): Performance of LIDAR measurements Irish Sea (U.K.): Design of offshore meas. system, procurement of met. mast, NAVAIDS and Power supply

18 Offshore Properties of Interest Recommended to be recorded wind speed, wind shear, wind speed profile, wind direction classical (mast cups) OR Remotes Sensing turbulence intensity, from wind speed standard deviations wind direction air density by air temperature, pressure, relative humidity atmospheric stability: to distinguish stable, unstable and neutral conditions impact on vertical wind speed profile precipitation site wave conditions wave radar OR wave buoy Further Met-Ocean properties useful visibility, lightning frequency and severity sea surface temperature and maybe ice built up

19 (a) 330 wind boom orientations 150 (b) Met Tower Measurement System Layout 90 Lightning Rod WS Cup Air.Pres.1 Temp.1, Humid.1 dtemp-up Met.1 WS/WD Sonic WD Vane 85 Temp. / Humidity 60 Rain 55 Solar Radiation N ( B ) 345 Messhöhe -1,75m W E S 30 (a) 330 mast shape boom orientations cabinet & ladder locations Seite A Messmast Temp.2, Humid.2 dtemp-low Seite C Met.2 ( A ) 225 Messhöhe -1,50m ( C ) 105 Messhöhe -2,0m Container D LiDAR 20 m Deck Level (c) 210 short boom 150 (b)

20 FINO 1 vs. FINO 3 Different Mast and Boom Layout significant mast effects on cups observed on FINO1 one lesson learned: switch from square to triangular mast shape FINO 1: Square Base Prevailing Wind DirectionSW FINO 3: Triangular Base

21 Offshore Met Tower Costs bulk costs are in the construction and installation components (Note: instrument costs based on a standard cup/vane arrangement with no ancillary equipment such as Oceanographic or LiDAR) values are indicative only range of prices quoted 4,000,000 to 12,000,000 mmm main issue is scarcity of vessels, and water depth. m costs are not trivial for offshore masts m issue becomes starker when thinking in terms of GW developments where multiple met masts are required. to fully describe the site 2-4 installations would be required future solution: combination of masts, floating LiDAR and meso.scale modeling

22 1. GL Garrad Hassan in a nut shell 2. FINO platforms: wind measurements / O&M 3. Offshore wind sensing: LiDAR 4. Final Remarks GLGH / Wilhelm Heckmann

23 Remote Sensing Principle LiDAR: volumetric probing of the wind opposed to point measurements with cups!

24 NORSEWInD WP1.1 In-Situ Remote Sensing Demonstrate an integrated approach by in-situ measurements in general and more specifically by remote sensing (LiDAR) techniques. Develop a robust LiDAR validation (calibration) scheme to increase confidence in this promising wind sensing technique. Develop procedures to install and operate stand-alone LiDARs offshore NORSEWInD RS approach Pre-deployment validation onshore Data collection and operational performance validation at sea Post-deployment validation onshore

25 NORSEWInD Remote Sensing LiDAR Spots Figure 4: Typical gas rig in the North Sea, carrying a Windcube LiDAR at the marked position. Device is installed 30m above sea level (LAT). Lowest meas. level is 70m LAT. Cyano colored box denotes position of LiDAR (source TAQA) LiDAR

26 Wind LiDAR Campaign on FINO3 Objectives: data collection for NORSEWInD data bank use in North Sea wind mapping wind profiles above top height of 100m up to 160m atmospheric stability studies evaluation of wake effects / flow distortion comparisons to wind tunnel and CFD modelling 160 m 130 m 100 m LiDAR

27 DONG Offshore LiDAR Bankability Study on FINO2 Objectives assessment of LIDAR performance reliability, availability uncertainties suitability of LiDAR data for formal energy yield related reporting bankabiltiy Tasks independent review of campaign, results uncertainty scheme installation, operation since July 2012 data collection and provision for two LiDARs (Windcube v2/v1)

28 Windcube Setup on FINO 2 Platform Beam angle obstacle/boom avoidance

29 Windcube Setup on FINO2 Container

30 Stand Alone Offshore Wind LiDARs Gas rig in North Sea carrying a Windcube v1 LiDAR, installed at 30m, 10 meas levels betw. 70m and 250 m NORSEWInD (photo TAQA) Naikun: 30m mast with crows nest Hecate Strait offshore BC Canada ZephIR CW LiDAR, resource assessment (photo Naikkun)

31 Floating LiDAR some Prototypes SeaZaphIR (Natural Power Consultants ZephIR 300) Stable spar buoy without algorithmic correction Preliminary test in Norwegian waters (Nov. 2009): 6 km from fixed mast, moored about 800 m from land lidar AXYS WindSentinel (BlueScout s OWS-150) Algorithmic correction Preliminary tests: i) BC coastal waters (Dec. 2009), moored 750 m from Race Rocks island lidar; ii) Muskegon Lake, MI (Oct. 2011), moored 400 m from onshore met mast. 3E s FLIDAR (Leosphere s WINDCUBE v2) Mechanical stability & algorithmic correction Preliminary tests off Belgian coast (Sep. 2011), Moored 1 km from offshore platform lidar Fugro s SEAWATCH (NPC s ZephIR 300) Algorithmic correction in progress? Preliminary test in Norwegian waters (March 2012), moored 3 km from land met mast and lidar

32 Floating LiDAR Roadmap to Building Confidence

33 Floating Lidar Case Study ~ 750 m

34 1. GL Garrad Hassan in a nut shell 2. FINO platforms: wind measurements / O&M 3. Offshore wind sensing: Met Tower & LiDAR 4. Final Remarks GLGH / Wilhelm Heckmann

35 Final Remarks Classical Met. Tower still state-of-the-art, but fairly expensive esp. in deeper waters Ground based LiDAR proven technology GL GH provides position statements on e.g. suitability series types for formal EPA - in combination with met. towers - stand alone on fixed platforms Floating LiDAR still pre-mature, very promising outlook best practice advise by GL GH GL GH provides support in - design of offshore meas. campaigns - development of procedure to optimize confidence in measured data traceable uncertainties suitability for formal reporting (called bankability)

