FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER I: AUXILIARY SYSTEMS 2. VOLUME AND CHEMICAL CONTROL (RCV [CVCS])

Size: px
Start display at page:

Download "FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER I: AUXILIARY SYSTEMS 2. VOLUME AND CHEMICAL CONTROL (RCV [CVCS])"

Transcription

1 PAGE : 1 / VOLUME AND CHEMICAL CONTROL (RCV [CVCS]) 2.0. SAFETY REQUIREMENTS Safety functions Control of reactivity In normal operation, the RCV [CVCS] regulates and adjusts (jointly with the REA [RBWMS]) the boron content of the primary system in order to control power variations (in conjunction with the control rods), in plant start-up and shutdown conditions, or to offset fuel burn-up. The boron content is adjusted by boron make-up (controlled and regulated in the REA [RBWMS]) via the RCV [CVCS] charging line and by regulating the letdown from the primary system. During an accident, the RCV [CVCS] must fulfil the following safety functions: - limit the consequences of a homogeneous boron dilution accident (PCC-2) - prevent heterogeneous boron dilution accidents Decay heat removal The RCV [CVCS] helps control maintenance of the water inventory of the primary system in certain RRC-A- situations Radioactive substance containment The RCV [CVCS] must ensure the following: - leaktightness of the primary system at the primary pump seals by injection of cooled and purified water into the primary pump seals and by directing leaks from the seals to the RCV [CVCS] - the charging function of the primary system in the event that the normal charging line is unavailable, via injection at the number 1 seal of the primary pumps - appropriate chemical characteristics of the primary water, to limit corrosion of the fuel rod cladding - auxiliary spray in the pressuriser - prevention of overfill of the steam generators (PCC-3 and PCC-4) As the RCV [CVCS] conveys radioactive products in the form of solid or ionic flow and in the form of dissolved gases, the RCV [CVCS] pressure boundary must be designed as a barrier for containing radioactive products. In a post-accident situation, the RCV [CVCS] must contribute to containment isolation.

2 PAGE : 2 / 16 In a post-accident situation, the RCV [CVCS] must ensure isolation of the main primary system in the event of a rupture downstream of the main primary system isolation valves Functional criteria Control of reactivity The RCV [CVCS], in association with the REA [RBWMS], enables controlled injection of water (dilution) or boric acid (boration) so as to adjust the soluble poison content, to control any planned variations in reactivity, including Xenon transients. When the reactor is operating, the boration capacity of the RCV [CVCS] in conjunction with the REA [RBWMS], enables the core to be brought to a sub-critical state in cold shutdown, ensuring a sufficient shutdown margin (including Xenon effects). The RCV [CVCS], in conjunction with the REA [RBWMS], must also be capable of controlling small reactivity variations by adjusting the primary system boron content and thus follow the expected load variations (including Xenon effects), so that fuel limits are not reached. The RCV [CVCS] and the REA [RBWMS] must be designed to protect the primary system from risks of heterogeneous or homogeneous boron dilution, using appropriate means of detection and actions for isolating the RCV [CVCS] downstream of the volume control tank (PCC-2) and injecting boron into the primary system Decay heat removal Two pumps must be operated (selection of the maximum flow rate by the operator) to ensure that the primary system water inventory is maintained, in conjunction with the safety injection, in certain RRC-A situations, in particular during bleed and feed operation Radioactive substance containment To prevent leakages, seal no. 1 of the primary pumps must be maintained at a temperature lower than that of the primary fluid. In these conditions, the borated water make-up at the level of this seal must be delivered 1 at a pressure higher than that of the primary system. Each RCV [CVCS] line crossing the containment must be equipped with two isolation valves, each fitted with leak control devices. Each RCV [CVCS] line connected to the primary system must be fitted with two valves for isolating the main primary system. The RCV [CVCS] must provide enough water to the auxiliary spray of the pressuriser when normal spray is not available, in order to enable a reduction in the primary system pressure. The charging line of the RCV [CVCS] must be isolated when the level in the steam generators is high (PCC-3 and PCC-4). 1 Protection of the no. 1 seals of the primary pumps is provided by the RRI [CCWS] thermal barrier or by the DEA [SSSS] (GMPP [RCP] no. 1 seal leaktightness system at shutdown)

3 PAGE : 3 / Design-related requirements Requirements deriving from safety classification - Safety classification The RCV [CVCS] must be safety-classified according to the classification principles presented in Chapter C.2. - Single failure criterion (active and passive) For components performing F1 functions, the single failure criterion must be taken into account in order to ensure a sufficient level of redundancy. - Backed up supplies Supply of all motor-driven valves and of the electric motors of the charging pumps must be backed up by diesels. Their safety function is thus always ensured, even in the event of loss of external electrical supplies. The chemical reagent injection system is connected to the normal electrical supply. - Qualification under normal operation The components fulfilling an F1 or F2 safety function must be qualified to remain functional in normal or post-accident operating conditions. The resulting requirements for the components (integrity, availability, functional capacity, etc.) are presented in Chapter C.7. - Mechanical, electrical and control-command classifications The mechanical classification of the RCV [CVCS] must be established according to the classification principles presented in Chapter C.2. The RCV [CVCS] electrical classification must be established according to the classification principles presented in Chapter C.2. The RCV [CVCS] instrumentation and control classification must be established according to the classification principles presented in Chapter C.2. If the Main Control Room is unavailable, the components of the RCV [CVCS] and the REA [RBWMS] used to bring the plant to a safe shutdown state must be able to be operated from the remote panel or locally. - Seismic classification The RCV [CVCS] must be seismically classified according to the classification presented in Chapter C Other regulatory requirements later - Official texts

