The nuclear reactor core of units 1 3 of Fukushima Daiichi NPS (1F1, 1F2, 1F3)

Size: px
Start display at page:

Download "The nuclear reactor core of units 1 3 of Fukushima Daiichi NPS (1F1, 1F2, 1F3)"

Transcription

1 Responses taken to fight the nuclear accident and to mitigate the consequences Hisashi NINOKATA Professor, Politecnico di Milano Department of Energy CeSNEF-Nuclear Engineering Division Nuclear Reactors Group Professor Emeritus, Tokyo Institute of Technology Focus on: The nuclear reactor core of units 1 3 of Fukushima Daiichi NPS (1F1, 1F2, 1F3) The events in a first few days

2 Looking back at that time, Very little information available in a first few weeks with only circumferential evidences --- ex. Radiation level in RB Heat balance calculations gave the idea With information disclosure under control, we (university professors, in particular) were given a role to explain what were going on at the 1F NPS, and at other NPS sites in Japan by all news media (TV, newspapers, radios, ) in particular on request by the public at symposiums, workshops, science cafes, lectures, conferences, inside and outside Japan Looking back at that time,

3 No damage from the earthquake The most likely assumption: the magnitude 9 earthquake did not damage reactor structure, pipes and cooling systems, and the important safety functions of all Fukushima Daiichi units of concern were all maintained In fact, IAEA walkdown examination of the Onagawa NPS, August 10, 2012, much closer to the epi-center than Fukushima, has revealed the nuclear power plant Remarkably intact Onagawa much closer to the epicenter 130 km offshore from the NPS

4 Onagawa Plant Onagawa vs Fukushima Ref. Isao Kato, Tohoku EPC, NUTHOS-9, Sept 12, 2012, Kaohsiung, Taiwan

5 Why at Fukushima Daiichi? Onagawa Unit-1 PCV is Mark-I, Unit-2 to 3 are of improved Mark-I and Fuk-2 four units are of Mark-II The newer design, the better prepared for tsunami with new knowledge on the tsunami history Fuk-1 units consist of BWR-3 and BWR-4 with Mark-I PCV Why at Fukushima Daiichi? In particular the Unit-1 of Fuk-I (1F1) was constructed based on the imported technology. After having digested the imported technology, at least that was the way we thought, Japan has spent more efforts in improvement and new development. Vulnerability of Fuk-I was pointed out against tsunami but has been put aside, given its First of a Kind nature in Tepco, given that it was constructed almost 40 years ago before many updates in regulations, given that constructing new defense was extremely expensive. The lessons would be useful for new nuclear countries who import foreign technology for a starter.

6 On reflection Before the Fukushima Daiichi accident, we trusted the improved NPP safety performance resulted in the health and safety of the public, given any of the anticipated accident scenarios In Japan, more so with more strict operation and maintenance requirements, with much more rigid and stronger anti-seismic structure and design/construction After the Fukushima Daiichi, the need to prepare for the unexpected and the unforeseen, including the beyond design basis, has become a most important issue, but too belatedly On reflection On reflection, it is evident that TEPCO and the broader nuclear industries were not prepared for unexpected and highconsequence situations to respond to maintain critical safety functions; or to implement effective emergency response procedures and accident management strategies under the extremely severe conditions encountered at Fukushima Daiichi. (INPO )

7 How severe was it? Beyond my description The following 7 slides are due to the courtesy of Dr. Sakae Muto of TEPCO Difficult to Access On-site Testimony As the tremendous aftershocks occurred, with our full face masks still on, we frantically headed off to the upper ground. While laying down cables at night, we were terrified that we might be electrocuted due to the outside water puddles. Wide crevices around there Scattered debris & Fire hoses Water injection by Fire Engine Tank adrift on the road 14

8 Response in Dark Control Room Shift Supervisor s Testimony When the power source failed, I felt completely helpless. Heated discussions broke out among the operators regarding whether it was important to remain in the control room or not. Connected portable Batteries 15 Difficulty of Venting Containment(1) Shift I Supervisor asked for volunteers Testimony: to As manually the work open required the high vent radiation valves. exposure, Young operators I decided to raised not involve their hands the young as well; workers. I was overwhelmed. Step1: SUCCESS MO 210 manually open valve Solenoid valve IA 電磁弁 AO AO 90 閉 IA AO AO ボMO ンベ電磁弁 Cylinder Shift workers operation to Solenoid valve Ruptured ラプチャーディスク disc Broke at 0.549MPabs AO 83 AO 1 Closed Closed 0.549MPabs で破壊 閉 Closed 閉 Closed Cylinder ボンベ閉 Exhaust stack 排気筒 D/W maximum operating pressure: 0.528MPaabs D/W 最高使用圧力 0.528MPabs RPV D/W Venting ベント実施圧力 pressure: 0.954MPabs 0.954MPaabs Entry with self air set 16

9 Difficulty of Venting Containment(2) Onsite Testimony When I climbed on top of the torus to reach for the high positioned valve, the soles of my boots quickly melted away. Couldn't approach, High radiation High temperature S/C vent valve (AO valve) R/B B1F Step2; Couldn t approach (Hi Rad, Hi Temp.) Step2 ; Use mobile compressor to remote open. 17 Voices from Operators In an attempt to check the status of Unit 4 D/G, I was trapped inside the security gate compartment. Soon the tsunami came and I was a few minutes before drowning, when my colleague smash opened the window and saved my life. In total darkness, I could hear the unearthly sound of SRV dumping steam into the torus. I stepped on the torus to open the S/C spray valve, and my rubber boot melted. The radiation level in the main control room was increasing 0.01 msv (1 mrem) in every 3 seconds but I couldn t leave I felt this was the end of my life. I asked for volunteers to manually open the vent valves. Young operators raised their hands as well; I was overwhelmed. Unit 3 could explode anytime soon, but it was my turn to go to the main control room. I called my dad and asked him to take good care of my wife and kids should I die. 18

10 Voices from Maintenance Staff We saw our car crashed by the explosion of the Unit 3. If we had gotten on the car a few minutes earlier, all of us would have been dead. We were replacing fire hoses when the explosion of Unit 3 occurred. We felt almost dying since many large rubbles were falling down to us.i urgently ran underneath a nearby fire engine. One of my colleagues got injuries in his leg and stomach. There were so many manholes opened by the tsunami. In order to lay cables, we had to proceed step by step carefully checking safety in the complete darkness. We were working in the Unit 3/4 control room when the explosion occurred. I was resigned to my fate. Dose rate was going up in the room after the explosion and we desperately tried to find places with lower dose rate. After replacing an air cylinder for the PCV ventilation of Unit 3, I heard sound of steam and saw white mist around us. I got into a panic for a while. 19 Sequence of Events after the Earthquake The Great East Japan Earthquake around 14:46, Mar. 11 th Reactor SCRAM due to the Earthquake (Automatic Emergency Shutdown) Loss of Off-site Power, PCV Isolation, D/G Started-up *1 Operation after SCRAM as Intended Operation after SCRAM as Intended Tsunami struck Fukushima-Daiichi & Fukushima-Daini NPPs around 15:20~, Mar. 11 th Fukushima Daiichi Units 1~3 Units 5,6 [Power] SBO w/o EDG LUHS [Seawater system] Not available [Power] D/G 6B start-up [Seawater system] Not available Fukushima Daini [Power] Off-site Power available [Seawater system] Not available *2 Unit 4 H 2 O injection & heat transport to S/C via HP system, e.g., RCIC/HPCI; DHR by IC Power supply from Unit 6 to Unit 5 Water injection via HP (Steamdriven) & LP systems Water injection via LP system (Alternative) (Freshwater & Seawater) Water injection via LP system Interrupted Injection and LUHS: no route secured for heat removal Heat removal secured by temporary power source & seawater pump Heat removal secured by temporary power source & motor replacement etc. Cold Shutdown Condition (Dec. 16) Cold Shutdown (Mar. 20) Cold Shutdown (Mar. 15)*3 Fukushima Daiich 1~4 Fukushima Daiichi 5,6 Fukushima Daini 1~4 *1 D/G:Emergency Diesel Generator *2 RHR Seawater System *3 Fukushima-Daini Emergency State was Lifted on Dec.26 tth 20