36 Training by GL GH Offshore Wind Energy Training Course Warsaw,

37 Thank you! Detlef Stein Deputy Head of Offshore Department GL GH Hamburg, Germany

OFFSHORE CREDENTIALS. Accepted for wind resource assessment onshore and offshore by leading Banks Engineers, globally

OFFSHORE CREDENTIALS. Accepted for wind resource assessment onshore and offshore by leading Banks Engineers, globally OFFSHORE CREDENTIALS Accepted for wind resource assessment onshore and offshore by leading Banks Engineers, globally ZEPHIR OFFSHORE CREDENTIALS Accepted for wind resource assessment onshore and offshore

More information

VALIDATION OF WIND SPEED DISTURBANCES TO CUPS AT THE METEORLOCICAL MAST ON THE OFFSHORE PLATFORM FINO1 USING WIND-LIDAR MEASUREMENTS.

VALIDATION OF WIND SPEED DISTURBANCES TO CUPS AT THE METEORLOCICAL MAST ON THE OFFSHORE PLATFORM FINO1 USING WIND-LIDAR MEASUREMENTS. VALIDATION OF WIND SPEED DISTURBANCES TO CUPS AT THE METEORLOCICAL MAST ON THE OFFSHORE PLATFORM FINO1 USING WIND-LIDAR MEASUREMENTS Authors: Detlef Kindler K.-W.-Koog GmbH Andy Oldroyd Oldbaum Services

More information

2. Fachtagung Energiemeteorologie 2011, Bremerhaven SITE ASSESSMENT. WIND TURBINE ASSESSMENT. GRID INTEGRATION. DUE DILIGENCE. KNOWLEDGE.

2. Fachtagung Energiemeteorologie 2011, Bremerhaven SITE ASSESSMENT. WIND TURBINE ASSESSMENT. GRID INTEGRATION. DUE DILIGENCE. KNOWLEDGE. Turbulence intensity in the German Bight: Comparison of the turbulence conditions at FINO1 and FINO3 A. Westerhellweg, B. Canadillas, T. Neumann, DEWI GmbH SITE ASSESSMENT. WIND TURBINE ASSESSMENT. GRID

More information

Carbon Trust Offshore Wind Accelerator. OWA floating LiDAR campaign: Babcock trial at Gwynt Y Môr Copenhagen, 11 March 2015 Megan Smith

Carbon Trust Offshore Wind Accelerator. OWA floating LiDAR campaign: Babcock trial at Gwynt Y Môr Copenhagen, 11 March 2015 Megan Smith Carbon Trust Offshore Wind Accelerator OWA floating LiDAR campaign: Babcock trial at Gwynt Y Môr Copenhagen, 11 March 2015 Megan Smith 1 Trial Overview Using RWE s Gwynt y Mor mast in the Irish Sea MeasNet-calibrated

More information

Available online at ScienceDirect. Energy Procedia 53 (2014 )

Available online at   ScienceDirect. Energy Procedia 53 (2014 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 53 (2014 ) 156 161 EERA DeepWind 2014, 11th Deep Sea Offshore Wind R&D Conference Results and conclusions of a floating-lidar offshore

More information

EMPOWERING OFFSHORE WINDFARMS BY RELIABLE MEASUREMENTS

EMPOWERING OFFSHORE WINDFARMS BY RELIABLE MEASUREMENTS EMPOWERING OFFSHORE WINDFARMS BY RELIABLE MEASUREMENTS Joerg Bendfeld University of Paderborn Fakultät Elektrotechnik, Mathematik und Informatik Lehrstuhl für Elektrische Energietechnik Pohlweg 55 D-33014

More information

TESTING AND CALIBRATION OF VARIOUS LiDAR REMOTE SENSING DEVICES FOR A 2 YEAR OFFSHORE WIND MEASUREMENT CAMPAIGN

TESTING AND CALIBRATION OF VARIOUS LiDAR REMOTE SENSING DEVICES FOR A 2 YEAR OFFSHORE WIND MEASUREMENT CAMPAIGN TESTING AND CALIBRATION OF VARIOUS LiDAR REMOTE SENSING DEVICES FOR A 2 YEAR OFFSHORE WIND MEASUREMENT CAMPAIGN D Kindler 1 WINDTEST Kaiser Wilhelm Koog detlef.kindler@wtk.windtest.com 1 Corresponding

More information

On- and Offshore Assessment of the ZephIR Wind-LiDAR

On- and Offshore Assessment of the ZephIR Wind-LiDAR On- and Offshore Assessment of the ZephIR Wind-LiDAR Detlef Kindler Kaiser-Wilhelm-Koog GmbH Andy Oldroyd Oldbaum Services Ltd. IEA R&D Task 11, Wind Energy 51 st Topical Expert Meeting on Remote Sensing

More information

Offshore Micrositing - Meeting The Challenge

Offshore Micrositing - Meeting The Challenge Offshore Micrositing - Meeting The Challenge V. Barth; DEWI GmbH, Oldenburg English Introduction Offshore wind is increasingly gaining importance in the wind energy sector. While countries like the UK

More information

Full Classification acc. to IEC for SoDAR AQ510 Wind Finder. Vincent Camier, Managing Director, Ammonit Measurement GmbH

Full Classification acc. to IEC for SoDAR AQ510 Wind Finder. Vincent Camier, Managing Director, Ammonit Measurement GmbH Full Classification acc. to IEC 61400-12-1 for SoDAR AQ510 Wind Finder Vincent Camier, Managing Director, Ammonit Measurement GmbH Ammonit Company Profile German company, based in Berlin +25 years of know-how

More information

A Wind Profiling Platform for Offshore Wind Measurements and Assessment. Presenter: Mark Blaseckie AXYS Technologies Inc.