4 PAGE : 4 / 16 - Technical Guidelines The prescriptions specific to the RCV [CVCS] are presented in sections B1.4.2, B2.3.1 and B (see Chapter C.1.2). None - Specific EPR reactor texts Internal/external hazards - Internal hazards The RCV [CVCS] must be protected against internal hazards, in accordance with Chapter C.4. - External hazards The RCV [CVCS] must be protected against external hazards, in accordance with Chapter C TESTS - Preliminary tests The preliminary tests must show that the design is compatible with the performance of the RCV [CVCS] in conjunction with the REA [RBWMS]. - Periodic tests and inspection during operation The safety-classified components of the RCV [CVCS] must undergo periodic tests. The installation and design of RCV [CVCS] equipment must allow easy access to it to allow inspections during operation and periodic tests for F1- and F2-classified equipment which is rarely used FUNCTIONAL ROLE In addition to the safety functions described in Chapter I.3.2.0, the RCV [CVCS] has the following functions: - to ensure continuous control, in normal operating conditions, of the water inventory of the primary system (RCP [RCS]) by adjusting the charging and letdown flow rates - to ensure the flow rate necessary for chemical control of the primary water, with the system for purification, treatment, degassing and storage of primary water (see auxiliary systems) - to enable adjustment of the chemical characteristics of primary water by injection of chemical reagents in the charging flow - to control the concentration of gas dissolved in the primary system using a degassing system - to control the hydrogen content of the primary system

5 PAGE : 5 / 16 - to inject cooled and purified water into the primary pump seal system (to ensure cooling and leak resistance for each pump) and recover the leaks from the seals - to ensure auxiliary spray in the pressuriser, if normal spray cannot or is not sufficient to fulfil the spray function - to carry out hydraulic tests on the main primary system - to provide a means for filling and emptying the primary system in shutdown conditions - to purify the primary system water at high flow capacity 2.2. APPLICABLE CRITERIA, ASSUMPTIONS AND CHARACTERISTICS The RCV [CVCS] is designed to fulfil the following functions: - control of primary water volume - control of reactivity by adjustment of the boron content - control of chemistry in the primary water (in conjunction with the purification, treatment, degassing and storage system): - injection at primary pump seals - control of hydrogen content - control of oxygen content and ph - purification and filtration - provision of auxiliary spray in the pressuriser The RCV [CVCS] is also used to fill and empty the primary system (RCP [RCS]) in shutdown conditions, and in the hydraulic testing of the main primary system. To fulfil these functions, the RCV [CVCS] bleeds primary fluid via the letdown line and makes-up to the RCP [RCS] via the charging line: - before injection into the RCP [RCS], the primary fluid drained via the letdown line is purified and its chemical characteristics adjusted - make-up of borated water (via the charging line) is performed to ensure the primary system water inventory is maintained and has the same boron content as the letdown fluid - make-up of borated water or boric acid to ensure reactivity control To ensure acceptable reliability of the main functions of the RCV [CVCS], functional redundancy must provide a sufficient flowrate for the letdown and charging functions. The charging function is performed by the charging line and/or by the injection capacity at the seals of the primary pumps.

6 PAGE : 6 / 16 a) Volume control of the primary The RCV [CVCS] helps maintain the primary system water inventory within the acceptable pressuriser level limits in normal operation, during power transients, during start-up of the plant and during heating and cooling transients of the primary. This is achieved by regulating the letdown flow rate, using the volume control tank to supply the primary system with water or to store the excess primary water. The RCV [CVCS] is also able to deliver sufficient make-up (in association with the REA [RBWMS]) to maintain the volume of primary water in the event of a small break in the primary piping. b) Control of reactivity The RCV [CVCS], in conjunction with the REA [RBWMS], controls the boron content of the primary water in order to control reactivity variations due to changes in the temperature of the primary water between cold shutdown and full-power operation, in the burn-up of fuel and burnable poisons, in the accumulation of fission products in the fuel, and in Xenon transients. The RCV [CVCS] may inject borated water from the REA [RBWMS] boric acid tanks or from the IRWST to the primary system until the required boron content is achieved for conditions of cold shutdown or shutdown for refuelling. c) Control of the primary fluid chemistry In conjunction with the purification, treatment, degassing and storage systems of the primary water and with the REA [RBWMS], the RCV [CVCS] controls the chemistry of the primary water and in particular: - the RCV [CVCS] provides the means to control the nature and content of gas dissolved in the primary fluid to avoid explosion and corrosion by accumulation of fission gases - the dissolved hydrogen is used to control the oxygen produced by radiolysis of the water in the core region. A sufficient nitrogen pressure is maintained in the RCV [CVCS] volume control tank to preserve the hydrogen balance concentration required in the primary fluid. The dissolution of hydrogen in the primary fluid is achieved in the RCV [CVCS] low-pressure section at a hydrogenation station - Lithium hydroxide is used to control the ph of the primary fluid at start-up and during subsequent operation d) Injection at primary pump seals The RCV [CVCS] performs continuous injection of cooled and purified water to the seals of each primary pump and recovers leaks from the seals of each primary pump. The water from seals is filtered to ensure the level of cleanliness required by the sealing system of the primary pumps. e) Auxiliary spray of the pressuriser The RCV [CVCS] has an auxiliary spray line to the pressuriser to control primary pressure in the event of failure of normal spray or when primary pressure must be reduced to meet cold shutdown conditions. The auxiliary spray line and each of the main spray lines are separate. It is also used to reduce primary pressure in the event of RTGV [SGTR] (it is not an F1B function). A redundant auxiliary spray function is provided. f) Other functions