11 3/11 3/12 3/13 3/14 3/15 1F1 1F2 1F3 Earthquake/ tsunami IC on (A & B) 1503off man lly 1830 Open close 17~1800 TAF 2130 No access to IC Core melt (before mdngt) 1502 RCIC on w/o DC power RCIC valves not compl closed? Car batteries for instrumentation and to open SRVs 1506 RCIC on AM PM AM PM AM PM AM/PM Rad level high in RBs 3am RPV failure? 5am PCV failure? Prep vent RPV p falls down due to possible RPV failure high peak p pulse: by MFCI? Not likely but still under debate Vent successfuil? 1536 H2 expl. (20 hours) (14 hours) (>70 hours) 11am try PCV venting (not success) 1136 RCIC off 1230 HPCI on 0242 HPCI off 700TAF then Core metldown No coolant injection! started 841 PCV vent (insufficient) 908 SRV open 925 sea water injection (21 hours) S/C temp too high (no condensatn) 1312 Sea water inject (for ~12 hrs: insufficient) S/C temp high (sat) PCV pres high rupture level set too high; difficult to vent and open SRV PCV failure expcted due to excess temp Alternate water injection line (CRD pump, SLC pump lines) and PCV vent lines damag d by H2 detonat. No coolant injection! 1100 H2 explosion 1325 RCIC off PCV p high No makeup until TAF 1802 SRV op 1830 Whole core uncov. Makeup was delayed until 1954 Highest rad level at the main gate 600 H2 expl? Near S/C or #4 Large scale release of radactive materials 2000 a large portion of the core melt down to bottom head (est) PCV venting was higher priority at TEPCO In Short, Earthquake Tsunami SBO and LUHS RCIC/HPCI operation Loss Of Off-site Power (LOOP), MSIV closed = PCV isolation AC power from Emergency Diesel Generator (EDG) 1F1: Isolation Condenser (IC) automatic start 1F2, 1F3: Reactor Core Isolation Cooling (RCIC) - manual start for injection Primary Containment Vessel (PCV) Isolation RHR in service (RHR: Residual Heat Removal) Decay heat removal as planned and on the way toward the cold shutdown mode Station black out (SBO), RHR inoperable resulting in Loss of Ultimate Heat Sink (LUHS) 1F2, 1F3 under LUHS conditions; 1F1 LUHS after IC termination and HPCI not operable w/o aux cooling DC power lost except for 1F3 1F2 RCIC kept (its crippled) operation for 72 hours after tsunami w/o DC for valve control (RCIC line isolation valves possibly partially stack open) but unstable 1F3 RCIC continued operation for ~20 hrs, followed by HPCI for 14 hrs W/o UHS Core melt, RPV and PCV failures Core heat-up and melt due to long duration of uncovery after RCIC/HPCI termination for 1F2 and 1F3 Difficulties in RPV depressurization by Safety Relief Valve (SRV) opening w/o DC and air pressure; first priority was on the PCV venting Resulting in the delay in alternate low pressure injection; By the time of Suppression Chamber (S/C) venting success, PCV failure due to high temperature and pressure: LR (Large Release) By the time SRV relief valves opened, core damaged severely and H2 produced The worst scenario --- PCV failure and radiological release.

12 Responses to fight against the accident and to mitigate the consequences Unit 1 Isolation Condenser (IC) operation - 1 The unit 1 had two ultimate heat sinks: sea water through RHR circuit and air atmosphere through IC Two trains (A and B), four PCV isolation valves (see Fig. next slide) One train in use for the RPV pressure control before the tsunami by on-off strategy Train A Train B Heat sink =atmosphere

13 Unit 1 Isolation Condenser (IC) operation - 2 Train A Train B Heat sink =atmosphere On tsunami attack, IC was off with the one outboard valve (DC driven) closed; other valves were open but set to close with the loss of DC power (PCV isolation) When tsunami came and caused the SBO, and soaked all the DC batteries, all the valves were to close (fail to close); however, Actually the in-bound valves (AC-M driven) seemed to have remained partially open due to the loss of AC power Unit 1 Isolation Condenser (IC) operation - 3 At 6:27 pm, 3/11, with a dim revival of DC battery power, the operators opened the outboard isolation valve, successful Then why the operators closed the valve again? Closed worrying about the damage to the IC if all water was lost out of IC when the crew could not see the white steam coming out of the IC (according to TEPCO) If they trusted the water level in the shell side of the IC (water tank) and didnʼt stop the IC operation, the unit 1 core might have survived without serious damage; Note: even if the water tank is empty, no need to stop the IC operation After stopping the IC, the unit 1 was under the loss of ultimate heat sink condition

14 Core Meltdown --- Unit 1 Virtually nothing could be done for the Unit 1 with possible misreading of RPV water level; and the control room indications were unavailable; and no information fed and an optimism about the IC status by the site ERC (Too much trust on the passive safety) In this respect, IC is not perfect passive Pointed out: Communication between control room and site ERC, RPV water level reading, SAM drills/training etc. Core meltdown after a few hours of IC termination (core uncover started ~5pm, 3/11: fact much earlier than suspected) Radiation level was high already around 10PM in the RB Most of the fuels have melted and relocated to the bottom head, some leaked through the CRD/instrumentation guide tubes into the pedestal (CRD cavity room) Core Meltdown --- Unit 1 3/11 21:30 IC valve was open (according to TEPCO) Access to IC had been difficult due to the high temperature and high dose level PCV radiation level very high in the RB after midnight PCV venting took longer time due to lack of. 3/12 14:30 Venting finally done 3/12 15:36 H 2 explosion is after the core melt TEPCO continues sea water injection from 3/12 19:04 PM office reportedly suggested (ordered?) to stop sea water injection worrying recriticality event; TEPCO ignored the order (but pretended to obey for 19:25-8:20) However, as the day continues, Boron was added to address criticality concerns.

15 GE BWR, Mark-I Nuclear Reactor After Tsunami SBO and LUHS [units 2 and 3] Major components that do not require AC: RCIC/HPCI, SRV Enthalpy build up in S/C Boiling; no condensation and no scrubbing PCV radiation level high PCV p and T high Need PCV venting Temperatures Pressure Radiation level.. HX SBO Sea LUHS by tsunami RHRS RCIC/HPCI NO DHR Source: Boling Water Reactor (BWR) Systems (Modified) USNRC Technical Training Center

16 Core Meltdown --- Unit 2 (day 3/13-14) High (and low!) pressure water injection by RCIC (w/o DC), enthalpy build up in the suppression chamber (S/C) w/o heat removals At the site Emergency Response Center (ERC), PCV venting was a first priority to dump the decay heat; then RPV depressurization by SRV opening for coolant injection by alternate pumps --- (reasonable) 3/ Manually opened MO-valve of the PCV DW ventilation line (25% open and stand-by) 3/ To open the AO-valve of the S/C (WW) ventilation line, the E-M valve was forced to open with the power from a mobile generator in the control room; however, PCV pressure not high enough to rupture the rupture disk on the S/C vent line 3/ The H2 explosion (unit 3) damaged much of the S/C vent line and fire engine injection line set ups Core Meltdown --- Unit 2 (day 3/13-14) 3/ RCIC off after 72 hours of staggering operation PCV pressure high; no coolant make up until 19:54 3/14 17:30 TAF An order of open SRV was issued by the PM office w/ an advise from NSC Alternate water injection line was not yet ready when SRV opened (3/14 18:02); and this SRV opening was suspected to accelerate the core meltdown and result in very likely worse accident consequence 3/15 Manually tried to open the DW vent line valve; a few minutes later confirmed the valve closed; S/C vent not yet due to the low S/C pressure

