TECHNICAL INFORMATION

Size: px
Start display at page:

Download "TECHNICAL INFORMATION"

Transcription

1 DEFINITION OF For pressure we mean the ratio between a force exerted by a fluid on the surface on which it acts; it is dimensionally expressed in force units per surface units. There are a lot of pressure units, the most used are: BAR (0 5 Pa), Pascal (N/m ), ATE (Kg/cm ), TORR (mm HG)and for Anglo-Saxon countries PSI (pound/square inch). UNITS bar Pa Mpa , ATE (Kg/cm ) TORR (mm Hg) PSI bar Pa Mpa ATE (Kg/cm ) TORR (mm Hg) PSI 0 5 0,, ,0x0-5 7,5x0-0,45x0 -,x0 -,,x0-4,6x ,98 9,8x0 4 9,8x0-76 4,,94x0-6,895x ,895x0-7,0x0-5,7 Concerning pressure, the most commonly used terms for the utilisation of pneumatic components are as follows. - ATMOSPHERIC : it is the pressure exerted by the air on bodies. More precisely it is the pressure exerted on a surface of cm referred to an height of 0 ( zero ) meters above the sea level with a temperature of 0 C and 65% of humidity that is equivalent to a 0, m column of H O or a column of 760 mm of Hg. - RELATIVE : it is the pressure exerted by a fluid on the inner surfaces of its container. It is usually read on the pressure gauge. - ABSOLUTE : it is the pressure of a fluid respect to the absolute vacuum. It is obtainable adding the relative pressure to the atmospheric one. ex. Reading on pressure gauge relative pressure 5 BAR Absolute pressure 6 BAR - UPSTREAM : pressure of the compressed air at the inlet of the pneumatic component. - DOWNSTREAM : pressure of the compressed air at the outlet of the pneumatic component. - DIFFERENTIAL P: it is the difference between upstream and downstream pressure. The main laws of physics concerning pressure that are useful for the correct use and sizing of the pneumatic components are as follows. - BOYLE-MARIOTTE S LAW: the volume of a closed quantity of perfect gas contained at a constant temperature (isothermal) is inversely proportional to the pressure. That means that the product between the volume and the pressure is constant. T constant PV constant we deduce P V P V constant - GAY-LUSSAC S LAW: the volume of a gas contained at a constant pressure (isobar) is directly proportional to the absolute temperature. if P constant V /V T /T With constant volume, the pressure is directly proportional to the temperature if V constant P /P T /T - GENERAL EQUATION of GASES: it is the general law that sum up the two above mentioned laws. It runs a transformation of three variables: given two parameters able to individuate the thermodynamic condition, it enables us to individualise the third one. PV n RT where: P pressure V volume R universal perfect gas constant (9,7 N m / K) T absolute temperature in Kelvin (7 K 0 C) n gram molecules of gas contained in the volume 4,5 we deduce P V / T P V / T R costant

2 TEMPERATURE As you can see in the main laws of physics, mentioned in the previous page, the temperature influences the pressure and so it is an element that directly influences the pneumatic circuits. The most used temperature measure units are : KELVIN (K), CELSIUS ( C ) and FAHRENHEIT ( F). The correspondences between the various measure units, are as follows : CELSIUS KELVIN + 7,5 CELSIUS (FAHRENHEIT - ) x 5/9 FAHRENHEIT (9/5 x CELSIUS) + KELVIN CELSIUS - 7,5 For more convenience look at the below mentioned table KELVIN (K) CELSIUS ( C) FAHRENHEIT ( F) In the planning of pneumatic circuits, we use measure units concerning air volumes in normal conditions. The NORMAL liter of air (Nl) is the most commonly used measure unit, that corresponds to dm of air at a temperature of 0ºC (+7ºK) and to a pressure of Kg/cm (atm), that is the normal pressure of the air at the sea level. In the meantime we use the NORMAL cubic meter (Nm ) that corresponds to 000 Nl. FLOW RATE DETERMINATION To establish if a valve has got the sufficient flow rate for a specific purview, we use certain below mentioned parameters, that consider some indispensable elements for their determination. These elements that are to be known are: a) supply (upstream pressure); c) loss of pressure (differential pressure); b) outlet (downstream pressure); d) working temperature;. - FLOW RATE FACTOR kv It is the quantity of water, expressed in dm /min (liter/minute). that passes through the valve with a differential pressure of BAR at the temperature of 0º C. - FLOW RATE FACTOR KV As above mentioned, but expressed in m /h (cubic metre/ hour) - FLOW RATE FACTOR CV As above mentioned, but following the Anglo-Saxon measure unit, that is the quantity of water expressed in US gallons / minute (US gallon,785 dm ) with a differential pressure of PSI (0,07 BAR) at the temperature of 60ºF (5,6ºC). - EQUIVALENT SECTION S The value S, expressed in mm represents for a valve the theoretic hole of flow passage. Every model of YPC valve shows always this value CONVERSION TABLE BETWEEN THE FLOW RATE FACTORS Unità S (mm ) kv (dm /m) S (mm ) KV (m /h) 0,979 6,667,66 Cv (US-Gal.) 8 kv (dm /m),59 KV (m /h) 4, 0,858 Cv (US-Gal.) 0,794 0,048 0,055 0,06 0,07 NOMINAL FLOW RATE ( Qn ) The nominal flow rate Qn that is generally expressed in Nl/m, is an approximate guide of the flow rate of the air (Nl) that passes through the valve in an unit measure of time (minute) with an upstream supply pressure (P ) of 6 BAR and a differential pressure ( P P -P ) of BAR, corresponding to a downstream outlet pressure (P ) of 5 BAR at the temperature of +0ºC. The nominal flow rate is an approximation because it's value can change depending on the type of construction of every component, but it is an acceptable value. The under mentioned easy formula determinates the nominal flow rate (Qn), knowing the equivalent section S (mm ): Qn 54 x S An example for YPC valves is : - SF0-00C solenoid valve 5/ single acting /8 S,6 mm Qn 54 x,6 ~ 680 Nl