A Wind Profiling Platform for Offshore Wind Measurements and Assessment. Presenter: Mark Blaseckie AXYS Technologies Inc. A Wind Profiling Platform for Offshore Wind Measurements and Assessment Presenter: Mark Blaseckie AXYS Technologies Inc. Any Sensor, Any Telemetry, Any Environment Founded in 1974 Part of the AXYS Group

More information

FINO1 Mast Correction

FINO1 Mast Correction FINO1 Mast Correction A. Westerhellweg, T. Neunn; DEWI GmbH, Wilhelmshaven V. Riedel; DEWI North America Inc. A. Westerhellweg English Abstract Lateral speed-up effects, upwind flow retardation and downwind

More information

Executive Summary of Accuracy for WINDCUBE 200S

Executive Summary of Accuracy for WINDCUBE 200S Executive Summary of Accuracy for WINDCUBE 200S The potential of offshore wind energy has gained significant interest due to consistent and strong winds, resulting in very high capacity factors compared

More information

Increased Project Bankability : Thailand's First Ground-Based LiDAR Wind Measurement Campaign

Increased Project Bankability : Thailand's First Ground-Based LiDAR Wind Measurement Campaign Increased Project Bankability : Thailand's First Ground-Based LiDAR Wind Measurement Campaign Authors: Velmurugan. k, Durga Bhavani, Ram kumar. B, Karim Fahssis As wind turbines size continue to grow with

More information

10 years of meteorological measurements at FINO1

10 years of meteorological measurements at FINO1 10 years of meteorological measurements at FINO1 Thomas Neumann, Friederike Kinder, Beatriz Canadillas SITE ASSESSMENT. WIND TURBINE ASSESSMENT. GRID INTEGRATION. DUE DILIGENCE. KNOWLEDGE. CONSULTANCY

More information

The NORCOWE legacy - data and instrumentation

The NORCOWE legacy - data and instrumentation U N I V E R S I T Y O F B E R G E N Geophysical Institute The NORCOWE legacy - data and instrumentation J. Reuder 1, M. Flügge 1,2, M. Bakhoday Pakyabi 1,3, B. Svardal 2 1 Geophysical Institute, University

More information

Wind Project Siting & Resource Assessment

Wind Project Siting & Resource Assessment Wind Project Siting & Resource Assessment David DeLuca, Project Manager AWS Truewind, LLC 463 New Karner Road Albany, NY 12205 ddeluca@awstruewind.com www.awstruewind.com AWS Truewind - Overview Industry

More information

The Offshore Boundary Layer Observatory (OBLO) Possibilities for the offshore wind industry

The Offshore Boundary Layer Observatory (OBLO) Possibilities for the offshore wind industry The Offshore Boundary Layer Observatory (OBLO) Possibilities for the offshore wind industry Prof. Peter Haugan, Prof. Joachim Reuder Geophysical Institute, NORCOWE Science Meets Industry 08. November 2016,

More information

Havsnäs Pilot Project

Havsnäs Pilot Project Havsnäs Pilot Project ALAN DERRICK SENIOR TECHNICAL MANAGER Project financed by: Swedish Energy Agency Pilot Grant Winterwind, Östersund February 2013 1 Havsnäs Site Location 2 The Havsnäs Project 110

More information

Comparison of flow models

Comparison of flow models Comparison of flow models Rémi Gandoin (remga@dongenergy.dk) March 21st, 2011 Agenda 1. Presentation of DONG Energy 2. Today's presentation 1. Introduction 2. Purpose 3. Methods 4. Results 3. Discussion

More information

FRØYA SEAWATCH WIND LIDAR BUOY PRE-DEPLOYMENT VALIDATION

FRØYA SEAWATCH WIND LIDAR BUOY PRE-DEPLOYMENT VALIDATION FRØYA SEAWATCH WIND LIDAR BUOY PRE-DEPLOYMENT VALIDATION Assessment of the Fugro OCEANOR Seawatch Wind LiDAR Buoy Pre-Deployment Validation on Frøya, Norway Fugro/OCEANOR AS Report No.: GLGH-4257 13 10378-R-0004,

More information

Wind measurements that reduce electricity prices

Wind measurements that reduce electricity prices Wind measurements that reduce electricity prices Extensive testing in three countries has proven that laser measurements of wind provide precise, reliable wind data. The research findings will make it

More information

ENERGY YIELD PREDICTION AN OFFSHORE GUIDE

ENERGY YIELD PREDICTION AN OFFSHORE GUIDE ENERGY YIELD PREDICTION AN OFFSHORE GUIDE LESSONS LEARNED AT SEA In this, the second in our guide series, we draw on our experience analysing offshore wind farms and wind data for research, tender, acquisition

More information

Hollandse Kust (zuid) Wind resource assessment. 17 January 2017 Anthony Crockford

Hollandse Kust (zuid) Wind resource assessment. 17 January 2017 Anthony Crockford Hollandse Kust (zuid) Wind resource assessment 17 January 2017 Overview > Introduction > Wind measurements > Mesoscale model > Calculation of wind climate > Comparisons > Conclusions 2 ECOFYS WTTS 17/01/2017

More information

Results and conclusions of a floating Lidar offshore test

Results and conclusions of a floating Lidar offshore test Results and conclusions of a floating Lidar offshore test J. Gottschall, G. Wolken-Möhlmann, Th. Viergutz, B. Lange [Fraunhofer IWES Wind Lidar Buoy next to FINO1 met. mast] EERA DeepWind'2014 Conference,

More information

WIND INDUSTRY APPLICATIONS

WIND INDUSTRY APPLICATIONS zephirlidar.com sales@zephirlidar.com WIND INDUSTRY APPLICATIONS 2017 Zephir Ltd. All rights reserved. ZephIR, Zephir, ZephIR 300, ZephIR 300M ZephIR DM, ZephIR Care, ZephIR Direct, ZephIR Power and Waltz

More information

can the wind industry bank on wind lidar? November 2014

can the wind industry bank on wind lidar? November 2014 can the wind industry bank on wind lidar? November 2014 introduction 01 02 03 04 05 06 07 08 09 10 introduction why improve wind measurements? guidelines for accurate annual energy predictions traceability

More information

Technology and innovation challenges for UK Offshore Wind Energy Andrew Scott

Technology and innovation challenges for UK Offshore Wind Energy Andrew Scott Technology and innovation challenges for UK Offshore Wind Energy Andrew Scott Offshore Wind Operations/Science Meets Industry, Bergen 2013 10 September 2013 2013 Energy Technologies Institute LLP The information

More information

July Interim Report. National Institute of Wind Energy (NIWE) Wind Resource Assessment & Offshore Unit Chennai, India.