17 Core Meltdown and Release --- Unit 2 3/14 18:30 Whole core uncovery suspected Water injection delayed by ~2 hours (3/14 19:54) When injection was made, RPV pressure went high again due to evaporation, disabling further injection As the day continued, Boron was added to address criticality concerns. Misunderstanding again on criticality Then failures of RPV are well suspected Followed by PCV failure due to high temperature (> 450 deg C) and high pressure steam and gas mixture of high radioactivity, a large scale radioactive materials release was well-suspected (3/15 ~ 8am) Core Meltdown --- Unit 3 20 hours of RCIC operation, followed by the 14 hours of HPCI operation; 3/13 02:42 HPCI terminated; restarting efforts in vain Then, a long time duration of no coolant make up was suspected due to difficulties in opening ADS-SRVs PCV pressure high. During this period, safety valves opening resulting in lowering the water level rapidly Efforts on venting and SRV opening were continued SRV did not open due to its mechanism w/o both air pressure and DC power RPV back pressure high impedes the fire engine pump injection

18 Core Meltdown --- Unit 3 3/13 ~8am Core exposure and meltdown afterward 3/13 9:08am SRV opening was said questionable because RPV pressure rapid reduction before the reported SRV opening and after strong pressure spike ~9am: due to MFCI (?) not likely but still under discussion 3/13 ~9:25am Borated fresh water injection (~ 1220) 3/ ~ below TAF and not recovered 1312 Sea water injection --- could not recover TAF In spite of 12 hours of sea water injection efforts, ERC recognized water level was kept below TAF Circumferential evidence for RPV failures 3/14 11am H 2 detonation 1F1 1F2 1F3 3/11 3/12 3/13 3/14 3/15 Earthquake/ AM PM AM PM AM PM AM/PM tsunami S/C temp high (sat) IC on (A & B) Rad level PCV pres high 1503off man lly high in RBs 1430 Vent rupture level set too 1830 Open-close 3am RPV successfuil? high; difficult to vent failure? and open SRV Highest rad 17~1800 5am PCV 1536 H2 expl. PCV failure expcted level at the TAF failure? due to excess temp main gate 2130 No Prep vent access to IC Core melt (before mdngt) 1502 RCIC on w/o DC power RCIC valves not compl closed? Car batteries for instrumentation and to open SRVs 1506 RCIC on 1136 RCIC off RPV p falls down due to possible RPV failure high peak p pulse: by MFCI? Not likely but still under 36debate (20 hours) (14 hours) (>70 hours) 11am try PCV venting (not success) 1230 HPCI on 0242 HPCI off 700TAF then No coolant injection! Core metldown started 841 PCV vent (insufficient) 908 SRV open 925 sea water injection (21 hours) S/C temp too high (no condensatn) 1312 Sea water inject (for ~12 hrs: insufficient) Alternate water injection line (CRD pump, SLC pump lines) and PCV vent lines damag d by H2 detonat. No coolant injection! 1100 H2 explosion 1325 RCIC off PCV p high No makeup until TAF 1802 SRV op 1830 Whole core uncov. Makeup was delayed until H2 expl? Near S/C or #4 Large scale release of radactive materials 2000 a large portion of the core melt down to bottom head (est) PCV venting was higher priority at TEPCO

19 Summary: LUHS Fukushima path to Core Melt - 2 After LUHS, PCV venting delay or failure with various reasons in dumping out the accumulated energy from PCV was fatal, resulting in PCV damage Subsequent delayed RPV depressurization with difficulties in opening relief valves (SRV), w/o ADS, and alternate low pressure coolant injection difficult no coolant injection for long hours Core exposure by continuous safety valves (SRV) opening and possible depressurization due to possible leakage paths formation at RPV and other primary boundaries (Unit 2 and 3) Core melt PCV failure -- Eventual lower PCV pressure -- due to most likely leakage path formation in unit 2 (due to excess temperature, ) Irony that the RPV depressurization was achieved by RPV failures and the PCV venting due more likely to possible PCV failures that made the low pressure injection possible and stabilized the degraded core with the atmosphere as ultimate heat sink 1F1 core meltdown 3/11, 6-8pm 1F2 3/14~15, 1F3 ~ 3/13 in the morning

20 Any success path to no core damage with LUHS? Easy to say if IC were not terminated ; if RCIC and HPCI were not stopped manually,, etc. These afterthoughts are not totally correct True that the reactor core seemed to have survived as long as IC or RCIC/HPCI were operating but this does not mean that the core could avoid core damage and melting w/o heat sinks F & B might be an answer as shown next but with many ifʼs. Extremely slim success path w/o IC, RCIC/HPCI under LUHS conditions -- F&B (SAM: Severe Accident Management) I. Depressurize RPV to 6~7 bars immediately after termination of IC, RICI or HPCI forcing SRV (ADS) open to alternate pump capability --- with DC + High Pres. Air or N 2 required II. W/o delay, inject make-up water by alternate high power diesel pumps or fire engine pumps III. Carry out PCV venting to release the enthalpy transported by the steam out of the RPV into the atmosphere (heat sink) --- Filtered vent system Repeat these procedures; all these actions must be done smooth and absolutely w/o delay when the level well above TAF Wait for RHRSW restoration If RHR is not restored for one week or so, it would be difficult to keep the nuclear reactor core intact

21 Possible success path to save the cores Success possibility extremely slim Nevertheless, it seems to me that TEPCO was following the path in principle Frequent strong aftershocks and tsunami warnings, tsunami debris, no lighting in the darkness, w/o much information,, and reportedly some frequent intervenes hindered the TEPCOʼs efforts at the site ERC and operation control room activities from the very beginning of the accident Natural and man-made hazards Extremely low frequency but large consequence Q event Why this tsunami risk was ignored? Very low frequency -- perception Underestimated the historical records Cost consciousness of TEPCO (non-nuclear sectors) Why resulted in the nuclear disaster? 1. (SBO=)LUHS; for BDBE, lack of diversity of ultimate heat sink 2. Lack of D-i-D 4 th layer (mitigation of Q by Accident Management / Risk Management after the breach of the 3 rd layer) 3. Neglect of the TMI lessons, IAEA recommendation on regulatory system, 4. Due to Overconfidence by regulatory body, utilities, nuclear professionals,.., in DBE safety, high reliability in power grid system in Japan,, Complacency 4 th Disaster

22 Information Control All these core meltdown facts were not disclosed until May 15, 2011 by TEPCO Press Release TEPCO was well aware of the meltdown from the beginning; so were NISA/JNES NISA/JNES did not or could not disclose the information against their intention (my guess) Post-Fukushima Immediately after the accident, installation of the counter-measures against higher tsunami attack and SBO, E/March 2011 Roadmap to stabilization Many lessons learned and safety improvement; hardware, and software, regulatory system Nuclear power plants are made much safer by putting the lessons from Fukushima-Daiichi into practice

23 Post-Fukushima Still in the realm of the deterministic DEC and strengthened D-i-D 4 th layer (software) Inevitable preparation for the unforeseen events and a disaster that exceeds all worst-case scenarios; Expect and prepare for the unexpected but how? Example: Tsunami disaster education for the children in Kamaishi, a small coastal town (pop: ~ 40,000) in Iwate Prefecture END Responses taken to fight the nuclear accident and to mitigate the consequences Hisashi NINOKATA Professor, Politecnico di Milano Department of Energy CeSNEF-Nuclear Engineering Division Nuclear Reactors Group Professor Emeritus, Tokyo Institute of Technology

East Japan Earthquake on March 11, 2011 and Fukushima Dai-ichi Nuclear Power Station

East Japan Earthquake on March 11, 2011 and Fukushima Dai-ichi Nuclear Power Station East Japan Earthquake on March 11, 2011 and Fukushima Dai-ichi Nuclear Power Station August 13, 2012 Takeyuki INAGAKI Nuclear Seismic Engineering Centre Tokyo Electric Power Company All Rights Reserved

More information

TEPCO s Safety Assurance Philosophy on Nuclear Power Generation Plants

TEPCO s Safety Assurance Philosophy on Nuclear Power Generation Plants TEPCO s Safety Assurance Philosophy on Nuclear Power Generation Plants January 25, 2013 Tokyo Electric Power Company, Inc. This English translation has been prepared with the intention of creating an accurate

More information

Leaks from Unit-3 PCV and steam release in a large amount

Leaks from Unit-3 PCV and steam release in a large amount Attachment 3-8 Leaks from Unit-3 PCV and steam release in a large amount 1. Background At Unit-3 the suppression chamber (S/C) vent line configuration was completed at 08:41 on March 13 th and the dry

More information

The Nitrogen Threat. The simple answer to a serious problem. 1. Why nitrogen is a risky threat to our reactors? 2. Current strategies to deal with it.