3 PROTECTION CLASS FOR COILS WITH CONNECTOR For protection class, we mean the intrinsic power of a live electrical equipment to protect itself and everything against casual contacts and the penetration of solid particles and water. It is defined with the abbreviation I.P. followed by figures: the first one from 0 to 6, defines the protection against casual contacts and the penetration of dust; the second one from 0 to 8, defines the protection against water. The below tables describe the various degrees of protection. PROTECTION CLASS AGAINST CASUAL CONTACTS AND PENETRATION OF FOREIGN PARTICLES First Protection figure Denomination Explanation No special protection for people against casual contacts with live or moving parts. No 0 No protection. protection of the equipment against the penetration of foreign solid particles. penetration of large sized solid particles. Protection against casual contacts of large surfaces with live or moving parts inside the equipment, for example contacts with hands, but no protection against voluntary access to these parts. Protection of the equipment against the penetration of solid particles with a diameter larger than 50 mm. penetration of medium -sized solid particles. Protection against contacts of fingers with live or moving parts inside the equipment. penetration of solid particles with a diameter larger than mm, such as fingers. penetration of small-sized solid particles. Protection against contacts of tools, wires or similar, ticker than.5 mm with live or moving parts inside the equipment. penetration of solid particles with a diameter larger than.5 mm, such as tools and wires. 4 penetration of very smallsized solid particles. Protection against contacts of tools, wires or similar, thicker than mm with live or moving parts inside the equipment. penetration of solid particles with a diameter larger than mm, such as tools and wires. 5 Protection against dust deposits. Full protection against contacts with means of any kind with live or moving parts inside the equipment. Protection against dust deposits. The penetration of dust is not completely eliminated, but it is reduced in order to assure the good working of the equipment. 6 Protection against dust penetration. Full protection against contacts with any kind of means with live or moving parts inside the equipment. Full protection against the penetration of dust. Second Figure PROTECTION CLASS AGAINST DUST PENETRATION Protection Denomination Explanation No protection. drops falling perpendicularly. drops falling slantwise. dripping. sprays. jets. Protection against flood. Protection against immersion. Protection against submersion. No special protection. Water drops that fall perpendicularly must no cause any harmful effect. Water drops that fall slantwise up to 5º with respect to the vertical, must not cause any harmful effect. Water that falls slantwise up to 60º with respect to the vertical, must not cause any harmful effect. Water sprayed against the equipment from any direction must not cause any harmful effect. Water jets flung against the equipment from any direction must not cause any harmful effect. he water penetrating into the equipment due to a temporary flood, for example during rough sea conditions, must not cause any harmful effect. Should the equipment be immersed for a pre-established time and at a pre-defined pressure, the water must not penetrate in such a quantity as to damage the equipment. Should the equipment be submerged at a pre-defined pressure and for an undetermined period of time, the water must not penetrate in such a quantity as to damage the equipment.

4 PNEUMATIC SYMBOLS The need to uniform the graphic units in the various countries has lead the national ruler organism (UNI VDMA UNITOP etc.) and international ruler organisms (CETOP ISO etc.) to give common symbols to the various pneumatic components that are in a circuit. We hereby give a main table of the commonest symbols used in pneumatic schemes. DIRECTIONAL CONTROL VALVES Two-way valves - position - normally closed Two-way valves - position - normally open Three-way valves - position - normally closed Three-way valves - position - normally open Four-way valves - position - common exhaust connection Four-way valves - position - common exhaust connection normally closed centre. Five-way valves - position - separate exhaust connection Five-way valves - position - normally opened centre Five-way valves - position - normally closed centre Five-way valves - position - centre with pressure CONNECTIONS The connections drawn in the symbol, must correspond to the connections of the elements. The key of reading is made of numbers ( ISO CETOP standard symbols ) or letters ( symbols used in the Far East ) which combination makes possible the definition of the connections and their function. In our synthetic technical information, we consider only the definition and the significance of the connections given in figures ( ISO / CETOP standard symbols). We provide only a comparison table between figures and letters. Connections are divided into two categories: a ) main connections b) command connections -a) mains connections They are identified by only one number, more precisely: supply connection and 4 and 5 utilisation connection with only one exhaust connection utilisation connection with two exhaust connections air exhaust connection with only one exhaust connection air exhaust connection with two exhaust connections In a 5/ or 5/ valve the utilisation () communicates with the exhaust () and the utilisation (4) communicates with the exhaust (5). - b) command connections They are identified by two figures ( 0 ) ( ) ( 4 ). (0) means: pressure connection closed if the command connection is not under signal. 0 0 () means: utilisation connection joined to the connection if the command connection is under signal (4) means: connection joined to the connection 4 if the command connection 4 is under signal 4 4 5

5 COMPARATIVE TABLE CONNECTIONS BETWEEN FIGURES ( ISO CETOP ) AND LETTERS ( FAR EAST ) SUPPLY UTILISATION () - (P) () - (B) (0) - (Y) () - (Z) for or way valves EXHAUST UTILISATION () - (S) (4) - (A) () - (Y) (4) - (Z) for 4 or 5 way valves EXHAUST (5) - (R) CONTROLS GENERIC BY STEM OR KEY MANUAL BY PUSH-BUTTON BY LEVER MECHANICAL BY SPRING BY ROLLER LEVER BY PEDAL BY UNIDIRECTIONAL ROLLER LEVER PNEUMATIC DIRECT ACTION OF INDIRECT ACTION OF COMBINED BY SOLENOID WITH ONE PILOT VALVE BY SOLENOID ONE PILOT ASSISTED ELECTRIC OPERATED VALVES BY SOLENOID WITH ONE WINDING BY AIR+ MECHANICAL SPRING RETURN COMPLEMENTARY VALVES FIXED FLOW REGULATOR SHUTTLE VALVE (OR type) BI-DIRECTIONAL FLOW REGULATOR SILENCER UNI-DIRECTIONAL FLOW REGULATOR NON-RETURN VALVE WITHOUT SPRING QUICK EXHAUST VALVE NON-RETURN VALVE WITH SPRING PIPES AND CONNECTION LENE ELETTRIC LINE CONTROL LINE LINE CONNECTION EXHAUST LINE CROSSOVER FLEXIBLE LINE PNEUMATIC SOURCE