July Interim Report. National Institute of Wind Energy (NIWE) Wind Resource Assessment & Offshore Unit Chennai, India. Interim Report (First Offshore Lidar wind data analysis) July 2018 Prepared by National Institute of Wind Energy (NIWE) Wind Resource Assessment & Offshore Unit Chennai, India. W I N D R E S O U R C E

More information

Remote sensing standards: their current status and significance for offshore projects

Remote sensing standards: their current status and significance for offshore projects Remote sensing standards: their current status and significance for offshore projects Peter J M Clive Technical Development Consultant SgurrEnergy Ltd 225 Bath Street Glasgow G2 4GZ E: peter.clive@sgurrenergy.com

More information

Innovative and Robust Design. With Full Extension of Offshore Engineering and Design Experiences.

Innovative and Robust Design. With Full Extension of Offshore Engineering and Design Experiences. Innovative and Robust Design by VL Offshore With Full Extension of Offshore Engineering and Design Experiences www.vloffshore.com Y Wind Semi Designed by VL Offshore The Y Wind Semi platform (foundation)

More information

The Wind Resource: Prospecting for Good Sites

The Wind Resource: Prospecting for Good Sites The Wind Resource: Prospecting for Good Sites Bruce Bailey, President AWS Truewind, LLC 255 Fuller Road Albany, NY 12203 bbailey@awstruewind.com Talk Topics Causes of Wind Resource Impacts on Project Viability

More information

FUGRO/OCEANOR SEAWATCH WIND LIDAR BUOY ASSESSMENT OF THE FUGRO/OCEANOR SEAWATCH FLOATING LIDAR VERIFICATION AT RWE IJMUIDEN MET MAST

FUGRO/OCEANOR SEAWATCH WIND LIDAR BUOY ASSESSMENT OF THE FUGRO/OCEANOR SEAWATCH FLOATING LIDAR VERIFICATION AT RWE IJMUIDEN MET MAST FUGRO/OCEANOR SEAWATCH WIND LIDAR BUOY ASSESSMENT OF THE FUGRO/OCEANOR SEAWATCH FLOATING LIDAR VERIFICATION AT RWE IJMUIDEN MET MAST Fugro/OCEANOR AS Technical Note No.: GLGH-4257 13 10378-R-0003, Rev.

More information

COMPARISON OF ZEPHIR MEASUREMENTS AGAINST CUP ANEMOMETRY AND POWER CURVE ASSESSMENT

COMPARISON OF ZEPHIR MEASUREMENTS AGAINST CUP ANEMOMETRY AND POWER CURVE ASSESSMENT COMPARISON OF ZEPHIR MEASUREMENTS AGAINST CUP ANEMOMETRY AND POWER CURVE ASSESSMENT Author: Marion Cayla Issued: 8 February 2010 Natural Power, 10 place du Temple Neuf, 67000, Strasbourg, France, SIREN

More information

Assessment and Testing of Island Wind Resources without Masts

Assessment and Testing of Island Wind Resources without Masts 22 nd of June 2015 Assessment and Testing of Island Wind Resources without Masts ISLAND ENERGY TRANSITIONS: PATHWAYS FOR ACCELERATED UPTAKE OF RENEWABLES Martinique, June 22-24, 2015 Contents 1. The problem

More information

LiDAR Application to resource assessment and turbine control

LiDAR Application to resource assessment and turbine control ENERGY LiDAR Application to resource assessment and turbine control Dr. Avishek Kumar The New Zealand Wind Energy Conference 13 th April 2016 1 SAFER, SMARTER, GREENER Agenda What is LiDAR? Remote Sensing

More information

The WindFloat Project. Hamburg, September 2016

The WindFloat Project. Hamburg, September 2016 The WindFloat Project Hamburg, September 2016 WindFloat Atlantic: a step change in turning floating wind commercial Technical Performance Competitive LCOE Bankability 2 WindFloat Atlantic: overall description

More information

Predicting climate conditions for turbine performance

Predicting climate conditions for turbine performance Predicting climate conditions for turbine performance Mark Žagar, Vinay Belathur Krishna, Alvaro Matesanz Gil Vestas Data Engineering & Analytics / Advanced Plant Modelling Resource assessment, power curve,

More information

Strategic Advice about Floating LiDAR Campaigns. Borssele offshore wind farm

Strategic Advice about Floating LiDAR Campaigns. Borssele offshore wind farm Strategic Advice about Floating LiDAR Campaigns Borssele offshore wind farm Strategic Advice about Floating LiDAR Campaigns Borssele offshore wind farm Project number: ESMWT16419 Prepared: Dhruv Dhirendra

More information

PROJECT CYCLOPS: THE WAY FORWARD IN POWER CURVE MEASUREMENTS?