The Nitrogen Threat. The simple answer to a serious problem. 1. Why nitrogen is a risky threat to our reactors? 2. Current strategies to deal with it. International Conference on Topical Issues in Nuclear Installation Safety: Safety Demonstration of Advanced Water Cooled Nuclear Power Plants. The simple answer to a serious problem Vienna. 6 9 June 2017

More information

Nuclear safety Lecture 4. The accident of the TMI-2 (1979)

Nuclear safety Lecture 4. The accident of the TMI-2 (1979) Nuclear safety Lecture 4. The accident of the TMI-2 (1979) Ildikó Boros BME NTI 27 February 2017 The China Syndrome Opening: 16 March 1979 Story: the operator of the Ventana NPP tries to hide the safety

More information

ASVAD THE SIMPLE ANSWER TO A SERIOUS PROBLEM. Automatic Safety Valve for Accumulator Depressurization. (p.p.)

ASVAD THE SIMPLE ANSWER TO A SERIOUS PROBLEM. Automatic Safety Valve for Accumulator Depressurization. (p.p.) ASVAD Automatic Safety Valve for Accumulator Depressurization (p.p.) THE SIMPLE ANSWER TO A SERIOUS PROBLEM International Experts Meeting on Strengthening Research and Development Effectiveness in the

More information

Integrated Coping Strategies for Beyond-Design-Basis External Events

Integrated Coping Strategies for Beyond-Design-Basis External Events IAEA IEM on SAM in the Light of the Fukushima Daiichi NPP, 17-20 March 2014, Vienna, Austria Integrated Coping Strategies for Beyond-Design-Basis External Events Jaewhan Kim and Kwang-Il Ahn KAERI Contents

More information

Evaluation of the fraction of Unit-3 vent gas that flowed into Unit-4 reactor building

Evaluation of the fraction of Unit-3 vent gas that flowed into Unit-4 reactor building Attachment 3-1 Evaluation of the fraction of Unit-3 vent gas that flowed into Unit-4 reactor building 1. Introduction The hydrogen explosion, which occurred on March 15, 211, at the Unit-4 reactor building

More information

Extensive Damage Mitigation Guidelines (EDMG)

Extensive Damage Mitigation Guidelines (EDMG) Extensive Damage Mitigation Guidelines (EDMG) Roy Harter RLH Global Services Regional Workshop on Sharing Best Practices in Development and Implementation of Severe Accident Management Guidelines October

More information

ACCIDENT MANAGEMENT AND EPR AT DUKOVANY NPP

ACCIDENT MANAGEMENT AND EPR AT DUKOVANY NPP ACCIDENT MANAGEMENT AND EPR AT DUKOVANY NPP 27-29 September 2017 Vienna IAEA Miroslav Trnka OVERVIEW General EOPs and SAMGs (changes) DAM (FLEX) EDMG Equipment (new + ongoing projects) Staff (drills and

More information

IEM on Severe Accident Management in the light of the accident at the Fukushima Daïchi NPP

IEM on Severe Accident Management in the light of the accident at the Fukushima Daïchi NPP IEM on Severe Accident Management in the light of the accident at the Fukushima Daïchi NPP Progress, challenges and perspectives in the field of design features, as regards SAMG IAEA, March 2014 Introduction

More information

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER I: AUXILIARY SYSTEMS. A high-capacity EBA system [CSVS] [main purge]

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER I: AUXILIARY SYSTEMS. A high-capacity EBA system [CSVS] [main purge] PAGE : 1 / 9 5. CONTAINMENT PURGE (EBA [CSVS]) The Reactor Building purge system comprises the following: A high-capacity EBA system [CSVS] [main purge] A low-capacity EBA system [CSVS] [mini-purge] 5.1.

More information

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER F: CONTAINMENT AND SAFEGUARD SYSTEMS 7. CONTAINMENT HEAT REMOVAL SYSTEM (EVU [CHRS])

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER F: CONTAINMENT AND SAFEGUARD SYSTEMS 7. CONTAINMENT HEAT REMOVAL SYSTEM (EVU [CHRS]) PAGE : 1 / 16 7. CONTAINMENT HEAT REMOVAL SYSTEM (EVU [CHRS]) 7.0. SAFETY REQUIREMENTS 7.0.1. Safety functions The main functions of the EVU system [CHRS] are to limit the pressure inside the containment

More information

Safety Analysis: Event Classification

Safety Analysis: Event Classification IAEA Training Course on Safety Assessment of NPPs to Assist Decision Making Safety Analysis: Event Classification Lecturer Lesson IV 1_2 Workshop Information IAEA Workshop City, Country XX - XX Month,

More information

Considerations for the Practical Application of the Safety Requirements for Nuclear Power Plant Design

Considerations for the Practical Application of the Safety Requirements for Nuclear Power Plant Design Considerations for the Practical Application of the Safety Requirements for Nuclear Power Plant Design Joint ICTP-IAEA Essential Knowledge Workshop on Deterministic Safety Analysis and Engineering Aspects

More information

Accident Management Strategies for Mark I and Mark III BWRs

Accident Management Strategies for Mark I and Mark III BWRs Accident Management Strategies for Mark I and Mark III BWRs E. L. Fuller Office of Nuclear Regulatory Research United States Nuclear Regulatory Commission IAEA Workshop Vienna, Austria July 17-21, 2017

More information

Dynamic Context Quantification for Design Basis Accidents List Extension and Timely Severe Accident Management

Dynamic Context Quantification for Design Basis Accidents List Extension and Timely Severe Accident Management Dynamic Context Quantification for Design Basis Accidents List Extension and Timely Severe Accident Management Emil Kostov a,b and Gueorgui Petkov a a Technical University, Sofia, Bulgaria b WorleyParsons,

More information

IAEA Training in Level 2 PSA MODULE 8: Coupling Source Terms to Probabilistic Event Analysis (CET end-state binning)

IAEA Training in Level 2 PSA MODULE 8: Coupling Source Terms to Probabilistic Event Analysis (CET end-state binning) IAEA Training in Level 2 PSA MODULE 8: Coupling Source Terms to Probabilistic Event Analysis (CET end-state binning) The Problem A probabilistic treatment of severe accident progression leads to numerous

More information

Review and Assessment of Engineering Factors

Review and Assessment of Engineering Factors Review and Assessment of Engineering Factors 2013 Learning Objectives After going through this presentation the participants are expected to be familiar with: Engineering factors as follows; Defense in

More information

Verification and validation of computer codes Exercise

Verification and validation of computer codes Exercise IAEA Safety Assessment Education and Training (SAET) Programme Joint ICTP- IAEA Essential Knowledge Workshop on Deterministic Safety Assessment and Engineering Aspects Important to Safety Verification

More information

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER P: REFERENCE OPERATING CONDITION STUDIES (PCC)

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER P: REFERENCE OPERATING CONDITION STUDIES (PCC) PAGE : 1 / 11 1. PASSIVE SINGLE FAILURE ANALYSIS The aim of the accident analysis in Chapter P is to demonstrate that the safety objectives have been fully achieved, despite the most adverse single failure.