6 AIR TREATMENT EQUIPMENT AIR FILTER WITH MANUAL CONDENSATE SEPARATOR FILTER WITH CONDENSATE SEPARATOR REDUCER WITH GAUGE WITHOUT EXHAUST VALVE (NOT RELIEVING) CON VALVOLA DI SCARICO (RELIEVING) WITH AUTOMATIC FILTER - REDUCER GROUP WITH MANUAL FILTER - REDUCER - LUBRIFICATOR GROUP WITH AUTOMATIC device converting an PNEUMOELECTRIC imput pneumatic signal into an output electrical TRASDUCER signal SWITCH LUBRIFICATOR device switching at an adjustable fixed pressure CYLINDERS AND ACTUATORS DOUBLE ACTING CYLINDER THROUGH ROD COMPRESSOR ROTARY ACTAUTOR OPPOSED FRONT SPRING TANDEM CYLINDER DOUBLE PUSH SINGLE ACTING CYLINDER REAR SPRING DOUBLE ACTING CYLINDER DOUBLE STROKE CONVOLUTED AIR SPRING ROD AND PISTON UNIT TYPE ROD AND PISTON UNIT WITH MAGNETIC PISTON AND ADJUSTABLE CUSHIONING AT ONE END WITH ADJUSTABLE CUSHIONING AT ONE END WITH MAGNETIC PISTON AND ADJUSTABLE CUSHIONING AT BOTH ENDS WITH ADJUSTABLE CUSHIONING AT BOTH ENDS WITH NOT ROTATING PISTON DEVICE WITH MAGNETIC PISTON NOT ADJUSTABLE WITH PISTON ROD LOCKING UNIT

7 NOTE PANTHER

Introduction to Pneumatics

Introduction to Pneumatics Introduction to Pneumatics Pneumatics Symbols Air generation and distribution Table 1: Symbols use in energy conversion and preparation ITEM SYMBOL MEANING Compressor SUPPLY Pressure Source Pneumatic Pressure

More information

CHAPTER 31 IDEAL GAS LAWS

CHAPTER 31 IDEAL GAS LAWS CHAPTER 31 IDEAL GAS LAWS EXERCISE 144, Page 317 1. The pressure of a mass of gas is increased from 150 kpa to 750 kpa at constant temperature. Determine the final volume of the gas, if its initial volume

More information

Application Worksheet

Application Worksheet Application Worksheet All dimensions are nominal. Dimensions in [ ] are in millimeters. Service Conditions Medium Through Valve: Required C v : Temperature Maximum: Minimum: Normal: Flow Maximum: Minimum:

More information

09 - Choosing /sizing a cylinder and valve

09 - Choosing /sizing a cylinder and valve - Choosing /sizing a cylinder and valve - Pipe flow resistence - Valve sizing - Cylinder sizing LII PIPE FLOW RESISTENCE Flow rate Qn Flow rate is calculated as the volume at normal conditions ( atmospheric

More information

Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes:

Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes: Name: Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes: Block: In chemistry, the relationships between gas physical properties are described as gas laws. Some of these properties are pressure, volume,

More information

Air Cylinders Drive System Full Stroke Time & Stroke End Velocity

Air Cylinders Drive System Full Stroke Time & Stroke End Velocity Full Time & End Velocity Ho to Read the Graph This graph shos the full stroke time and stroke hen a cylinder drive system is composed of the As the graph shon belo, various load ratio and full stroke time

More information

Chapter 1: Basic Concepts of Pneumatics

Chapter 1: Basic Concepts of Pneumatics Right of authorship: the content of the training (wording, drawings, pictures) are owned by the author. Any utilization except for individual use is allowed only after permission of the author. What is

More information

Worksheet 1.7: Gas Laws. Charles Law. Guy-Lassac's Law. Standard Conditions. Abbreviations. Conversions. Gas Law s Equation Symbols

Worksheet 1.7: Gas Laws. Charles Law. Guy-Lassac's Law. Standard Conditions. Abbreviations. Conversions. Gas Law s Equation Symbols Name Block Worksheet 1.7: Gas Laws Boyle s Law Charles Law Guy-Lassac's Law Combined Gas Law For a given mass of gas at constant temperature, the volume of a gas varies inversely with pressure PV = k The

More information

Methods of Rating Flow

Methods of Rating Flow Methods of Rating Flow What engineers need to know when using CV as a measurement of flow in pneumatic applications In the pneumatic industry, CV is one standard for expressing the flow capacity of devices

More information

Exercise 2-3. Flow Rate and Velocity EXERCISE OBJECTIVE C C C

Exercise 2-3. Flow Rate and Velocity EXERCISE OBJECTIVE C C C Exercise 2-3 EXERCISE OBJECTIVE C C C To describe the operation of a flow control valve; To establish the relationship between flow rate and velocity; To operate meter-in, meter-out, and bypass flow control

More information

13.1!"#$#%"&'%()$*+%,+-.$+/*$#

13.1!#$#%&'%()$*+%,+-.$+/*$# 343%%%%%%%%%5)"./$+%67%%%%%!"#$# 13.1!"#$#%"&'%()$*+%,+-.$+/*$#!"#$%&'($)*!"#$%&'($)+ If you want to understand how gases behave such as why fresh air rushes into your lungs when certain chest muscles

More information

ATM 322 Basic Pneumatics H.W.6 Modules 5 7

ATM 322 Basic Pneumatics H.W.6 Modules 5 7 ATM 322 Basic Pneumatics H.W.6 Modules 5 7 Name: Answer Key Mark: Question I: Write (T) for True and (F) for false sentences. A) For the time dependant process control; Step enabling conditions are generated

More information

Pneumatic Power Topics:

Pneumatic Power Topics: Pneumatic Power Pneumatic Power Topics: Pneumatic power Pneumatics vs. hydraulics Early pneumatic uses Properties of gases Pascal s Law Perfect gas laws Boyle s Law Charles Law Gay-Lussac s Law Common

More information

Lesson 6: Flow Control Valves

Lesson 6: Flow Control Valves : Flow Control Valves Basic Hydraulic Systems Hydraulic Fluids Hydraulic Tank Hydraulic Pumps and Motors Pressure Control Valves Directional Control Valves Flow Control Valves Cylinders : Flow Control

More information

Pressure Control. where: p is the pressure F is the normal component of the force A is the area

Pressure Control. where: p is the pressure F is the normal component of the force A is the area Pressure Control First of all, what is pressure, the property we want to control? From Wikipedia, the free encyclopedia. Pressure is the application of force to a surface, and the concentration of that

More information

Best Practices Pneumatics Machine & Design. Written by Richard F. Bullers, CFPPS as published in Fluid Power Journal, July/August 2016

Best Practices Pneumatics Machine & Design. Written by Richard F. Bullers, CFPPS as published in Fluid Power Journal, July/August 2016 Pneumatics Machine & Design Written by Richard F. Bullers, CFPPS as published in Fluid Power Journal, July/August 2016 Contents at Atmospheric Air The air at a compressor s intake contains about 78% nitrogen,

More information

Exercise 4-2. Centrifugal Pumps EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Pumps

Exercise 4-2. Centrifugal Pumps EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Pumps Exercise 4-2 Centrifugal Pumps EXERCISE OBJECTIVE Familiarize yourself with the basics of liquid pumps, specifically with the basics of centrifugal pumps. DISCUSSION OUTLINE The Discussion of this exercise

More information

Components for air preparation and pressure adjustment. OUT port position ( ) connected Rear side. of IN port. Air tank. directly.

Components for air preparation and pressure adjustment. OUT port position ( ) connected Rear side. of IN port. Air tank. directly. Components preparation and pressure adjustment ABP Overview ABP is a component that enables boosting by s only up to twice primary pressure (.0MPa max.) in combination with using air tank but not using

More information

Chapter 13 Gases and Pressure. Pressure and Force. Pressure is the force per unit area on a surface. Force Area. Pressure =

Chapter 13 Gases and Pressure. Pressure and Force. Pressure is the force per unit area on a surface. Force Area. Pressure = Chapter 13 Gas Laws Chapter 13 Gases and Pressure Pressure and Force Pressure is the force per unit area on a surface. Pressure = Force Area Chapter 13 Gases and Pressure Gases in the Atmosphere The atmosphere

More information

States of Matter Review

States of Matter Review States of Matter Review May 13 8:16 PM Physical States of Matter (Phases) Solid Liquid Melting Gas Condensation Freezing Evaporation Deposition Sublimation Sep 13 6:04 PM 1 May 13 8:11 PM Gases Chapter

More information

CHAPTER 11: THE GASEOUS STATE

CHAPTER 11: THE GASEOUS STATE CHAPTER 11: THE GASEOUS STATE DO Problems: 1-2, 3b, 4a, 5a, 6b, 7, 8a, 9-14, 17-20, 23-26, 29-42 11.1 Properties of Gases 1. Gases have indefinite shape take the shape of its container 2. Gases can expand

More information

Example: 25 C = ( ) K = 298 K. Pressure Symbol: p Units: force per area 1Pa (Pascal) = 1 N/m 2

Example: 25 C = ( ) K = 298 K. Pressure Symbol: p Units: force per area 1Pa (Pascal) = 1 N/m 2 Chapter 6: Gases 6.1 Measurements on Gases MH5, Chapter 5.1 Let s look at a certain amount of gas, i.e. trapped inside a balloon. To completely describe the state of this gas one has to specify the following

More information

Pressure Measurement

Pressure Measurement Pressure Measurement Manometers Sensors, Transducers Ashish J. Modi Lecturer, Dept. of Mech.Engg., Shri S.V.M. inst. Of Technology, Bharuch Pressure Pressure is a force per unit area exerted by a fluid

More information

Chem 110 General Principles of Chemistry

Chem 110 General Principles of Chemistry CHEM110 Worksheet - Gases Chem 110 General Principles of Chemistry Chapter 9 Gases (pages 337-373) In this chapter we - first contrast gases with liquids and solids and then discuss gas pressure. - review

More information

Kinetic-Molecular Theory

Kinetic-Molecular Theory GASES Chapter Eleven Kinetic-Molecular Theory! Recall that our only previous description of gases stated that gases completely fill and take the shape of their containers.! The Kinetic-Molecular Theory

More information

The Discussion of this exercise covers the following points: Pumps Basic operation of a liquid pump Types of liquid pumps The centrifugal pump.

The Discussion of this exercise covers the following points: Pumps Basic operation of a liquid pump Types of liquid pumps The centrifugal pump. Exercise 2-3 Centrifugal Pumps EXERCISE OBJECTIVE In this exercise, you will become familiar with the operation of a centrifugal pump and read its performance chart. You will also observe the effect that

More information

Unit 24: Applications of Pneumatics and Hydraulics

Unit 24: Applications of Pneumatics and Hydraulics Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 11 AIR COMPRESSORS AND DISTRIBUTION SYSTEM The material needed for outcome 2 is

More information

Chapter 5. Nov 6 1:02 PM

Chapter 5. Nov 6 1:02 PM Chapter 5 Nov 6 1:02 PM Expand to fill their containers Fluid motion (they flow) Have low densities (1/1000 the density of equivalent liquids or solids) Compressible Can Effuse and Diffuse Effuse: The

More information

Pressure on Demand. Air Pressure Amplifiers

Pressure on Demand. Air Pressure Amplifiers Pressure on Demand Air Pressure Amplifiers Introduction Haskel air pressure amplifiers offer the most comprehensive range in the industry combining simple principles of operation with rugged construction