7 PAGE : 7 / 16 - the RCV [CVCS] fills and empties the primary system - the RCV [CVCS] supplies water and controls the primary pressure during the first part of the hydraulic test of the main primary system (before being replaced by the test pump belonging to the safety boration system) DESCRIPTION OF FUNCTIONAL DIAGRAMS, FUNCTIONAL CONNECTIONS AND CHARACTERISTICS OF IMPORTANT EQUIPMENT The simplified functional diagram of the RCV [CVCS] is presented in I.3.2. FIG 1 The RCV [CVCS] is designed to maintain a continuous primary fluid letdown and charging flow via a letdown line and a charging line. The letdown line reduces the primary water to pressure and temperature conditions that are compatible with the purification/degassing systems. The RCV [CVCS] is also designed to fulfil the functions of injection into the primary pump seals and auxiliary spray Description of functional diagrams and functional links a) Letdown The letdown line is tapped on the U-shaped leg of the no. 1 cold leg and is equipped with isolation valves close to the primary loops. The letdown is cooled in two stages through the regenerative heat exchanger and one of the high-pressure non-regenerative heat exchangers. The pressure is reduced in a single stage via one of the two high-pressure reduction stations. In normal operation, a single high-pressure nonregenerative heat exchanger and a single high-pressure reduction station are in service. All this equipment is located inside the reactor building. Isolation of the containment is achieved by two motor-driven valves, one inside and one outside the containment. When the RIS/RRA [SIS/RHR] is connected to the primary system, the RIS/RRA [SIS/RHR]-RCV [CVCS] link is opened to take samples of cooled primary fluid, whose pressure is reduced using a low-pressure reduction valve, to ensure continuous purification of the primary water. In the event of non-availability of the RCV [CVCS] in the Fuel Building or in the Auxiliary Nuclear Building, an emergency letdown line is provided downstream of the high-pressure reduction valves with a line for letdown of primary fluid to the IRWST. b) Volume control tank Whenever the primary system is pressurised, the letdown flow goes through the hydrogenation station. Part of the letdown is directed via a by-pass line to the liquid phase of the volume control tank to achieve uniform boron content. During all the operation phases (in operation or at shutdown), the gaseous phase of the volume control tank is nitrogen. When the primary system is depressurised, the RRA [RHR] pumps must ensure sufficient flow in the RCV [CVCS] line to by-pass the volume control tank, the hydrogenation station and the RCV [CVCS] charging pumps. In normal operation, the flow is directed towards the purification station and if necessary to the degassing station. In the event of high level in the RCV [CVCS] volume control tank, the fluid is directed towards the primary effluent treatment system (TEP [CSTS]).

8 PAGE : 8 / 16 Provided the volume control tank level remains within its normal operating range, the charging pumps draw partly from the hydrogenation station and partly from the volume control tank. The REA [RBWMS] performs make-up upstream of the hydrogenation station and of the volume control tank. The volume control tank is protected from excess pressure by a pressure safety valve located downstream of the tank. c) Charging function The charging pumps are supplied with cooled and purified water with a hydrogen content at the required level. Additional lines allow suction from the IRWST in the event of low levels in the volume control tank. In this case, the hydrogenation station and the volume control tank are automatically isolated. Downstream of the charging pumps, the RCV [CVCS] flow is divided into the charging flow via the charging regulation valve, the seal injection flow, and if necessary, the miniflow of the charging pumps via the automatic checkvalves of the miniflow line. These valves automatically position their disk according to the main flow rate. If minimal flow rate conditions occur, the recirculation flow is implemented to avoid over-heating of the pump. The charging flow is heated in the regenerative heat exchanger and directed towards two primary cold legs. At cold shutdown the charging flow is directed via the auxiliary spray line to the pressuriser. The pressuriser may thus be cooled/depressurised at the desired rate when normal spray is unavailable (in particular at cold shutdown and in the event of RTGV [SGTR]). d) Injection at primary pump seals and leaks Part of the flow of the RCV [CVCS] charging pumps is directed towards the primary pumps after filtering. The seal leak recovery line (single line) for each pump is equipped with a filter and a regulation valve in order to maintain sufficient pressure in this line to avoid degassing of the hydrogen Characteristics of major equipment All parts of the RCV [CVCS] (piping, valves and components) in contact with the primary fluid are made of austenitic stainless steel. To avoid primary water leaks, all pipe couplings and connections are welded except when flanges are required to facilitate dismantling of equipment for maintenance or pressure tests. Regenerative heat exchanger The regenerative heat exchanger is designed to recover the heat from the letdown flow and heat the charging flow. The letdown flow rate considered for thermal sizing of the heat exchanger is the maximum letdown flow rate during heating of the primary system with one or two RCV [CVCS] charging pumps in operation. High-pressure heat exchangers