More information

REGULATORY OBSERVATION

REGULATORY OBSERVATION RO unique no.: REGULATORY OBSERVATION REGULATOR TO COMPLETE RO-ABWR-0046 Date sent: 20 th April 2015 Acknowledgement required by: 08 th May 2015 Agreement of Resolution Plan required by: 14 th May 2015

More information

Fukushima: Outside the Imagination and Lack of Preparation. Benefit of PST (Partial Stroke Test)

Fukushima: Outside the Imagination and Lack of Preparation. Benefit of PST (Partial Stroke Test) International TÜV Rheinland Symposium in China Functional Safety in Industrial Applications 18 19 October 2011, Shanghai - China Fukushima: Outside the Imagination and Lack of Preparation & Benefit of

More information

Nuclear Safety Regulation: Before and after Fukushima*

Nuclear Safety Regulation: Before and after Fukushima* Nuclear Safety Regulation: Before and after Fukushima* Shridhar Chande, India International Conference on Effective Nuclear Regulatory Systems: Sustaining Improvements Globally, Vienna 11-15 April 2016

More information

IAEA SAFETY STANDARDS for protecting people and the environment

IAEA SAFETY STANDARDS for protecting people and the environment IAEA SAFETY STANDARDS for protecting people and the environment DESIGN OF REACTOR CONTAINMENT STRUCTURE AND SYSTEMS FOR NUCLEAR POWER PLANTS DRAFT SAFETY GUIDE DS 482 STATUS: STEP 11 Submission to Review

More information

DETAILS OF THE ACCIDENT PROGRESSION IN 1F1

DETAILS OF THE ACCIDENT PROGRESSION IN 1F1 DETAILS OF THE ACCIDENT PROGRESSION IN 1F1 EMUG 2019 BRAUN, Matthias Switzerland, 3 rd -5 th April 2019 Not part of the BSAF OECD Benchmark Project Relying exclusively on publically available input data

More information

Control Performance: An Imperative for Safety

Control Performance: An Imperative for Safety Control Performance: An Imperative for Safety George Buckbee 2014 ExperTune, a Metso Company Page 1 Control Performance: An Imperative for Safety George Buckbee, ExperTune 2014 ExperTune, a Metso Company

More information

CONTENTS OF THE PCSR CHAPTER 1 - INTRODUCTION AND GENERAL DESCRIPTION

CONTENTS OF THE PCSR CHAPTER 1 - INTRODUCTION AND GENERAL DESCRIPTION PAGE : 1 / 8 CONTENTS OF THE PCSR CHAPTER 1 - INTRODUCTION AND GENERAL DESCRIPTION SUB-CHAPTER 1.1 INTRODUCTION SUB-CHAPTER 1.2 GENERAL DESCRIPTION OF THE UNIT SUB-CHAPTER 1.3 COMPARISON WITH REACTORS

More information

Loss of Normal Feedwater Analysis by RELAP5/MOD3.3 in Support to Human Reliability Analysis

Loss of Normal Feedwater Analysis by RELAP5/MOD3.3 in Support to Human Reliability Analysis Loss of Normal Feedwater Analysis by RELAP5/MOD3.3 in Support to Human Reliability Analysis ABSTRACT Andrej Prošek, Borut Mavko Jožef Stefan Institute Jamova cesta 39, SI-1 Ljubljana, Slovenia Andrej.Prosek@ijs.si,

More information

Event tree analysis. Prof. Enrico Zio. Politecnico di Milano Dipartimento di Energia. Prof. Enrico Zio

Event tree analysis. Prof. Enrico Zio. Politecnico di Milano Dipartimento di Energia. Prof. Enrico Zio Event tree analysis Politecnico di Milano Dipartimento di Energia Techniques for Risk Analysis Hazard identification: FMEA (Failure Modes and Effects Analysis) & HAZOP (HAZard and OPerability study) Accident

More information

UKEPR Issue 04

UKEPR Issue 04 Title: PCSR Sub-chapter 6.8 Main steam relief train system - VDA [MSRT] Total number of pages: 16 Page No.: I / III Chapter Pilot: M. LACHAISE Name/Initials Date 25-06-2012 Approved for EDF by: A. PETIT

More information

Temporary Increase in the Emergency Exposure Dose Limit in Response to the TEPCO Fukushima Daiichi NPP Accident December 3, 2014

Temporary Increase in the Emergency Exposure Dose Limit in Response to the TEPCO Fukushima Daiichi NPP Accident December 3, 2014 ひと くらし みらいのために 厚生労働省 Temporary Increase in the Emergency Exposure Dose Limit in Response to the TEPCO Fukushima Daiichi NPP Accident December 3, 2014 Shojiro Yasui,, PhD Office for Radiation Protection

More information

AP1000 European 19. Probabilistic Risk Assessment Design Control Document

AP1000 European 19. Probabilistic Risk Assessment Design Control Document APPENDIX 19E SHUTDOWN EVALUATION 19E.1 Introduction Westinghouse has considered shutdown operations in the design of the A1000 nuclear power plant. The AP1000 defense-in-depth design philosophy to provide

More information

THE NITROGEN INJECTION THREAT IN PWR REACTORS

THE NITROGEN INJECTION THREAT IN PWR REACTORS THE NITROGEN INJECTION THREAT IN PWR REACTORS Weakness of current strategies & ASVAD, the new passive solution. Arnaldo Laborda Rami ASVAD INTL. SL (SPAIN) Tarragona (SPAIN) Email: alaborda@asvad-nuclear.com

More information

Instrumentation systems of BWR

Instrumentation systems of BWR Instrumentation systems of BWR 1 Reactor core and pressure vessel of BWR Fuel rod Fuel assembly Reactor vessel :15~22cm thickness of steel, height of 21m, diameter of 7m Steam dryer Pressure vessel Main

More information

An Improved Modeling Method for ISLOCA for RI-ISI and Other Risk Informed Applications

An Improved Modeling Method for ISLOCA for RI-ISI and Other Risk Informed Applications An Improved odeling ethod for ISLOCA for RI-ISI and Other Risk Informed Applications Young G. Jo 1) 1) Southern Nuclear Operating Company, Birmingham, AL, USA ABSTRACT In this study, an improved modeling

More information

IAEA SAFETY STANDARDS for protecting people and the environment

IAEA SAFETY STANDARDS for protecting people and the environment Date: 2016-08-31 IAEA SAFETY STANDARDS for protecting people and the environment STATUS: STEP 8a For Submission to Member States DESIGN OF REACTOR CONTAINMENT STRUCTURE AND SYSTEMS FOR NUCLEAR POWER PLANTS

More information

How to reinforce the defence-indepth in NPP by taking into account natural hazards?

How to reinforce the defence-indepth in NPP by taking into account natural hazards? How to reinforce the defence-indepth in NPP by taking into account natural hazards? Caroline LAVARENNE Karine HERVIOU Patricia DUPUY Céline PICOT IAEA 21-24 October 2013, Vienna Introduction The DiD has

More information

Engineering & Projects Organization

Engineering & Projects Organization Engineering & Projects Organization Note from : Date: 11/09/2012 To : Copy : N : PEPR-F.10.1665 Rev. 3 Subject: EPR UK - GDA GDA issue FS04 Single Tube Steam Generator Tube Rupture Analysis for the UK

More information

SENSITIVITY ANALYSIS OF THE FIRST CIRCUIT OF COLD CHANNEL PIPELINE RUPTURE SIZE FOR WWER 440/270 REACTOR

SENSITIVITY ANALYSIS OF THE FIRST CIRCUIT OF COLD CHANNEL PIPELINE RUPTURE SIZE FOR WWER 440/270 REACTOR PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Mathematical Sciences 216, 2, p. 57 62 P h y s i c s SENSITIVITY ANALYSIS OF THE FIRST CIRCUIT OF COLD CHANNEL PIPELINE RUPTURE SIZE FOR WWER 44/27

More information

-. 30ýv. Entergy ARKANSAS NUCLEAR ONE - UNIT I IMPROVED TECHNICAL SPECIFICATIONS SUBMITTAL. 05/01101 Supplement Volume 2 of 2. (Sections 3.7 and 3.