More information

EXH. Specifications. Descriptions. Min. working pressure MPa

EXH. Specifications. Descriptions. Min. working pressure MPa Functional explanation Primary pressure flowed from passes through check valve on side, and flows in chamber A and B. Primary pressure also passes through pressure adjustment section and switching valve,

More information

weight of the book divided by the area of the bottom of the plunger.

weight of the book divided by the area of the bottom of the plunger. Lab: Boyle s Law Datasheet Name Data: Pressure is defined as force per unit area: P = Force/Area When a book rests on top of the plunger, the pressure it exerts equals the weight of the book divided by

More information

SCH3U7 Quantitative Chemistry

SCH3U7 Quantitative Chemistry SCH3U7 Quantitative Chemistry So far, we have looked at solids and liquids (solutions) Today we will look at gases and the laws that govern their behaviour in chemical reactions 4 Factors Affecting Gases

More information

Unit 8: Gases and States of Matter

Unit 8: Gases and States of Matter Unit 8: Gases and States of Matter Gases Particles that have no definite shape or volume. They adapt to the shape and volume of their container. Ideal gases are imaginary gases that comply with all the

More information

In the name of Allah

In the name of Allah In the name of Allah Physical chemistry- 2 nd state semester 1 Petroleum and petrochemical engineering. Lecture No. 1 General Introduction In Physical Chemistry 16-10-2016 Assistance prof. Dr. Luma Majeed

More information

BASIC QUANTITIES OF GASES

BASIC QUANTITIES OF GASES BASIC QUANTITIES OF GASES PRESSURE (P): Definition: 1 atm = 101325 Pa = 1,01325 bar (1 bar = 10 5 Pa) 1 atm = cmhg = mmhg (Torr) Manometer: Barometer: VOLUME (V): - - - Unit: 1 NUMBER OF MOLES (n): Avogadro

More information

The Kinetic-Molecular Theory of Gases based on the idea that particles are always in motion

The Kinetic-Molecular Theory of Gases based on the idea that particles are always in motion The Kinetic-Molecular Theory of Gases based on the idea that particles are always in motion Five assumptions: 1. Most of the volume occupied dby a gas is empty space 2. Collisions between gas particles

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 5-3 Wet Reference Leg EXERCISE OBJECTIVE Learn to measure the level in a vessel using a wet reference leg. DISCUSSION OUTLINE The Discussion of this exercise covers the following points: Measuring

More information

Unit 2 Kinetic Theory, Heat, and Thermodynamics: 2.A.1 Problems Temperature and Heat Sections of your book.

Unit 2 Kinetic Theory, Heat, and Thermodynamics: 2.A.1 Problems Temperature and Heat Sections of your book. Unit 2 Kinetic Theory, Heat, and Thermodynamics: 2.A.1 Problems Temperature and Heat Sections 10.1 10.2 of your book. Convert the following to Celsius and Kelvin temperatures: 1. 80.0 o F Early E. C.:

More information

Pressure of the atmosphere varies with elevation and weather conditions. Barometer- device used to measure atmospheric pressure.

Pressure of the atmosphere varies with elevation and weather conditions. Barometer- device used to measure atmospheric pressure. Chapter 12 Section 1 Pressure A gas exerts pressure on its surroundings. Blow up a balloon. The gas we are most familiar with is the atmosphere, a mixture of mostly elemental nitrogen and oxygen. Pressure

More information

World of Chemistry Notes for Students [Chapter 13, page 1] Chapter 13 Gases

World of Chemistry Notes for Students [Chapter 13, page 1] Chapter 13 Gases World of Chemistry Notes for Students [Chapter 3, page ] Chapter 3 Gases ) Sec 3.8 Kinetic Theory of Gases and the Nature of Gases The Kinetic Theory of Matter says that the tiny particles in all forms

More information

Chemistry Chapter 12. Characteristics of Gases. Characteristics of Gases 1/31/2012. Gases and Liquids

Chemistry Chapter 12. Characteristics of Gases. Characteristics of Gases 1/31/2012. Gases and Liquids Importance of Gases Chemistry Chapter 12 Gases and Liquids Airbags fill with N 2 gas in an accident. Gas is generated by the decomposition of sodium azide, NaN 3. 2 NaN 3 ---> 2 Na + 3 N 2 THREE STATES

More information

Section 8: Gases. The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC (c).

Section 8: Gases. The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC (c). Section 8: Gases The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 8.01 Simple Gas Laws Chemistry (9)(A) 8.02 Ideal Gas Law Chemistry

More information

Kinetic-Molecular Theory of Matter

Kinetic-Molecular Theory of Matter Gases Properties of Gases Gas Pressure Gases What gases are important for each of the following: O 2, CO 2 and/or He? A. B. C. D. 1 2 Gases What gases are important for each of the following: O 2, CO 2

More information

THE BEHAVIOR OF GASES

THE BEHAVIOR OF GASES 14 THE BEHAVIOR OF GASES SECTION 14.1 PROPERTIES OF GASES (pages 413 417) This section uses kinetic theory to explain the properties of gases. This section also explains how gas pressure is affected by

More information

PROPERTIES OF GASES. [MH5; Ch 5, (only)]

PROPERTIES OF GASES. [MH5; Ch 5, (only)] PROPERTIES OF GASES [MH5; Ch 5, 5.1-5.5 (only)] FEATURES OF A GAS Molecules in a gas are a long way apart (under normal conditions). Molecules in a gas are in rapid motion in all directions. The forces

More information

The University of Hong Kong Department of Physics Experimental Physics Laboratory

The University of Hong Kong Department of Physics Experimental Physics Laboratory The University of Hong Kong Department of Physics Experimental Physics Laboratory PHYS2260 Heat and Waves 2260-1 LABORATORY MANUAL Experiment 1: Adiabatic Gas Law Part A. Ideal Gas Law Equipment Required:

More information

II 2G EEx ia IIC T6. Ignition protection class

II 2G EEx ia IIC T6. Ignition protection class ATEX General information According to 94/9/EC, a device that is to be used in an environment at risk of explosion may only be brought into the market if it satisfies the standards specified in the norm.