9 PAGE : 9 / 16 These letdown heat exchangers use the component cooling system (RRI [CCWS]) to cool the letdown flow to a temperature acceptable to the demineraliser resins. Each high-pressure heat exchanger is able to cool all the letdown fluid pre-cooled through the regenerative heat exchanger, in both normal operation and during cooling of the primary system. The high-pressure heat exchangers are designed as 2x50%, to accommodate heat-up of the primary and the high purification/degassing flow rate in hot shutdown conditions. The high-pressure heat exchangers and the regenerative heat exchanger are designed to enable letdown flow without charging (with a limited letdown flow) and charging without letdown flow. The primary fluid flows through the heat exchanger tube side while the cold fluid (RRI [CCWS]) flows through the shell side. Each high-pressure heat exchanger is equipped with two rupture disks (upstream/downstream) in order to protect the RRI [CCWS] from the pressure wave in the event of rupture of a heat exchanger tube. Using the information passed to the control room (activity measurements, temperature and flow rate measurements, RRI [CCWS] tank level measurements), the operator may identify and isolate the defective heat exchanger. High pressure reducing stations The pressure reducing stations are designed to reduce pressure to a level compatible with the design pressure values for purification and treatment. It is possible to operate the two pressure reducing stations at the same time. The pressuriser level is controlled by the high pressure reducing stations. Volume control tank - the volume control tank provides the pressuriser surge capacity: expansion volume due to power increase not included in the pressuriser level setpoints - its volume must be sufficient to ensure continuous flow rate at suction of the charging pump before automatic switch to suction from the IRWST in the event of loss of the letdown flow - it must ensure correct operation of the automatic make-up of the REA [RBWMS] - in normal operation, the gaseous phase of the volume control tank is made up of nitrogen at a pressure of about 2.7 bar, - the tank is connected to the gaseous effluent treatment system (TEG [GWPS]) and to the nitrogen distribution system. The fission gases and the hydrogen are removed from the tank by venting of the gaseous phase to the TEG [CCWS]. Charging pumps - the charging flow rate must be sufficient to offset the following: - the letdown flow rate during normal operation of the plant, load follow operation and controlled cooldown transients; operation of the two charging pumps at the same time is possible - the loss of inventory due to a limited leak - the charging pumps are vertical-axis, multi-stage centrifugal pumps There is a minimum flow rate line to protect the pump

10 PAGE : 10 / 16 Relief valves Safety relief valves are installed on lines and components whose pressure may exceed the design pressure following an incorrect operator action or component malfunction. Each valve must have a capacity equal to the maximum flow rate through the protected line and its setpoint pressure must be equal to the maximum allowed line pressure OPERATING CONDITIONS a) Normal operation General Normal operation of the RCV [CVCS] corresponds to normal operation of the plant: base-load operation and load follow operation. In normal operation, the RCV [CVCS] configuration is as follows: part of the primary fluid flows through the letdown line, the low-pressure RIS/RRA [SIS/RHR]-RCV [CVCS] letdown line being isolated. The regenerative heat exchanger, a high-pressure heat exchanger, a high pressure reduction station and a charging pump are in operation. The letdown fluid is routed outside the reactor building to the purification plant and hydrogenation station. The primary fluid is returned to the primary system via the normal charging line. The seal injection flow to the primary pumps passes though a filter. The auxiliary spray system is isolated. During normal operation of the plant, the RCV [CVCS] fulfils the following functions: volume control, chemical control, purification of the primary fluid. Volume control In normal operation, the mass of coolant in the primary system is kept constant by regulation of the letdown flow with a constant charging flow. According to the plant power level, the primary fluid expands or contracts when its temperature rises or falls. The pressuriser absorbs these expansions or contractions, if the level setpoint changes within limits according to the power level. When the volume control tank level exceeds the upper level, part of the letdown flow is diverted to the TEP [CSTS]. When the extreme upper level is reached, the entire letdown flow is diverted to the TEP [CSTS]. When the charging flow rate is higher than the letdown flow rate, the volume control tank level may reach the lower level, which triggers automatic make-up from the REA [RBWMS]. If this action is insufficient and/or inoperable, a very low level causes the charging pump suction to switch to the IRWST (this is not normal operation). Control of reactivity

11 PAGE : 11 / 16 If power variations arise and the new power level is maintained for long periods, adjustment of the boron content may be required to offset the xenon transient and ensure a sufficient shutdown margin. This adjustment is performed by injecting borated or demineralised water from the REA [RBWMS] via the RCV [CVCS]. Chemical control The purification system can be used provided the letdown fluid temperature downstream of the heat exchangers remains below 60 C. If the temperature exceeds 60 C, the purification station is automatically by-passed. Lithium hydroxide is added by an injection mechanism linked to the charging pump suction to control the ph of the primary fluid. Lithium hydroxide is removed from the system by one of the mixed-bed demineralisers when the plant is in normal operation. The hydrogen content of the primary fluid is controlled by the hydrogenation station, located on the low-pressure section of the RCV [CVCS], upstream of the charging pumps. The oxygen produced by water radiolysis is also scavenged by adding hydrogen to the primary system. b) Cold shutdown During cold shutdown, normal letdown flow through the regenerative heat exchanger and one or two high-pressure heat exchangers operates until the final depressurisation of the pressuriser performed by the auxiliary spray. Provided the primary pressure is greater than 25 bar, the RIS/RRA [SIS/RHR]-RCV [CVCS] connection does not need to be open. When the last primary pump is stopped, the high-pressure heat exchangers are isolated and the letdown flow is directed from the RRA [RHR] heat exchangers to the RCV [CVCS] low pressure reduction station and the letdown portion of the RCV [CVCS] (hydrogenation station and volume control tank). Although the letdown flow goes through the hydrogenation station, no hydrogenation is performed in this plant state. Part of the flow is directed to the volume control tank. From there, the fluid is reinjected into the primary system by the normal charging line (charging pumps in service). The charging flow goes through the regenerative heat exchanger and is then injected towards the charging nozzles when at least one primary pump is operating. Otherwise, the charging flow goes through the auxiliary spray valve when primary pressure reaches 5 bar (when the pressuriser is cooled). During operation at ¾ loop, the system for regulating the level in the primary loops acts on the RCV [CVCS] low-pressure letdown flow regulation valve to provide a sufficient level of water for operation of the ISBP [LHSI] pumps. When the minimum level in the primary loops is reached, letdown is isolated. c) Hot Shutdown The RCV [CVCS] operates as during normal operation. According to purification/degassing needs, the RCV [CVCS] letdown flow may be increased. Depending on the duration of the hot shutdown, it may be necessary to adjust boron content to take account of xenon transients. d) Start-up of the plant The initial conditions of the plant before start-up are as follows: - the primary system is cold and depressurised - the boron content of the primary system is at the cold shutdown value - the RRA [RHR] function is active