-. 30ýv. Entergy ARKANSAS NUCLEAR ONE - UNIT I IMPROVED TECHNICAL SPECIFICATIONS SUBMITTAL. 05/01101 Supplement Volume 2 of 2. (Sections 3.7 and 3. ARKANSAS NUCLEAR ONE - UNIT I IMPROVED TECHNICAL SPECIFICATIONS SUBMITTAL -. 30ýv May 1, 2001 05/01101 Supplement Volume 2 of 2 (Sections 3.7 and 3.8) Entergy MSSVs 3.7.1 3.7 PLANT SYSTEMS 3.7.1 Main Steam

More information

Workshop Information IAEA Workshop

Workshop Information IAEA Workshop IAEA Training Course on Safety Assessment of NPPs to Assist Decision Making Safety Assessment of General Design Aspects of NPPs (Part 2) Lecturer Lesson Lesson III III 1_2 1_2 Workshop Information IAEA

More information

DESIGN OF REACTOR CONTAINMENT STRUCTURE AND SYSTEMS FOR NUCLEAR POWER PLANTS

DESIGN OF REACTOR CONTAINMENT STRUCTURE AND SYSTEMS FOR NUCLEAR POWER PLANTS SAFETY STANDARDS SERIES No. NS-G-1.10 DESIGN OF REACTOR CONTAINMENT STRUCTURE AND SYSTEMS FOR NUCLEAR POWER PLANTS SAFETY GUIDE DS 482 2016-04-20 INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, C-41 (May 13)

More information

Recent Research on Hazards PSA

Recent Research on Hazards PSA Recent Research on Hazards PSA Marina Röwekamp, Hartmut Holtschmidt, Michael Türschmann Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) ggmbh IEM8 - International Experts Meeting on Strengthening

More information

Effects of Delayed RCP Trip during SBLOCA in PWR

Effects of Delayed RCP Trip during SBLOCA in PWR Effects of Delayed RCP Trip during SBLOCA in PWR Javier Montero Technical University of Madrid, Alenza 4, 28003, Madrid, Spain fj.montero@alumnos.upm.es Cesar Queral, Juan Gonzalez-Cadelo cesar.queral@upm.es,

More information

Assessment of Internal Hazards

Assessment of Internal Hazards Joint ICTP- Essential Knowledge Workshop on Deterministic Safety Analysis and Engineering Aspects Important to Safety Trieste, 12-23 October 2015 Assessment of Internal Hazards Javier Yllera Department

More information

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER I: AUXILIARY SYSTEMS 2. VOLUME AND CHEMICAL CONTROL (RCV [CVCS])

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER I: AUXILIARY SYSTEMS 2. VOLUME AND CHEMICAL CONTROL (RCV [CVCS]) PAGE : 1 / 16 2. VOLUME AND CHEMICAL CONTROL (RCV [CVCS]) 2.0. SAFETY REQUIREMENTS 2.0.1. Safety functions 2.0.1.1. Control of reactivity In normal operation, the RCV [CVCS] regulates and adjusts (jointly

More information

DESIGN OF REACTOR CONTAINMENT STRUCTURE AND SYSTEMS FOR NUCLEAR POWER PLANTS

DESIGN OF REACTOR CONTAINMENT STRUCTURE AND SYSTEMS FOR NUCLEAR POWER PLANTS SAFETY STANDARDS SERIES No. NS-G-1.10 DESIGN OF REACTOR CONTAINMENT STRUCTURE AND SYSTEMS FOR NUCLEAR POWER PLANTS SAFETY GUIDE DS 482 2016-04-20 INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, C-41 (May 13)

More information

Enhancing NPP Safety through an Effective Dependability Management

Enhancing NPP Safety through an Effective Dependability Management Prepared and presented by Gheorghe VIERU, PhD Senior Scientific Nuclear Security Research Worker AREN/c.o. Institute for Nuclear Research Pitesti, ROMANIA Safety: Defence in Depth, October 2013 1 OUTLINES

More information

Safety and efficiency go hand in hand at MVM Paks NPP

Safety and efficiency go hand in hand at MVM Paks NPP International Forum Atomexpo 2018 Safety and efficiency go hand in hand at MVM Paks NPP József Elter MVM Paks Nuclear Power Plant Ltd. Hungary Start up Four of the VVER-440/V213 unit Power units up-rate

More information

Proposed Abstract for the 2011 Texas A&M Instrumentation Symposium for the Process Industries

Proposed Abstract for the 2011 Texas A&M Instrumentation Symposium for the Process Industries Proposed Abstract for the 2011 Texas A&M Instrumentation Symposium for the Process Industries Focus Area: Automation HMI Title: Author: Shared Field Instruments in SIS: Incidents Caused by Poor Design

More information

Press Release / Briefing Paper 9 May 2014 Contact: Aileen Mioko Smith cell:

Press Release / Briefing Paper 9 May 2014 Contact: Aileen Mioko Smith cell: p 1 Press Release / Briefing Paper 9 May 2014 Contact: Aileen Mioko Smith cell: +81-90-3620-9251 email: amsmith@gol.com Will Japan Restart Nuclear Power Yet Again Ignoring Danger of Earthquakes? Osaka

More information

Every things under control High-Integrity Pressure Protection System (HIPPS)

Every things under control High-Integrity Pressure Protection System (HIPPS) Every things under control www.adico.co info@adico.co Table Of Contents 1. Introduction... 2 2. Standards... 3 3. HIPPS vs Emergency Shut Down... 4 4. Safety Requirement Specification... 4 5. Device Integrity

More information

DISTRIBUTION LIST. Preliminary Safety Report Chapter 7 Safety Systems UK HPR1000 GDA. GNS Executive. GNS all staff. GNS and BRB all staff CGN EDF

DISTRIBUTION LIST. Preliminary Safety Report Chapter 7 Safety Systems UK HPR1000 GDA. GNS Executive. GNS all staff. GNS and BRB all staff CGN EDF Rev: 000 Page: 2 / 82 DISTRIBUTION LIST Recipients GNS Executive GNS all staff Cross Box GNS and BRB all staff CGN EDF Regulators Public Rev: 000 Page: 3 / 82 SENSITIVE INFORMATION RECORD Section Number

More information

PRA Methodology Overview

PRA Methodology Overview PRA Methodology Overview 22.39 Elements of Reactor Design, Operations, and Safety Lecture 9 Fall 2006 George E. Apostolakis Massachusetts Institute of Technology Department of Nuclear Science and Engineering

More information

Classical Event Tree Analysis and Dynamic Event Tree Analysis for High Pressure Core Melt Accidents in a German PWR

Classical Event Tree Analysis and Dynamic Event Tree Analysis for High Pressure Core Melt Accidents in a German PWR OECD International Workshop on Level 2 PSA and Severe Accident Management Koeln, Germany, March 29-31, 2004 Classical Event Tree Analysis and Dynamic Event Tree Analysis for High Pressure Core Melt Accidents

More information

in84061.txt at Page 1 of 6 2/25/00

in84061.txt at  Page 1 of 6  2/25/00 in84061.txt at www.nrc.gov Page 1 of 6 UNITED STATES NUCLEAR REGULATORY COMMISSION OFFICE OF INSPECTION AND ENFORCEMENT WASHINGTON, D.C. 20555 SSINS No.: 6835 IE INFORMATION NOTICE NO. 84-61: OVEREXPOSURE

More information

CHIEF S FILE CABINET

CHIEF S FILE CABINET Closing the Gap Concerns over firefighter safety are no longer casual conversations. Increasingly, the emphasis on firefighter safety is moving from an afterthought to the forefront of everything from

More information

Ranking of safety issues for

Ranking of safety issues for IAEA-TECDOC-640 Ranking of safety issues for WWER-440 model RANKING OF SAFETY ISSUES FOR WWER-440 MODEL PLEASE BE AWARE THAT ALL OF THE MISSING PAGES IN THIS DOCUMENT WERE ORIGINALLY BLANK RANKING OF SAFETY

More information

Reclaim Basic Set Up

Reclaim Basic Set Up This purpose of the document is to simplify the set up and understand the Gas Services reclaim system functions. The Gas Services Reclaim Manual is to be used for reference, maintenance, and servicing.