More information

Hand lever valves VHER

Hand lever valves VHER Hand lever valves VHER Hand lever valves VHER Key features Powerful Flexible Practical -M- Flow 170 3800 l/min 4/3-way valve mid-position closed mid-position exhausted mid-position pressurised Connections:

More information

Gases. Edward Wen, PhD

Gases. Edward Wen, PhD Gases Edward Wen, PhD Properties of Gases expand to completely fill their container take the shape of their container low density much less than solid or liquid state compressible when pressure is changed.

More information

Basic Pneumatics. Module 8: Pressure control valves. Academic Services PREPARED BY. April 2012

Basic Pneumatics. Module 8: Pressure control valves. Academic Services PREPARED BY. April 2012 Basic Pneumatics Module 8: Pressure control valves PREPARED BY Academic Services April 2012 Applied Technology High Schools, 2012 Module 8: Pressure control valves Module Objectives After the completion

More information

Chemistry HP Unit 6 Gases. Learning Targets (Your exam at the end of Unit 6 will assess the following:) 6. Gases

Chemistry HP Unit 6 Gases. Learning Targets (Your exam at the end of Unit 6 will assess the following:) 6. Gases Chemistry HP Unit 6 Gases Learning Targets (Your exam at the end of Unit 6 will assess the following:) 6. Gases 6-1. Define pressure using a mathematical equation. 6-2. Perform calculations involving pressure,

More information

Properties of Fluids SPH4C

Properties of Fluids SPH4C Properties of Fluids SPH4C Fluids Liquids and gases are both fluids: a fluid is any substance that flows and takes the shape of its container. Fluids Liquids and gases are both fluids: a fluid is any substance

More information

Chapter 14-Gases. Dr. Walker

Chapter 14-Gases. Dr. Walker Chapter 14-Gases Dr. Walker State of Matter Gases are one of the four states of matter along with solids, liquids, and plasma Conversion to Gases From liquids Evaporation Example: Boiling water From solids

More information

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer A P CHEMISTRY - Unit 5: Gases Unit 5: Gases Gases are distinguished from other forms of matter, not only by their power of indefinite expansion so as to fill any vessel, however large, and by the great

More information

Gas volume and pressure are indirectly proportional.

Gas volume and pressure are indirectly proportional. Section 2 The Gas Laws Key Terms Boyle s law Charles s law combined gas law absolute zero Gay-Lussac s law Scientists have been studying physical properties of gases for hundreds of years In 1662, Robert

More information

DO NOT, under any circumstances, throw this away! This packet MUST be saved for the final exam.

DO NOT, under any circumstances, throw this away! This packet MUST be saved for the final exam. Name: Period: Unit 2 Packet Energy and States of Matter Unit 2 Packet Contents Sheet (This Paper!) Unit 2 Objectives Notes: Kinetic Molecular Theory of Gases- 3 pgs (with Behavior of Gases Reading, and

More information

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc. Lecture Presentation Chapter 10 John D. Bookstaver St. Charles Community College Cottleville, MO Characteristics of Unlike liquids and solids, gases Expand to fill their containers. Are highly compressible.

More information

To convert to millimeters of mercury, we derive a unit factor related to the equivalent relationship 29.9 in. Hg = 760 mm Hg.

To convert to millimeters of mercury, we derive a unit factor related to the equivalent relationship 29.9 in. Hg = 760 mm Hg. Example Exercise 11.1 Gas Pressure Conversion Meteorologists state that a falling barometer indicates an approaching storm. Given a barometric pressure of 27.5 in. Hg, express the pressure in each of the

More information

Lab Dates. CRHS Academic Chemistry Unit 11 Gas Laws Notes

Lab Dates. CRHS Academic Chemistry Unit 11 Gas Laws Notes Name Period CRHS Academic Chemistry Unit 11 Gas Laws Notes Quiz Date Lab Dates Exam Date Notes, Homework, Exam Reviews and Their KEYS located on CRHS Academic Chemistry Website: https://cincochem.pbworks.com

More information

4.) There are no forces of attraction or repulsion between gas particles. This means that

4.) There are no forces of attraction or repulsion between gas particles. This means that KINETIC MOLECULAR (K-M) THEORY OF MATTER NOTES - based on the idea that particles of matter are always in motion - assumptions of the K-M Theory 1.) Gases consist of large numbers of tiny particles that

More information

Chapter 10. Physical Characteristics of Gases

Chapter 10. Physical Characteristics of Gases Chapter 10 Physical Characteristics of Gases Kinetic Molecular Theory An understanding of the behavior of atoms that make up matter Ideal gas: an imaginary gas that perfectly fits all assumptions of the

More information

GLOSSARY OF TERMS. Adiabatic Compression Compression process when all heat of compression is retained in the gas being compressed.

GLOSSARY OF TERMS. Adiabatic Compression Compression process when all heat of compression is retained in the gas being compressed. GLOSSARY OF TERMS Absolute pressure Total pressure measured from absolute zero i.e. a perfect vacuum. As a practical matter, gauge pressure plus atmospheric pressure. Absolute temperature Temperature measured

More information

2 are both ways of saying a ratio of 2 to 5

2 are both ways of saying a ratio of 2 to 5 Unit 4 Ratios A Ratio is a comparison of two related quantities. Ratios are expressed in two forms. 2 : 5 or 5 2 are both ways of saying a ratio of 2 to 5 1. Conversion factors are ratios. Express 100

More information

Gases. Properties of Gases Gas Pressure

Gases. Properties of Gases Gas Pressure Gases Properties of Gases Gas Pressure 1 Gases What gases are important for each of the following: O 2, CO 2 and/or He? A. B. C. D. 2 1 Gases What gases are important for each of the following: O 2, CO

More information

ROSS CONTROLS. Pneumatic Reference Data. TABLE OF CONTENTS

ROSS CONTROLS. Pneumatic Reference Data.  TABLE OF CONTENTS ROSS CONTROLS Pneumatic Reference Data 4 4 5 3 TABLE OF CONTENTS Page PNEUMATIC PRINCIPLES... 3 GLOSSARY OF USEFUL TERMS... 4 VALVE RESPONSE TIME... 4-5 FLOW COEFFICIENTS... 6 STANDRDIZED TESTING... 6