PROJECT CYCLOPS: THE WAY FORWARD IN POWER CURVE MEASUREMENTS? Title Authors: Organisation PROJECT CYCLOPS: THE WAY FORWARD IN POWER CURVE MEASUREMENTS? Simon Feeney(1), Alan Derrick(1), Alastair Oram(1), Iain Campbell(1), Gail Hutton(1), Greg Powles(1), Chris Slinger(2),

More information

REMOTE SENSING APPLICATION in WIND ENERGY

REMOTE SENSING APPLICATION in WIND ENERGY REMOTE SENSING APPLICATION in WIND ENERGY Siraj Ahmed Professor & Head Department of Mechanical Engineering Maulana Azad National Iinstitute of Technology Bhopal, India sirajahmed@manit.ac.in Contents

More information

Marine Renewables Industry Association. Marine Renewables Industry: Requirements for Oceanographic Measurements, Data Processing and Modelling

Marine Renewables Industry Association. Marine Renewables Industry: Requirements for Oceanographic Measurements, Data Processing and Modelling Marine Renewables Industry Association Marine Renewables Industry: Requirements for Oceanographic Measurements, Data Processing and Modelling October 2009 Table of Contents 1. Introduction... 1 2. Measurements

More information

Valerijs Bezrukovs, Vladislavs Bezrukovs Ventspils University College Latvia. WREF2012 Denver, CO May 13-17, 2012

Valerijs Bezrukovs, Vladislavs Bezrukovs Ventspils University College Latvia. WREF2012 Denver, CO May 13-17, 2012 Valerijs Bezrukovs, Vladislavs Bezrukovs Ventspils University College Latvia WREF2012 Denver, CO May 13-17, 2012 Baltic countries 2 Currently rise of WPP development in Baltic countries. Attractive for

More information

Validation of Measurements from a ZephIR Lidar

Validation of Measurements from a ZephIR Lidar Validation of Measurements from a ZephIR Lidar Peter Argyle, Simon Watson CREST, Loughborough University, Loughborough, United Kingdom p.argyle@lboro.ac.uk INTRODUCTION Wind farm construction projects

More information

DUTCH OFFSHORE WIND ATLAS

DUTCH OFFSHORE WIND ATLAS DUTCH OFFSHORE WIND ATLAS WindDays, Rotterdam, 14 June 2018 Dr. J.W. Wagenaar (ECN part of TNO) Ir. P.A. van Dorp (Whiffle) CONTENT Background & Objectives Approach Results so far Take away messages 2

More information

Offshore Service Vessels for Wind Farming. BALTEXPO 2011, September 2011

Offshore Service Vessels for Wind Farming. BALTEXPO 2011, September 2011 Offshore Service Vessels for Wind Farming BALTEXPO 2011, September 2011 Agenda 1. Market Outlook and Vessel Prognosis 2. Design Concepts Wind Turbine Installation Ships 3. Rules and Regulations 4. Maintenance

More information

Computational Fluid Dynamics

Computational Fluid Dynamics Computational Fluid Dynamics A better understanding of wind conditions across the whole turbine rotor INTRODUCTION If you are involved in onshore wind you have probably come across the term CFD before

More information

MEMO CC: Summary. ESMWT16419: _MEM_RVO_HKZ floating LiDAR uncertainty_v3.docx 1/8

MEMO CC: Summary. ESMWT16419: _MEM_RVO_HKZ floating LiDAR uncertainty_v3.docx 1/8 MEMO Prepared: Anthony Crockford 23.02.2016 Reviewed: Erik Holtslag 24.02.2016 Approved: Michiel Müller 29.02.2016 Filename 20160224_MEM_RVO_HKZ floating LiDAR uncertainty_v3.docx Pages 8 Version Author

More information

Conditions for Offshore Wind Energy Use

Conditions for Offshore Wind Energy Use Carl von Ossietzky Universität Oldenburg Institute of Physics Energy Meteorology Group Detlev Heinemann Conditions for Offshore Wind Energy Use Detlev Heinemann ForWind Carl von Ossietzky Universität Oldenburg

More information

That is why. April 24, 2008

That is why. April 24, 2008 That is why Page 1 Our Vision: Wind, Oil and Gas Page 2 Our Product R&D and manufacture Assembly and testing Sales and planning Transport Installation Maintenance A 100% focused value chain Producing turbines

More information

Meteorological Measurements OWEZ

Meteorological Measurements OWEZ Meteorological Measurements OWEZ Half year report 01-01-2008-30-06-2008 H. Korterink P.J. Eecen ECN-E--08-062 OWEZ_R_121_20080101-20080630_wind_resource_2008_1 Abstract NoordzeeWind carries out an extensive

More information

NORCOWE met-ocean measurement campaigns

NORCOWE met-ocean measurement campaigns NORCOWE met-ocean measurement campaigns Kumer V.-M., Reuder J., Furevik B.,, Båserud L., Svardal B., Sæter C., Flügge M., Bakhoday Paskyabi M., Eecen P. University of Bergen, Norway, CMR, Norway, Meteorological

More information

Experience with the design, manufacture, test and commercialisation of the REpower 6M turbine

Experience with the design, manufacture, test and commercialisation of the REpower 6M turbine Experience with the design, manufacture, test and commercialisation of the REpower 6M turbine UK Offshore Wind Danish Embassy in London 4th of December 2012 Norbert Giese, REpower Systems SE REpower founded

More information

7 YEARS METEOMAST AMRUMBANK WEST

7 YEARS METEOMAST AMRUMBANK WEST 7 YEARS METEOMAST AMRUMBANK WEST Joerg Bendfeld(1), Jens Krieger(2) (1) University of Paderborn, Kompetenzzentrum für nachhaltige Energietechnik KET, Pohlweg 55, 33098 Paderborn, Germany, (2) airwerk GmbH,

More information

Offshore Wind Vessels. Steven Kopits Douglas-Westwood LLC

Offshore Wind Vessels. Steven Kopits Douglas-Westwood LLC Offshore Wind Vessels Steven Kopits Douglas-Westwood LLC Offshore Wind: Removing Market Barriers DOE Webinar July 25, 2012 1 www.dw-1.com Our business History and Office Locations Established 1990 Aberdeen,