12 PAGE : 12 / 16 - the RCV [CVCS] is filled with coolant with a boron content corresponding to that of cold shutdown - the low-pressure reduction valve on the RIS/RRA [SIS/RHR]-RCV [CVCS] line is in service During start-up of the plant, the RCV [CVCS] is used for the following: - filling the primary circuit - providing the required injection flow into the primary pump seals - controlling the volume and chemistry of the primary fluid during the primary heatup Degassing of the primary system is achieved via the RCV [CVCS] by diverting the letdown flow to the TEP [CSTS] to remove the oxygen (mainly after refuelling) from the RCP [RCS]. Heating of the primary system is achieved using the primary pumps. Before the primary temperature reaches 120 C, Lithium hydroxide is added to the charging pump suction to control the ph of the primary fluid. When the chemical characteristics of the primary fluid satisfy the prescribed chemical values, the volume control tank may be placed under a nitrogen blanket, ensuring the hydrogen content of the primary fluid and thus controlling the dissolved oxygen content during power operation. During heatup and pressurisation of the pressuriser, the RIS/RRA [SIS/RHR]-RCV [CVCS] connection is opened when the RIS/RRA [SIS/RHR] is connected in RRA [RHR] mode to the primary system. When the primary pressure is above 25 bar, the RIS/RRA [SIS/RHR]-RCV [CVCS] connection is isolated and the letdown flow goes via the normal letdown system. As the primary system pressure increases, the pressuriser pressure is regulated using the pressuriser heaters and the auxiliary spray; when the primary pumps are operating, the main spray operates. Assuming that a heatup rate of 25 C/hr is taken for the thermal sizing of the RCV [CVCS] heat exchangers, the excess letdown fluid resulting from expansion of the primary system is directed towards the TEP [CSTS]. During the entire start-up phase, the pressuriser contains a steam bubble and the water level is maintained at its setpoint value. The seal injection flow rate is maintained at 4 x 1.8 tonne/hr during this phase. e) Switch from hot shutdown conditions to hot standby conditions. The concentration of boric acid in the primary system is reduced in order to reach reactor criticality conditions. Dilution is performed by the REA [RBWMS] via the RCV [CVCS]. f) Plant shutdown After insertion of the control rods and during the cooldown and depressurisation of the RCP [RCS], the boron content of the primary fluid is increased according to the final plant state to be reached. The REA [RBWMS] supplies borated fluid to the RCV [CVCS] to offset the contraction of the primary fluid and minimise waste. In addition, the primary fluid is degassed to eliminate the fission gases and decrease the hydrogen content. This operation is performed by diverting the letdown flow to the TEP [CSTS] degasser.

13 PAGE : 13 / 16 g) Cooldown of the reactor The initial cooldown is performed with the steam generators and the turbine by-pass system. To preserve a minimum letdown flow rate for purification/degassing and the level required in the pressuriser with a cooling rate of 50 C/hr, it is necessary to offset the contraction of the primary fluid using both RCV [CVCS] charging pumps. When the temperature of the primary system reaches about 120 C, the RIS/RRA [SIS/RHR] is connected in RRA [RHR] mode to the primary system and cooling is performed via the RIS/RRA heat exchangers. When the temperature downstream of the RIS/RRA [SIS/RHR] heat exchangers is low enough and the primary pressure is falling, the high pressure reduction stations may be isolated and the RIS/RRA [SIS/RHR]-RCV [CVCS] connection is opened. Depressurisation of the primary system is carried out using auxiliary spray, diverting part of the RCV [CVCS] charging flow rate to the pressuriser. After final depressurisation of the RCP [RCS], the RCV [CVCS] pumps may be stopped and bypassed. Injection at seal no. 1 of the primary pumps is performed by the ISBP [LHSI] pumps via the purification line when this is necessary PRELIMINARY SAFETY ANALYSIS Brief description of Safety functions The RCV [CVCS] is involved in the following safety functions: The containment is isolated by F1A-classified valves. The containment penetrations of the letdown line and the seal leak return line are each isolated by automatic closure of two motordriven valves: one in the reactor building and the other in the fuel building. The containment is isolated on the charging line and on the RCP seal no. 1 injection line by a motor-driven valve located in the fuel building and by a check valve located in the reactor building, ensuring redundancy of the containment isolation. The possible sources of dilution from the RCV [CVCS] and the auxiliary systems connected upstream of the volume control tank and the hydrogenation station are isolated by F1 means and charging pump suction switches to the IRWST. A boron meter station (four boron content measurements) at the discharge of the charging pumps on a shared section of the charging line and the GMMP [RCP] seal no. 1 injection line is used to detect dilution. This boron meter station is F1-classified. The methods for isolating the RCV [CVCS] from the primary system are part of the isolation of the main primary system pressure boundary. This part of the RCV [CVCS] is therefore F1- classified. If a very high SG level is reached (in the case of SGTR), the charging line will receive an automatic closing signal to avoid overfill and abnormal pressurisation of the SGs. The RCV [CVCS] may be used for borated water make-up during bleed and feed operation following total loss of the feedwater.