More information

Kinetic Molecular Theory imaginary Assumptions of Kinetic Molecular Theory: Problems with KMT:

Kinetic Molecular Theory imaginary Assumptions of Kinetic Molecular Theory: Problems with KMT: AP Chemistry Ms. Ye Name Date Block Kinetic Molecular Theory Explains properties of gases, liquids, and solids in terms of energy using an ideal gas, an imaginary which fits all the assumptions of kinetic

More information

IT S A GAS

IT S A GAS IT S A GAS IT S A GAS The Nature of Gases Gases have some interesting characteristics that have fascinated scientists for 300 years. The first gas to be studied was air & it was a long time before it was

More information

CHM Basics of Gases (r14) Charles Taylor 1/9

CHM Basics of Gases (r14) Charles Taylor 1/9 CHM 110 - Basics of Gases (r14)- 2014 Charles Taylor 1/9 Introduction The gas phase is noticeably different from the other two phases of matter. Here are some of the more obvious differences. Gases are

More information

Exercise 5-2. Bubblers EXERCISE OBJECTIVE DISCUSSION OUTLINE. Bubblers DISCUSSION. Learn to measure the level in a vessel using a bubbler.

Exercise 5-2. Bubblers EXERCISE OBJECTIVE DISCUSSION OUTLINE. Bubblers DISCUSSION. Learn to measure the level in a vessel using a bubbler. Exercise 5-2 Bubblers EXERCISE OBJECTIVE Learn to measure the level in a vessel using a bubbler. DISCUSSION OUTLINE The Discussion of this exercise covers the following points: Bubblers How to measure

More information

UNIVERSITY OF MAURITIUS FACULTY OF ENGINEERING

UNIVERSITY OF MAURITIUS FACULTY OF ENGINEERING Let s Talk PNEUMATICS FTOSP 1261 Lectures 1& 2 Pneumatics is the study of air and gases and the relationship between volume, pressure and temperature of the air or gases. Initially used for carrying out

More information

EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

More information

The Ideal Gas Constant

The Ideal Gas Constant Chem 2115 Experiment # 8 The Ideal Gas Constant OBJECTIVE: This experiment is designed to provide experience in gas handling methods and experimental insight into the relationships between pressure, volume,

More information

Pressure Sensor Experiment Guide

Pressure Sensor Experiment Guide Pressure Sensor Experiment Guide Pressure Sensor Introduction: Part of the Eisco series of hand held sensors, the pressure sensor allows students to record and graph data in experiments on the go. This

More information

Properties of any sample of gas. Unit 5: Gases. * All gases behave according to the Kinetic Molecular Theory pg 421

Properties of any sample of gas. Unit 5: Gases. * All gases behave according to the Kinetic Molecular Theory pg 421 Unit 5: Gases * All gases behave according to the Kinetic Molecular heory pg 421 *We consider all gases as "ideal" gases * All gas particles behave the same way (doesn't matter their size or chemical formula)

More information

Gas Laws. Directions: Describe what contribution each of the Scientist below made to the Gas Laws and include there gas law equation.

Gas Laws. Directions: Describe what contribution each of the Scientist below made to the Gas Laws and include there gas law equation. Gas Laws Name Date Block Introduction One of the most amazing things about gases is that, despite wide differences in chemical properties, all the gases more or less obey the gas laws. The gas laws deal

More information

Gas Physics Pressure and Flow Topics Covered:

Gas Physics Pressure and Flow Topics Covered: Gas Physics Pressure and Flow Topics Covered: Molecular Theory of Gases Definition of Pressure The Gas Laws Definition of Flow Definition of Pressure Drop Gas Physics Pressure and Flow Topics Covered:

More information

The most common terms rating air flow capacity are ICFM, FAD, ANR, SCFM or nl/min

The most common terms rating air flow capacity are ICFM, FAD, ANR, SCFM or nl/min Rating of Air Compressors and Air Equipment The most common terms rating air flow capacity are ICFM, FAD, ANR, SCFM or nl/min There is no universal standard for rating air compressors, air equipment and

More information

Pilot Check Valve: Metal Body Type

Pilot Check Valve: Metal Body Type INFORMATION Pilot Check Valve: Metal Body Type The use of a metal body improves strength and environmental resistance. Temporary intermediate stops are possible. *1 *1 Precise intermediate stops are not

More information

(AS AT 31 st MARCH, 2002)

(AS AT 31 st MARCH, 2002) ACACA PROTOCOL 2000 (AS AT 31 st MARCH, 2002) ACACA PROTOCOL 2000 INCLUDES (A) CODE OF PRACTICE FOR MANUFACTURERS AND/OR SUPPLIERS OF COMMERCIAL AIR COMPRESSORS AND METHOD FOR DETERMINING (B) RECIPROCATING

More information

SPH 4C Unit 4 Hydraulics and Pneumatic Systems

SPH 4C Unit 4 Hydraulics and Pneumatic Systems SPH 4C Unit 4 Hydraulics and Pneumatic Systems Properties of Fluids and Pressure Learning Goal: I can explain the properties of fluids and identify associated units. Definitions: Fluid: A substance that

More information

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory Kinetic Molecular Theory of Gases The word kinetic refers to. Kinetic energy is the an object has because of its motion. Kinetic Molecular

More information

Notes: Gas Laws (text Ch. 11)

Notes: Gas Laws (text Ch. 11) Name Per. Notes: Gas Laws (text Ch. 11) NOTE: This set of class notes is not complete. We will be filling in information in class. If you are absent, it is your responsibility to get missing information

More information

Elements that exist as gases at 25 o C and 1 atmosphere H 2, N 2, O 2, F 2, Cl 2, He, Ne, Ar, Kr, Xe, Rn