More information

Deep Sea Offshore Wind Power R&D Seminar Trondheim, Jan. 2011

Deep Sea Offshore Wind Power R&D Seminar Trondheim, Jan. 2011 Deep Sea Offshore Wind Power R&D Seminar Trondheim, 20-21 Jan. 2011 Atmospheric Profiling by Lidar for Wind Energy Research Torben Mikkelsen Wind Energy Division Risø National Laboratory for Sustainable

More information

Meteorological Measurements OWEZ

Meteorological Measurements OWEZ Meteorological Measurements OWEZ Half year report - 01-07-2008-31-12-2008 H. Korterink P.J. Eecen J.W. Wagenaar ECN-E--09-018 OWEZ_R_121_20080701-20081231_WIND_RESOURCE_2008_2 Abstract NoordzeeWind carries

More information

NORCOWE Reference Wind Farm

NORCOWE Reference Wind Farm NORCOWE Reference Wind Farm Kristin Guldbrandsen Frøysa, director NORCOWE kristin@cmr.no Main contributions to presentation: Angus Graham, Alla Sapronova, Thomas Bak, John Dalsgaard Sørensen, Mihai Florian

More information

Lifting satellite winds from 10 m to hub-height

Lifting satellite winds from 10 m to hub-height Lifting satellite winds from 10 m to hub-height Hasager, C.B., Badger, M., Peña, A., Hahmann, A., Volker, P. 23 May 2016 VindkraftNet meeting, DONG Energy, Skærbæk Motivation We have: Satellite wind maps

More information

A Comparison of the UK Offshore Wind Resource from the Marine Data Exchange. P. Argyle, S. J. Watson CREST, Loughborough University, UK

A Comparison of the UK Offshore Wind Resource from the Marine Data Exchange. P. Argyle, S. J. Watson CREST, Loughborough University, UK A Comparison of the UK Offshore Wind Resource from the Marine Data Exchange P. Argyle, S. J. Watson CREST, Loughborough University, UK Introduction Offshore wind measurements are scarce and expensive,

More information

Offshore wind in COWI

Offshore wind in COWI EWEA OFFSHORE 2015 Offshore wind in COWI Jasmin Bejdic (JABC), Project Manager 1 Agenda Introduction COWI Wind Offshore wind in COWI Project development Feasibility studies Due diligence Power curve measurement

More information

Can Lidars Measure Turbulence? Comparison Between ZephIR 300 and an IEC Compliant Anemometer Mast

Can Lidars Measure Turbulence? Comparison Between ZephIR 300 and an IEC Compliant Anemometer Mast Can Lidars Measure Turbulence? Comparison Between ZephIR 300 and an IEC Compliant Anemometer Mast W. Barker (1), M. Pitter (2), E. Burin des Roziers (3), M. Harris (4), R. Scullion (5) (1) Natural Power

More information

WIND ENERGY REPORT GERMANY 2013

WIND ENERGY REPORT GERMANY 2013 FRAUNHOFER INSTITUTE FOR WIND ENERGY AND SYSTEM TECHNOLOGY IWES WIND ENERGY REPORT GERMANY 2013 FRAUNHOFER VERLAG Publisher: Dr. Kurt Rohrig Fraunhofer Institute for Wind Energy and Energy System Technology

More information

Scanning lidar measurements of offshore wind turbine wakes. Peter Clive Senior Scientist, SgurrEnergy All Energy, Glasgow

Scanning lidar measurements of offshore wind turbine wakes. Peter Clive Senior Scientist, SgurrEnergy All Energy, Glasgow Scanning lidar measurements of offshore wind turbine wakes Peter Clive Senior Scientist, SgurrEnergy All Energy, Glasgow 2015-05-07 Scanning lidar is a very powerful instrument It provides information

More information

Measurement and simulation of the flow field around a triangular lattice meteorological mast

Measurement and simulation of the flow field around a triangular lattice meteorological mast Measurement and simulation of the flow field around a triangular lattice meteorological mast Matthew Stickland 1, Thomas Scanlon 1, Sylvie Fabre 1, Andrew Oldroyd 2 and Detlef Kindler 3 1. Department of

More information

Offshore wind power in the Baltic sea

Offshore wind power in the Baltic sea Offshore wind power in the Baltic sea Conditions for profitability Henrik Malmberg 2014-09-27 Content BACKGROUND... 2 PURPOSE... 2 ABOUT THE AUTHOR... 2 RELEVANT ISSUES... 3 WIND CONDITIONS AND ENERGY

More information

Introduction EU-Norsewind

Introduction EU-Norsewind Satellite winds in EU-Norsewind Charlotte Bay Hasager, Risø DTU, Denmark Alexis Mouche, CLS, France Merete Badger, Poul Astrup & Morten Nielsen, Risø DTU, Denmark Romain Husson, ESA Introduction EU-Norsewind

More information

Assessment and operation of Wind Turbine Installation Vessels.

Assessment and operation of Wind Turbine Installation Vessels. Noble Denton Marine Services Assessment and operation of Wind Turbine Installation Vessels. Risk reduction through implementation of good practice recommendations Mark Hayward 24 January 2017 1 DNV GL

More information

Alstom Ocean Energy Path towards Industrailsation. Ken Street 18 th April 2013

Alstom Ocean Energy Path towards Industrailsation. Ken Street 18 th April 2013 Alstom Ocean Energy Path towards Industrailsation Ken Street 18 th April 2013 Three main activities in four Sectors Equipment & services for power generation Equipment & services for rail transport ALSTOM

More information

DIRECTION DEPENDENCY OF OFFSHORE TURBULENCE INTENSITY IN THE GERMAN BIGHT

DIRECTION DEPENDENCY OF OFFSHORE TURBULENCE INTENSITY IN THE GERMAN BIGHT 10 th Wind Energy Conference DEWEK 2010 DIRECTION DEPENDENCY OF OFFSHORE TURBULENCE INTENSITY IN THE GERMAN BIGHT Annette Westerhellweg, Beatriz Canadillas, Thomas Neumann DEWI GmbH, Wilhelmshaven, Germany,