14 PAGE : 14 / 16 The following functions of the RCV [CVCS] are F1-classified: - isolation of the containment isolation of the RCPB limitations of the consequences of homogeneous boron dilution charging isolation on very high GV [SG] level Compliance with design requirements Safety classification The compliance of design and manufacture of materials and equipment with requirements derived from classification rules is detailed in Chapter C CDU [SFC] or redundancy The single failure criterion (active or passive) is not applicable, except for the parts of the system involved in F1 functions. However, functional redundancy of the charging function is achieved to offset the lost availability of an active component of the corresponding systems. This means that the charging pumps, boric acid supply and the corresponding active valves are redundant for the boration function Qualification The equipment is qualified in accordance with the requirements described in Chapter C Instrumentation and control The compliance of design and manufacture of instrumentation and control with requirements derived from classification rules is detailed in Chapter C Backed up electrical supplies The electrical powering of active charging and letdown components is supplied by independent trains backed up by diesels Hazards The rules and criteria for protection against internal and external hazards are established in the corresponding paragraphs (see Chapters C.3 and C.4). Internal hazards and their protection principles with corresponding failure assumptions are described in Chapter C.4. Inside or outside the containment, protective mechanisms are needed if the RCV [CVCS] high-energy pipes can cause major damage to safety systems or to the containment. The equipment that can accumulate radioactive material (filters, related piping) is located in compartments with restricted access and radiological protection.

15 PAGE : 15 / 16 Physical and electrical separation are implemented when actuators linked to a safety function (e.g.: primary break without safety injection signal) are located and supplied within one division. For example: the volume control tank requires two isolation valves and each valve is installed in a different building; one in fuel building 1 and the other in fuel building 2. They are also powered from different electrical trains. Based on the same principle, two redundant isolation valves are installed in parallel to preserve the water inventory of the IRWST in the event of CPP [RCPB] rupture without a IS [SI] signal Other requirements This system is examined in the demonstration of the practical elimination of the risk of containment bypasses (see Chapter R.1) SPECIFIC TEST PROVISIONS Within the framework of plant operation, periodic tests, surveillance controls and instrument calibration are performed to monitor the state and performance of equipment. Most components are used regularly, thus the assurance of their availability and performance of the system and equipment is given by the control room and/or local indicators FUNCTIONAL DIAGRAM See I.3.2 FIG 1: simplified functional diagram of the RCV [CVCS]

16 FIGURE : 1 PAGE :16 / 16 FIG 1: SIMPLIFIED FUNCTIONAL DIAGRAM OF THE RCV [CVCS]

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER F: CONTAINMENT AND SAFEGUARD SYSTEMS 7. CONTAINMENT HEAT REMOVAL SYSTEM (EVU [CHRS])

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER F: CONTAINMENT AND SAFEGUARD SYSTEMS 7. CONTAINMENT HEAT REMOVAL SYSTEM (EVU [CHRS]) PAGE : 1 / 16 7. CONTAINMENT HEAT REMOVAL SYSTEM (EVU [CHRS]) 7.0. SAFETY REQUIREMENTS 7.0.1. Safety functions The main functions of the EVU system [CHRS] are to limit the pressure inside the containment

More information

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER P: REFERENCE OPERATING CONDITION STUDIES (PCC)

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER P: REFERENCE OPERATING CONDITION STUDIES (PCC) PAGE : 1 / 11 1. PASSIVE SINGLE FAILURE ANALYSIS The aim of the accident analysis in Chapter P is to demonstrate that the safety objectives have been fully achieved, despite the most adverse single failure.

More information

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER I: AUXILIARY SYSTEMS. A high-capacity EBA system [CSVS] [main purge]

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER I: AUXILIARY SYSTEMS. A high-capacity EBA system [CSVS] [main purge] PAGE : 1 / 9 5. CONTAINMENT PURGE (EBA [CSVS]) The Reactor Building purge system comprises the following: A high-capacity EBA system [CSVS] [main purge] A low-capacity EBA system [CSVS] [mini-purge] 5.1.

More information

DISTRIBUTION LIST. Preliminary Safety Report Chapter 7 Safety Systems UK HPR1000 GDA. GNS Executive. GNS all staff. GNS and BRB all staff CGN EDF

DISTRIBUTION LIST. Preliminary Safety Report Chapter 7 Safety Systems UK HPR1000 GDA. GNS Executive. GNS all staff. GNS and BRB all staff CGN EDF Rev: 000 Page: 2 / 82 DISTRIBUTION LIST Recipients GNS Executive GNS all staff Cross Box GNS and BRB all staff CGN EDF Regulators Public Rev: 000 Page: 3 / 82 SENSITIVE INFORMATION RECORD Section Number

More information

UKEPR Issue 04

UKEPR Issue 04 Title: PCSR Sub-chapter 6.8 Main steam relief train system - VDA [MSRT] Total number of pages: 16 Page No.: I / III Chapter Pilot: M. LACHAISE Name/Initials Date 25-06-2012 Approved for EDF by: A. PETIT

More information

CONTENTS OF THE PCSR CHAPTER 1 - INTRODUCTION AND GENERAL DESCRIPTION

CONTENTS OF THE PCSR CHAPTER 1 - INTRODUCTION AND GENERAL DESCRIPTION PAGE : 1 / 8 CONTENTS OF THE PCSR CHAPTER 1 - INTRODUCTION AND GENERAL DESCRIPTION SUB-CHAPTER 1.1 INTRODUCTION SUB-CHAPTER 1.2 GENERAL DESCRIPTION OF THE UNIT SUB-CHAPTER 1.3 COMPARISON WITH REACTORS

More information

Engineering & Projects Organization

Engineering & Projects Organization Engineering & Projects Organization Note from : Date: 11/09/2012 To : Copy : N : PEPR-F.10.1665 Rev. 3 Subject: EPR UK - GDA GDA issue FS04 Single Tube Steam Generator Tube Rupture Analysis for the UK