More information

LECTURE 3 MAINTENANCE DECISION MAKING STRATEGIES (RELIABILITY CENTERED MAINTENANCE)

LECTURE 3 MAINTENANCE DECISION MAKING STRATEGIES (RELIABILITY CENTERED MAINTENANCE) LECTURE 3 MAINTENANCE DECISION MAKING STRATEGIES (RELIABILITY CENTERED MAINTENANCE) Politecnico di Milano, Italy piero.baraldi@polimi.it 1 Types of maintenance approaches Intervention Unplanned Planned

More information

NUBIKI Nuclear Safety Research Institute, Budapest, Hungary

NUBIKI Nuclear Safety Research Institute, Budapest, Hungary System Reliability Analysis and Probabilistic Safety Assessment to Support the Design of a New Containment Cooling System for Severe Accident Management at NPP Paks Tamas Siklossy* a, Attila Bareith a,

More information

Review of the Hall B Gas System Hardware. George Jacobs

Review of the Hall B Gas System Hardware. George Jacobs of the Hardware George Jacobs DSG Staff 2 Hall B Gas Utilities for detectors Drift Chamber (DC) Low Threshold Cherenkov Counter (LTCC) Micromegas Vertex Tracker (MVT) Forward Tagger (FT) Ring Imaging Cherenkov

More information

The Relationship Between Automation Complexity and Operator Error

The Relationship Between Automation Complexity and Operator Error The Relationship Between Automation Complexity and Operator Error presented by Russell Ogle, Ph.D., P.E., CSP rogle@exponent.com (630) 274-3215 Chemical Plant Control Control physical and chemical processes

More information

DDnmm,-- SEP U. S. Nuclear Regulatory Commission Attn.: Document Control Desk Mail Stop OP1-17 Washington, D. C

DDnmm,-- SEP U. S. Nuclear Regulatory Commission Attn.: Document Control Desk Mail Stop OP1-17 Washington, D. C SEP 0 5 2001 George T. Jones Vice President Nuclear Engineering & Support PPL Susquehanna, LLC Two North Ninth Street Allentown, PA 18101-1179 Tel. 610.774.7602 Fax 610.774.7797 gtjones@pplweb.com DDnmm,--

More information

Regulatory requirements with respect to Spent Fuel Pool Cooling

Regulatory requirements with respect to Spent Fuel Pool Cooling Regulatory requirements with respect to Spent Fuel Pool Cooling Dr. Christoph Pistner Annual Meeting on Nuclear Technology Hamburg, 12.05.2016 Important Documents Safety Requirements for Nuclear Power

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Risk assessment study of the mutual interactive influence of working procedures on terminals handling dangerous goods in port of Koper (Slovenia) L. Battelino Water Management Institute, Maritime Engineering

More information

SAFETY APPROACHES. The practical elimination approach of accident situations for water-cooled nuclear power reactors

SAFETY APPROACHES. The practical elimination approach of accident situations for water-cooled nuclear power reactors SAFETY APPROACHES The practical elimination approach of accident situations for water-cooled nuclear power reactors 2017 SUMMARY The implementation of the defence in depth principle and current regulations

More information

Custom-Engineered Solutions for the Nuclear Power Industry from SOR

Custom-Engineered Solutions for the Nuclear Power Industry from SOR Custom-Engineered Solutions for the Nuclear Power Industry from SOR As the world s aging nuclear power plants continue to be challenged with maintenance and Instrumentation Solutions for the Nuclear Power

More information

Risks Associated with Caissons on Ageing Offshore Facilities

Risks Associated with Caissons on Ageing Offshore Facilities Risks Associated with Caissons on Ageing Offshore Facilities D. Michael Johnson, DNV GL, Peter Joyce, BG Group, Sumeet Pabby, BG Group, Innes Lawtie, BG Group. Neil Arthur, BG Group, Paul Murray, DNV GL.

More information

Preliminary Failure Mode and Effect Analysis for CH HCSB TBM

Preliminary Failure Mode and Effect Analysis for CH HCSB TBM Preliminary Failure Mode and Effect Analysis for CH HCSB TBM Presented by: Chen Zhi Contributors by HCSB TBM Safety Group, in China June 21, 2007 E-mail: chenz@swip.ac.cn Outline Introduction FMEA Main

More information

Safety Standards for Decommissioning Activities

Safety Standards for Decommissioning Activities Safety Standards for Decommissioning Activities Koji OKAMOTO The University of Tokyo (Chair of AESJ Decommissioning Standard Committee) Status of decommissioning in Japan Nuclear Power Plant (NPP) under

More information

Complementarity between Safety and Physical Protection in the Protection against Acts of Sabotage of Nuclear Facilities

Complementarity between Safety and Physical Protection in the Protection against Acts of Sabotage of Nuclear Facilities Complementarity between Safety and Physical Protection in the Protection against Acts of Sabotage of Nuclear Facilities Robert Venot Institut de Radioprotection et de Sûreté Nucléaire 77-83, avenue du

More information

HEALTH AND SAFETY EXECUTIVE HM NUCLEAR INSTALLATIONS INSPECTORATE

HEALTH AND SAFETY EXECUTIVE HM NUCLEAR INSTALLATIONS INSPECTORATE HEALTH AND SAFETY EXECUTIVE HM NUCLEAR INSTALLATIONS INSPECTORATE New Reactor Generic Design Assessment (GDA) - Step 2 Preliminary Review Assessment of: Structural Integrity Aspects of AREVA/EdF EPR HM

More information

V.H. Sanchez Espinoza and I. Gómez-García-Toraño

V.H. Sanchez Espinoza and I. Gómez-García-Toraño V.H. Sanchez Espinoza and I. Gómez-García-Toraño ANALYSIS OF PWR SEVERE ACCIDENT SEQUENCES INCLUDING MITIGATIVE MEASURES TO PREVENT OR DELAY THE FAILURE OF SAFETY BARRIERS WITH THE SEVERE ACCIDENT CODE

More information

Severe Accident Management Programmes for Nuclear Power Plants

Severe Accident Management Programmes for Nuclear Power Plants DS 483: Mode 2 27 March 2017 IAEA SAFETY STANDARDS for protecting people and the environment STEP 11: Approval by the relevant review Committees Reviewed in NSOC (Asfaw) Severe Accident Management Programmes

More information

APPLICATION OF THE FAILURE MODES AND EFFECTS ANALYSIS TECHNIQUE TO THE EMERGENCY COOLING SYSTEM OF AN EXPERIMENTAL NUCLEAR POWER PLANT

APPLICATION OF THE FAILURE MODES AND EFFECTS ANALYSIS TECHNIQUE TO THE EMERGENCY COOLING SYSTEM OF AN EXPERIMENTAL NUCLEAR POWER PLANT 2009 International Nuclear Atlantic Conference - INAC 2009 Rio de Janeiro,RJ, Brazil, September27 to October 2, 2009 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-03-8 APPLICATION

More information

IC67 - Pre-Instructional Survey

IC67 - Pre-Instructional Survey IC67 - Pre-Instructional Survey 1. What does the term code refer to in the installation of power plant piping? a. National welders code b. Fire protection code c. ASME Boiler and Pressure Vessel Code Section

More information

IAEA Headquarters in Vienna, Austria 6 to 9 June 2017 Ref No.: CN-251. Ivica Bašić, Ivan Vrbanić APoSS d.o.o.