More information

Measuring power performance with a Wind Iris 4- beam in accordance with EUDP procedure

Measuring power performance with a Wind Iris 4- beam in accordance with EUDP procedure Measuring power performance with a Wind Iris 4- beam in accordance with EUDP procedure This document evaluates the applicability of the EUDP procedure for wind turbine measuring power performance using

More information

ESB Ocean Energy Projects

ESB Ocean Energy Projects MRIA, February 2013 ESB Ocean Energy Projects Opportunities in an All-Islands Market John Fitzgerald ESB Ocean Energy Developing new lines of business for ESB and Ireland 200M Cleantech Fund Home Energy

More information

Wind Plant Simulation and Validation Jonathan Naughton Department of Mechanical Engineering University of Wyoming

Wind Plant Simulation and Validation Jonathan Naughton Department of Mechanical Engineering University of Wyoming Wind Plant Simulation and Validation Jonathan Naughton Department of Mechanical Engineering University of Wyoming 1 Overview Wind s Success Wind s Challenges Wind Plant Simulation and Validation Summary

More information

OFFSHORE WIND: A CRASH COURSE

OFFSHORE WIND: A CRASH COURSE OFFSHORE WIND: A CRASH COURSE OFFSHORE WIND: DEFINED OFFSHORE WIND: Construction of wind farms in bodies of water to generate electricity from wind. Unlike the typical usage of the term offshore in the

More information

Stefan Emeis

Stefan Emeis The Physics of Wind Park Optimization Stefan Emeis stefan.emeis@kit.edu INSTITUTE OF METEOROLOGY AND CLIMATE RESEARCH, Photo: Vattenfall/C. Steiness KIT University of the State of Baden-Wuerttemberg and

More information

Offshore Wind Energy in Germany Development and Outlook

Offshore Wind Energy in Germany Development and Outlook Development and Outlook Michael Zehfuss Stiftung OFFSHORE-WINDENERGIE German Offshore Wind Energy Foundation Stiftung OFFSHORE-WINDENERGIE German Offshore Wind Energy Foundation (GOWEF) Promoting Offshore

More information

WindProspector TM Lockheed Martin Corporation

WindProspector TM Lockheed Martin Corporation WindProspector TM www.lockheedmartin.com/windprospector 2013 Lockheed Martin Corporation WindProspector Unparalleled Wind Resource Assessment Industry Challenge Wind resource assessment meteorologists

More information

Report on the Research Project OWID Offshore Wind Design Parameter

Report on the Research Project OWID Offshore Wind Design Parameter Report on the Research Project OWID Offshore Wind Design Parameter T. Neumann a, S. Emeis b and C. Illig c a DEWI German Wind Energy Institute, Ebertstr. 96, Wilhelmshaven, Germany b Institute for Meteorology

More information

Offshore Wind Energy in Germany

Offshore Wind Energy in Germany Offshore Wind Energy in Germany Status and challenges Vilnius, 9 November 2011 Andreas Wagner Stiftung Offshore-Windenergie German Offshore Wind Energy Foundation Outline 1. Stiftung Offshore-Windenergie

More information

FINAL REPORT UPWIND 1A2 METROLOGY

FINAL REPORT UPWIND 1A2 METROLOGY FINAL REPORT UPWIND 1A METROLOGY P.J. Eecen, J.W. Wagenaar (ECN) N. Stefanatos (CRES) T.F. Pedersen, R. Wagner (Riso-DTU) K.S. Hansen (DTU-MEK) ECN-E--11-013 FEBRUARI 011 Acknowledgement/Preface The work

More information

JCOMM Technical Workshop on Wave Measurements from Buoys

JCOMM Technical Workshop on Wave Measurements from Buoys JCOMM Technical Workshop on Wave Measurements from Buoys Val Swail Chair, JCOMM Expert Team on Wind Waves and Storm Surges Neville Smith Vincent Cardone Peter Janssen Gerbrand Komen Peter Taylor WIND WAVES

More information

Application of rope access methods in the construction, inspection, repair and maintenance of wind turbines

Application of rope access methods in the construction, inspection, repair and maintenance of wind turbines Application of rope access methods in the construction, inspection, repair and maintenance of wind turbines Introduction IRATA International s rope access system is a safe method of working at height,

More information

Offshore Wind Energy Potential for the United States

Offshore Wind Energy Potential for the United States Offshore Wind Energy Potential for the United States Walt Musial Senior Engineer National Renewable Energy Laboratory walter_musial@nrel.gov Wind Powering America - Annual State Summit May 19, 2005 Evergreen

More information

Correlation analysis between UK onshore and offshore wind speeds

Correlation analysis between UK onshore and offshore wind speeds Loughborough University Institutional Repository Correlation analysis between UK onshore and offshore wind speeds This item was submitted to Loughborough University's Institutional Repository by the/an

More information

FIVE YEARS OF OPERATION OF THE FIRST OFFSHORE WIND RESEARCH PLATFORM IN THE GERMAN BIGHT FINO1

FIVE YEARS OF OPERATION OF THE FIRST OFFSHORE WIND RESEARCH PLATFORM IN THE GERMAN BIGHT FINO1 FIVE YEARS OF OPERATION OF THE FIRST OFFSHORE WIND RESEARCH PLATFORM IN THE GERMAN BIGHT FINO1 Andreas Beeken, DEWI GmbH, Ebertstraße 96, D-26382 Wilhelmshaven Thomas Neumann, DEWI GmbH, Ebertstraße 96,

More information

Global Flow Solutions Mark Zagar, Cheng Hu-Hu, Yavor Hristov, Søren Holm Mogensen, Line Gulstad Vestas Wind & Site Competence Centre, Technology R&D