Elements that exist as gases at 25 o C and 1 atmosphere H 2, N 2, O 2, F 2, Cl 2, He, Ne, Ar, Kr, Xe, Rn AP Chemistry Chapter 5 Sections 5. 5.9 Note Organizer Pressure, The Gas Laws of Boyle, Charles, and Avogadro, The Ideal Gas Law, Gas Stoichiometry, Dalton s Law of Partial Pressure, The Kinetic olecular

More information

3776B FLANGED PRESSURE INDEPENDENT CONTROL VALVE (P.I.C.V.) PN 16 TECHNICAL DATA SHEET. Main features:

3776B FLANGED PRESSURE INDEPENDENT CONTROL VALVE (P.I.C.V.) PN 16 TECHNICAL DATA SHEET. Main features: FLANGED PRESSURE INDEPENDENT CONTROL VALVE (P.I.C.V.) PN 16 3776B Main features: Technical data: Cim 3776B is used for balancing the flow in cooling, heating and domestic water systems. Cim 3776B is an

More information

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works.

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. A Gas Uniformly fills any container. Easily compressed. Mixes completely

More information

Temperature Temperature

Temperature Temperature Temperature Temperature is a measure of how hot or cold an object is compared to another object. indicates that heat flows from the object with a higher temperature to the object with a lower temperature.

More information

Gas Laws For CHM1020

Gas Laws For CHM1020 Gas Laws For CHM1020 PROPERTIES OF GASES 1. Variable shape and volume (same shape and volume as container) 2. Expand uniformly (as container increases in volume, gas expands and distributes uniformly in

More information

Circuit building blocks

Circuit building blocks Követő vezérlés Circuit building blocks A a0 b0 b1 B Run/End These circuits can be considered as building blocks for larger sequential circuits consisting of two or more cylinders Each actuator will have

More information

Introduction. Part one: Identify the Hydraulic Trainer Components

Introduction. Part one: Identify the Hydraulic Trainer Components The University Of Jordan School of Engineering Mechatronics Engineering Department Fluid Power Engineering Lab Experiments No.4 Introduction to Hydraulic Trainer Objective: Students will be able to identify

More information

Pneumatics for Newbies Designing a Pneumatic Solution

Pneumatics for Newbies Designing a Pneumatic Solution Pneumatics for Newbies Designing a Pneumatic Solution FIRST Robotics Team 358, Hauppauge, NY Introduction Pneumatics is using air to push/pull things. The pistons and tubing are light and powerful, lighter

More information

FLUID POWER FLUID POWER EQUIPMENT TUTORIAL OTHER FLUID POWER VALVES. This work covers part of outcome 2 of the Edexcel standard module:

FLUID POWER FLUID POWER EQUIPMENT TUTORIAL OTHER FLUID POWER VALVES. This work covers part of outcome 2 of the Edexcel standard module: FLUID POWER FLUID POWER EQUIPMENT TUTORIAL OTHER FLUID POWER VALVES This work covers part of outcome 2 of the Edexcel standard module: UNIT 21746P APPLIED PNEUMATICS AND HYDRAULICS The material needed

More information

INSTRUMENTS A THERMAL MASS FLOW SENSOR USING A CONSTANT DIFFERENTIAL TEMPERATURE ABOVE THE AMBIENT GAS TEMPERATURE

INSTRUMENTS A THERMAL MASS FLOW SENSOR USING A CONSTANT DIFFERENTIAL TEMPERATURE ABOVE THE AMBIENT GAS TEMPERATURE TELEDYNE HASTINGS TECHNICAL PAPERS INSTRUMENTS A THERMAL MASS FLOW SENSOR USING A CONSTANT DIFFERENTIAL TEMPERATURE ABOVE THE AMBIENT GAS TEMPERATURE Proceedings of FEDSM 98 1998 ASME Fluids Engineering

More information

Gas Laws. Introduction

Gas Laws. Introduction Gas Laws Introduction In 1662 Robert Boyle found that, at constant temperature, the pressure of a gas and its volume are inversely proportional such that P x V = constant. This relationship is known as

More information

POGIL EXERCISE 18 All You Need to Know About Gas Laws

POGIL EXERCISE 18 All You Need to Know About Gas Laws POGIL 18 Page 1 of 11 POGIL EXERCISE 18 All You Need to Know About Gas Laws Each member should assume his or her role at this time. The new manager takes charge of the POGIL folder and hands out the GRF

More information

3 1 PRESSURE. This is illustrated in Fig. 3 3.

3 1 PRESSURE. This is illustrated in Fig. 3 3. P = 3 psi 66 FLUID MECHANICS 150 pounds A feet = 50 in P = 6 psi P = s W 150 lbf n = = 50 in = 3 psi A feet FIGURE 3 1 The normal stress (or pressure ) on the feet of a chubby person is much greater than

More information

Expand to fill their containers, are highly compressible, have extremely low densities.

Expand to fill their containers, are highly compressible, have extremely low densities. Chem150 week6 Handout 1 Gases Characteristics of Gases: Unlike liquids and solids, they Expand to fill their containers, are highly compressible, have extremely low densities. Pressure is the amount of

More information

Unit A-2: List of Subjects

Unit A-2: List of Subjects ES312 Energy Transfer Fundamentals Unit A: Fundamental Concepts ROAD MAP... A-1: Introduction to Thermodynamics A-2: Engineering Properties Unit A-2: List of Subjects Basic Properties and Temperature Pressure

More information

GP1 & GP2. Electropneumatic Regulators FOR PRESSURE CONTROL TO 1,000 PSI

GP1 & GP2. Electropneumatic Regulators FOR PRESSURE CONTROL TO 1,000 PSI GP1 & GP2 Electropneumatic Regulators FOR PRESSURE CONTROL TO 1, PSI GP1 & GP2 Functional Description The GP series control valve is an electronic pressure regulator designed to precisely control the pressure

More information

THERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE)

THERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE) THERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE) 1. A vacuum gauge mounted on a condenser reads 66 cm Hg. What is the absolute pressure in the condenser

More information