More information

UKEPR Issue 04

UKEPR Issue 04 Title: PCSR Sub-chapter 14.2 Analysis of the Passive Single Failure Total number of pages: 53 Page No.: I / IV Chapter Pilot: F. CERRU Name/Initials Date 12-11-2012 Approved for EDF by: A. MARECHAL Approved

More information

ANNEX AMENDMENTS TO THE INTERNATIONAL CODE FOR FIRE SAFETY SYSTEMS (FSS CODE) CHAPTER 15 INERT GAS SYSTEMS

ANNEX AMENDMENTS TO THE INTERNATIONAL CODE FOR FIRE SAFETY SYSTEMS (FSS CODE) CHAPTER 15 INERT GAS SYSTEMS Annex 3, page 2 ANNEX AMENDMENTS TO THE INTERNATIONAL CODE FOR FIRE SAFETY SYSTEMS (FSS CODE) CHAPTER 15 INERT GAS SYSTEMS The text of existing chapter 15 is replaced by the following: "1 Application This

More information

UKEPR Issue 01

UKEPR Issue 01 Title: PCSR Appendix 14C Analysis of single failure for main steam line break Total number of pages: 93 Page No.: I / IV Chapter Pilot: F. CERRU Name/Initials Date 26-07-2012 Approved for EDF by: A. PETIT

More information

AP1000 European 19. Probabilistic Risk Assessment Design Control Document

AP1000 European 19. Probabilistic Risk Assessment Design Control Document APPENDIX 19E SHUTDOWN EVALUATION 19E.1 Introduction Westinghouse has considered shutdown operations in the design of the A1000 nuclear power plant. The AP1000 defense-in-depth design philosophy to provide

More information

The Nitrogen Threat. The simple answer to a serious problem. 1. Why nitrogen is a risky threat to our reactors? 2. Current strategies to deal with it.

The Nitrogen Threat. The simple answer to a serious problem. 1. Why nitrogen is a risky threat to our reactors? 2. Current strategies to deal with it. International Conference on Topical Issues in Nuclear Installation Safety: Safety Demonstration of Advanced Water Cooled Nuclear Power Plants. The simple answer to a serious problem Vienna. 6 9 June 2017

More information

OIL SUPPLY SYSTEMS ABOVE 45kW OUTPUT 4.1 Oil Supply

OIL SUPPLY SYSTEMS ABOVE 45kW OUTPUT 4.1 Oil Supply OIL SUPPLY SYSTEMS ABOVE 45kW OUTPUT 4.1 Oil Supply 4.1.1 General The primary function of a system for handling fuel oil is to transfer oil from the storage tank to the oil burner at specified conditions

More information

ASVAD THE SIMPLE ANSWER TO A SERIOUS PROBLEM. Automatic Safety Valve for Accumulator Depressurization. (p.p.)

ASVAD THE SIMPLE ANSWER TO A SERIOUS PROBLEM. Automatic Safety Valve for Accumulator Depressurization. (p.p.) ASVAD Automatic Safety Valve for Accumulator Depressurization (p.p.) THE SIMPLE ANSWER TO A SERIOUS PROBLEM International Experts Meeting on Strengthening Research and Development Effectiveness in the

More information

SHUTDOWN SYSTEMS: SDS1 AND SDS2

SHUTDOWN SYSTEMS: SDS1 AND SDS2 Chapter 12 SHUTDOWN SYSTEMS: SDS1 AND SDS2 12.1 INTRODUCTION Up to this point we have looked with great details at the reactor regulating system. In order to better understand the overall design of a CANDU

More information

EMERGENCY CORE COOLING SYSTEM SIMPLIFICATION

EMERGENCY CORE COOLING SYSTEM SIMPLIFICATION EMERGENCY CORE COOLING SYSTEM SIMPLIFICATION XA9846601 R.S. HART Sheridan Park Research Community, Atomic Energy of Canada Ltd, Mississauga, Ontario D.B. RHODES Chalk River Laboratories, Atomic Energy

More information

NOT PROTECTIVELY MARKED. REDACTED PUBLIC VERSION HPC PCSR3 Sub-chapter 16.2 PSA Results and Discussion NNB GENERATION COMPANY (HPC) LTD

NOT PROTECTIVELY MARKED. REDACTED PUBLIC VERSION HPC PCSR3 Sub-chapter 16.2 PSA Results and Discussion NNB GENERATION COMPANY (HPC) LTD HPC PCSR3 Sub-chapter 16.2 PSA Results and Discussion Page No.: i / iii NNB GENERATION COMPANY (HPC) LTD HPC PCSR3: CHAPTER 16 PROBABILISTIC SAFETY ASSESSMENT SUB-CHAPTER 16.2 PSA RESULTS AND DISCUSSION

More information

THE NITROGEN INJECTION THREAT IN PWR REACTORS

THE NITROGEN INJECTION THREAT IN PWR REACTORS THE NITROGEN INJECTION THREAT IN PWR REACTORS Weakness of current strategies & ASVAD, the new passive solution. Arnaldo Laborda Rami ASVAD INTL. SL (SPAIN) Tarragona (SPAIN) Email: alaborda@asvad-nuclear.com

More information

Loss of Normal Feedwater Analysis by RELAP5/MOD3.3 in Support to Human Reliability Analysis

Loss of Normal Feedwater Analysis by RELAP5/MOD3.3 in Support to Human Reliability Analysis Loss of Normal Feedwater Analysis by RELAP5/MOD3.3 in Support to Human Reliability Analysis ABSTRACT Andrej Prošek, Borut Mavko Jožef Stefan Institute Jamova cesta 39, SI-1 Ljubljana, Slovenia Andrej.Prosek@ijs.si,