Global Flow Solutions Mark Zagar, Cheng Hu-Hu, Yavor Hristov, Søren Holm Mogensen, Line Gulstad Vestas Wind & Site Competence Centre, Technology R&D Global Flow Solutions Mark Zagar, Cheng Hu-Hu, Yavor Hristov, Søren Holm Mogensen, Line Gulstad Vestas Wind & Site Competence Centre, Technology R&D vestas.com Outline The atmospheric modeling capabilities

More information

Analysis and Verification of Wind Data from Ground-based LiDAR

Analysis and Verification of Wind Data from Ground-based LiDAR Analysis and Verification of Wind Data from Ground-based LiDAR Dongbum Kang*, Jiyeong Hyeon*, Kyoungboo Yang*, Jongchul Huh**, Kyungnam Ko* * Faculty of Wind Energy Engineering, Graduate School, Jeju National

More information

EXPERIMENTAL INVESTIGATIONS OF BARGE FLOATER WITH MOONPOOL FOR 5 MW WIND TURBINE

EXPERIMENTAL INVESTIGATIONS OF BARGE FLOATER WITH MOONPOOL FOR 5 MW WIND TURBINE EXPERIMENTAL INVESTIGATIONS OF BARGE FLOATER WITH MOONPOOL FOR 5 MW WIND TURBINE 1 MR. G.VIJAYA KUMAR, 2 DR. R. PANNEER SELVAM 1 M.S. Research Scholar, Department of Ocean Engineering, IIT Madras, Chennai,

More information

US Navy Wave Energy Test Site. Kaneohe, HI

US Navy Wave Energy Test Site. Kaneohe, HI US Navy Wave Energy Test Site Kaneohe, HI Presented by: Luis A. Vega Ph.D., HNEI, University of Hawaii September 24, 2014 MHK Testing in Hawaii (excluding OTEC) What do you do to support/facilitate testing?

More information

3D Nacelle Mounted Lidar in Complex Terrain

3D Nacelle Mounted Lidar in Complex Terrain ENERGY 3D Nacelle Mounted Lidar in Complex Terrain PCWG Hamburg, Germany Paul Lawson 25.03.2015 1 DNV GL 125.03.2015 SAFER, SMARTER, GREENER Agenda Introduction and Project Background Lidar Specifications

More information

Wind resource assessment over a complex terrain covered by forest using CFD simulations of neutral atmospheric boundary layer with OpenFOAM

Wind resource assessment over a complex terrain covered by forest using CFD simulations of neutral atmospheric boundary layer with OpenFOAM Wind resource assessment over a complex terrain covered by forest using CFD simulations of neutral atmospheric boundary layer with OpenFOAM Nikolaos Stergiannis nstergiannis.com nikolaos.stergiannis@vub.ac.be

More information

Shorter wind measurement campaigns Re-thinking with LiDAR

Shorter wind measurement campaigns Re-thinking with LiDAR Shorter wind measurement campaigns Re-thinking with LiDAR 31/05/2013 Ecofys Lidewij van den Brink, Anthony Crockford, Hector Villanueva, Jean Grassin Introducing Ecofys > Consultancy, 30 year experience

More information

Offshore vertical wind shear: Final report on NORSEWInD s work task 3.1

Offshore vertical wind shear: Final report on NORSEWInD s work task 3.1 Downloaded from orbit.dtu.dk on: Apr 3, 218 Offshore vertical wind shear: Final report on NORSEWInD s work task 3.1 Pena Diaz, Alfredo; Mikkelsen, Torben Krogh; Gryning, Sven-Erik; Hasager, Charlotte Bay;

More information

Willett Kempton Center for Carbon-free Power Integration College of Earth, Ocean, and Environment University of Delaware

Willett Kempton Center for Carbon-free Power Integration College of Earth, Ocean, and Environment University of Delaware Transmission and wind Willett Kempton Center for Carbon-free Power Integration College of Earth, Ocean, and Environment University of Delaware Energy and Environment Study Institute 17 July 2009 Outline

More information

Predicting and simulating wake in stable conditions

Predicting and simulating wake in stable conditions Predicting and simulating wake in stable conditions Model chain evaluation and an example Mark Žagar, Gregory S. Oxley, Yavor V. Hristov Vestas Wind Systems A/S, Plant Siting and Forecasting 15 January

More information

Wave Hub Update All Energy 21/22 May Stuart Herbert Commercial Director

Wave Hub Update All Energy 21/22 May Stuart Herbert Commercial Director Wave Hub Update All Energy 21/22 May 2014 Stuart Herbert Commercial Director Deployment Site EMEC, Orkney NaREC/EMEC Refined Prototype Testing Market penetration NaREC, Northumberland Market entry with

More information

Japan s Floating Offshore Wind Projects

Japan s Floating Offshore Wind Projects Japan s Floating Offshore Wind Projects An Overview Annette Bossler Main(e) International Consulting LLC Bremen, ME USA Japan s Wind Resources Onshore and Offshore Source: Japan FEPC Onshore wind potential

More information

M. Mikkonen.

M. Mikkonen. Wind study by using mobile sodar technology M. Mikkonen Oulu University of Applied Sciences, School of Engineering, Oulu, Finland t3mimi00@students.oamk.com Abstract In this paper is presented a concept

More information

Wind Farm Blockage: Searching for Suitable Validation Data

Wind Farm Blockage: Searching for Suitable Validation Data ENERGY Wind Farm Blockage: Searching for Suitable Validation Data James Bleeg, Mark Purcell, Renzo Ruisi, and Elizabeth Traiger 09 April 2018 1 DNV GL 2014 09 April 2018 SAFER, SMARTER, GREENER Wind turbine

More information

Wind farm zone Borssele Project and Site Description 15 th December 2014

Wind farm zone Borssele Project and Site Description 15 th December 2014 Status and progress of site studies carried out for the Borssele wind farm zone Wind farm zone Borssele Project and Site Description 15 th December 2014 Ruud de Bruijne RVO.nl Maarten Timmerman BLIX This

More information