IAEA Headquarters in Vienna, Austria 6 to 9 June 2017 Ref No.: CN-251. Ivica Bašić, Ivan Vrbanić APoSS d.o.o. Overview And Comparison Of International Practices Concerning The Requirements On Single Failure Criterion With Emphasize On New Water-Cooled Reactor Designs Presentation on International Conference on

More information

Installation, Operating, Maintenance and Safety Instructions for. Pressurised water systems for boats

Installation, Operating, Maintenance and Safety Instructions for. Pressurised water systems for boats FLOMAX-SYSTEM DOC532/11 Installation, Operating, Maintenance and Safety Instructions for FLOMAX-SYSTEM Pressurised water systems for boats CW343A FloMax System 12 volt d.c. CW344A FloMax System 24 volt

More information

NORMAL OPERATING PROCEDURES Operating Parameter Information

NORMAL OPERATING PROCEDURES Operating Parameter Information Operating Parameter Information Each operator performing the normal operating procedures (routine checks) of the facility should be familiar with the current normal operating parameters of all systems

More information

AIR CONDITIONING AND PRESSURIZATION CONTROLS AND INDICATORS

AIR CONDITIONING AND PRESSURIZATION CONTROLS AND INDICATORS AIR CONDITIONING AND PRESSURIZATION CONTROLS AND INDICATORS Air conditioning control panel 1 MIN MAX Page 1 Air conditioning control panel 2 MIN MAX Page 2 Air conditioning control panel 3 MIN MAX Page

More information

NPSAG RAPPORT

NPSAG RAPPORT NPSAG RAPPORT 11-004-03 Evaluation of Existing Applications and Guidance on Methods for HRA EXAM-HRA HRA Application guide NPSAG Report 11-004-03 Gunnar Johanson, Sandra Jonsson 1 Kent Bladh, Tobias Iseland

More information

EXPERIMENTAL SUPPORT OF THE BLEED AND FEED ACCIDENT MANAGEMENT MEASURES FOR VVER-440/213 TYPE REACTORS

EXPERIMENTAL SUPPORT OF THE BLEED AND FEED ACCIDENT MANAGEMENT MEASURES FOR VVER-440/213 TYPE REACTORS International Conference Nuclear Energy for New Europe 22 Kranjska Gora, Slovenia, September 9-12, 22 www.drustvo-js.si/gora22 EXPERIMENTAL SUPPORT OF THE BLEED AND FEED ACCIDENT MANAGEMENT MEASURES FOR

More information

Pipeline Integrity Valve Spacing Engineering Assessment (CDN) Grande Prairie Mainline Loop 2 (Progress Section) NPS 36

Pipeline Integrity Valve Spacing Engineering Assessment (CDN) Grande Prairie Mainline Loop 2 (Progress Section) NPS 36 APPROVALS Library: EDMS General Page 1 of 10 TABLE OF CONTENTS APPROVALS 1 1. PURPOSE... 3 2. BACKGROUND... 3 3. VALVE SPACING ASSESSMENT APPROACH... 6 4. OPERATIONS AND MAINTENANCE CONSIDERATIONS... 6

More information

Safety in Petroleum Industry

Safety in Petroleum Industry Chemical ( Industrial ) Disaster Management Conference, Bangalore 30 January 2014 Safety in Petroleum Industry Refineries and Petrochemical plants are highly energyintensive Handle highly inflammable and

More information

BOILER MECHANIC//SR. BOILER MECHANIC

BOILER MECHANIC//SR. BOILER MECHANIC WORKING IN STEAM MANHOLES Activity Hazard Identification Required Precautions 1. Driving to and from work site. 1. Motor vehicle accident; striking pedestrians, bicyclists, or individuals using rollerblades.

More information

Analysis of the hydrogen explosion at the Unit-1 Reactor Building

Analysis of the hydrogen explosion at the Unit-1 Reactor Building Attachment 1-10 Analysis of the hydrogen explosion at the Unit-1 Reactor Building 1. Introduction A hydrogen explosion occurred on March 12 th, 2011 at the Unit-1 Reactor Building (hereafter the R/B in

More information

10. SYSTEM ANALYSIS. The assessment consist of two elements: Safety Analysis Report and an independent Review of Safety Report.

10. SYSTEM ANALYSIS. The assessment consist of two elements: Safety Analysis Report and an independent Review of Safety Report. 10. SYSTEM ANALYSIS Several projects related to the safety analysis of the Ignalina NPP or its safety systems have been performed. The joint Lithuanian - Sweden Barselina project - the first probabilistic

More information

Inspection Credit for PWSCC Mitigation via Peening Surface Stress Improvement

Inspection Credit for PWSCC Mitigation via Peening Surface Stress Improvement Inspection Credit for PWSCC Mitigation via Peening Surface Stress Improvement Glenn A. White, Kyle P. Schmitt, Kevin J. Fuhr, Markus Burkardt, and Jeffrey A. Gorman Dominion Engineering, Inc. Paul Crooker

More information

The Risk of LOPA and SIL Classification in the process industry

The Risk of LOPA and SIL Classification in the process industry The Risk of LOPA and SIL Classification in the process industry Mary Kay O Connor Process Safety Center International Symposium Beyond Regulatory Compliance, Making Safety Second Nature October 28-29,

More information

COMPUTING SOURCE TERMS WITH DYNAMIC CONTAINMENT EVENT TREES

COMPUTING SOURCE TERMS WITH DYNAMIC CONTAINMENT EVENT TREES COMPUTING SOURCE TERMS WITH DYNAMIC CONTAINMENT EVENT TREES Tero Tyrväinen 1, Taneli Silvonen 2, Teemu Mätäsniemi 1 1 VTT Technical Research Centre of Finland Ltd.: P.O. Box 1000, Espoo, Finland, 02044,

More information

Unit 2 Primary Containment Vessel Internal Investigation

Unit 2 Primary Containment Vessel Internal Investigation Unit 2 Primary Containment Vessel Internal Investigation December 21, 2017 Tokyo Electric Power Company Holdings, Inc. 1. Conditions inside the Unit 2 Primary Containment Vessel According to accident development

More information

Tokyo Electric Power Company Holdings, Inc. November 30, 2017

Tokyo Electric Power Company Holdings, Inc. November 30, 2017 < R e f e r e n c e > Partial damage to temperature gauge cables for the Reactor Pressure Vessel (RPV) found during the Fukushima Daiichi NPS Unit 3 Primary Containment Vessel () internal investigation

More information

Temporary Equipment Fails After 20 Years of Use Worker Gets Sandblasted

Temporary Equipment Fails After 20 Years of Use Worker Gets Sandblasted Temporary Equipment Fails After 20 Years of Use Worker Gets Sandblasted Lessons Learned Volume 03 Issue 46 2004 USW Temporary Equipment Fails After 20 Years of Use Worker Gets Sandblasted Purpose To conduct

More information

Model PSI Compressor with 3-Gallon Air Tank 12VDC

Model PSI Compressor with 3-Gallon Air Tank 12VDC Model 6350 150 PSI Compressor with 3-Gallon Air Tank 12VDC IMPORTANT: It is essential that you and any other operator of this product read and understandd the contents of this manual before installing

More information

Module No. # 01 Lecture No. # 6.2 HAZOP (continued)

Module No. # 01 Lecture No. # 6.2 HAZOP (continued) Health, Safety and Environmental Management in Petroleum and Offshore Engineering Prof. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute Of Technology, Madras Module No. # 01

More information

Safety Classification of Structures, Systems and Components in Nuclear Power Plants

Safety Classification of Structures, Systems and Components in Nuclear Power Plants DS367 Draft 5.1 IAEA SAFETY STANDARDS for protecting people and the environment Date: 04/11/2008 Status: for Member States comments Reviewed in NS-SSCS Please submit your comments by 20 March 2009 Safety

More information

Impact on People. A minor injury with no permanent health damage

Impact on People. A minor injury with no permanent health damage Practical Experience of applying Layer of Protection Analysis For Safety Instrumented Systems (SIS) to comply with IEC 61511. Richard Gowland. Director European Process Safety Centre. (Rtgowland@aol.com,

More information

CASE STUDY. Compressed Air Control System. Industry. Application. Background. Challenge. Results. Automotive Assembly

CASE STUDY. Compressed Air Control System. Industry. Application. Background. Challenge. Results. Automotive Assembly Compressed Air Control System Industry Automotive Assembly Application Savigent Platform and Industrial Compressed Air Systems Background This automotive assembly plant was using over 40,000 kilowatt hours

More information