More information

NORMAL OPERATING PROCEDURES Operating Parameter Information

NORMAL OPERATING PROCEDURES Operating Parameter Information Operating Parameter Information Each operator performing the normal operating procedures (routine checks) of the facility should be familiar with the current normal operating parameters of all systems

More information

TSS21 Sealed Thermostatic Steam Tracer Trap

TSS21 Sealed Thermostatic Steam Tracer Trap 1255050/4 IM-P125-10 ST Issue 4 TSS21 Sealed Thermostatic Steam Tracer Trap Installation and Maintenance Instructions 1. Safety information 2. General product information 3. Installation 4. Commissioning

More information

-. 30ýv. Entergy ARKANSAS NUCLEAR ONE - UNIT I IMPROVED TECHNICAL SPECIFICATIONS SUBMITTAL. 05/01101 Supplement Volume 2 of 2. (Sections 3.7 and 3.

-. 30ýv. Entergy ARKANSAS NUCLEAR ONE - UNIT I IMPROVED TECHNICAL SPECIFICATIONS SUBMITTAL. 05/01101 Supplement Volume 2 of 2. (Sections 3.7 and 3. ARKANSAS NUCLEAR ONE - UNIT I IMPROVED TECHNICAL SPECIFICATIONS SUBMITTAL -. 30ýv May 1, 2001 05/01101 Supplement Volume 2 of 2 (Sections 3.7 and 3.8) Entergy MSSVs 3.7.1 3.7 PLANT SYSTEMS 3.7.1 Main Steam

More information

Custom-Engineered Solutions for the Nuclear Power Industry from SOR

Custom-Engineered Solutions for the Nuclear Power Industry from SOR Custom-Engineered Solutions for the Nuclear Power Industry from SOR As the world s aging nuclear power plants continue to be challenged with maintenance and Instrumentation Solutions for the Nuclear Power

More information

IAEA SAFETY STANDARDS for protecting people and the environment

IAEA SAFETY STANDARDS for protecting people and the environment Date: 2016-08-31 IAEA SAFETY STANDARDS for protecting people and the environment STATUS: STEP 8a For Submission to Member States DESIGN OF REACTOR CONTAINMENT STRUCTURE AND SYSTEMS FOR NUCLEAR POWER PLANTS

More information

OPERATING PROCEDURES

OPERATING PROCEDURES OPERATING PROCEDURES 1.0 Purpose This element identifies Petsec s Operating Procedures for its Safety and Environmental Management System (SEMS) Program; it applies to all Petsec operations. Petsec is

More information

Profile LFR-43 HELENA ITALY. Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone, Italy

Profile LFR-43 HELENA ITALY. Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone, Italy Profile LFR-43 HELENA ITALY GENERAL INFORMATION NAME OF THE FACILITY ACRONYM COOLANT(S) OF THE FACILITY LOCATION (address): OPERATOR CONTACT PERSON (name, address, institute, function, telephone, email):

More information

Nuclear safety Lecture 4. The accident of the TMI-2 (1979)

Nuclear safety Lecture 4. The accident of the TMI-2 (1979) Nuclear safety Lecture 4. The accident of the TMI-2 (1979) Ildikó Boros BME NTI 27 February 2017 The China Syndrome Opening: 16 March 1979 Story: the operator of the Ventana NPP tries to hide the safety

More information

IAEA SAFETY STANDARDS for protecting people and the environment

IAEA SAFETY STANDARDS for protecting people and the environment IAEA SAFETY STANDARDS for protecting people and the environment DESIGN OF REACTOR CONTAINMENT STRUCTURE AND SYSTEMS FOR NUCLEAR POWER PLANTS DRAFT SAFETY GUIDE DS 482 STATUS: STEP 11 Submission to Review

More information

LP Separator Level Control by Variable Speed and Multi Stage Brine Reinjection Pumps at Kawerau and Nga Awa Purua Geothermal Projects, New Zealand

LP Separator Level Control by Variable Speed and Multi Stage Brine Reinjection Pumps at Kawerau and Nga Awa Purua Geothermal Projects, New Zealand Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 LP Separator Level Control by Variable Speed and Multi Stage Brine Reinjection Pumps at Kawerau and Nga Awa Purua Geothermal

More information

An Improved Modeling Method for ISLOCA for RI-ISI and Other Risk Informed Applications

An Improved Modeling Method for ISLOCA for RI-ISI and Other Risk Informed Applications An Improved odeling ethod for ISLOCA for RI-ISI and Other Risk Informed Applications Young G. Jo 1) 1) Southern Nuclear Operating Company, Birmingham, AL, USA ABSTRACT In this study, an improved modeling

More information

SENSITIVITY ANALYSIS OF THE FIRST CIRCUIT OF COLD CHANNEL PIPELINE RUPTURE SIZE FOR WWER 440/270 REACTOR

SENSITIVITY ANALYSIS OF THE FIRST CIRCUIT OF COLD CHANNEL PIPELINE RUPTURE SIZE FOR WWER 440/270 REACTOR PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Mathematical Sciences 216, 2, p. 57 62 P h y s i c s SENSITIVITY ANALYSIS OF THE FIRST CIRCUIT OF COLD CHANNEL PIPELINE RUPTURE SIZE FOR WWER 44/27

More information

FLUID POWER FLUID POWER EQUIPMENT TUTORIAL ACCUMULATORS. This work covers part of outcome 2 of the Edexcel standard module:

FLUID POWER FLUID POWER EQUIPMENT TUTORIAL ACCUMULATORS. This work covers part of outcome 2 of the Edexcel standard module: FLUID POWER FLUID POWER EQUIPMENT TUTORIAL ACCUMULATORS This work covers part of outcome 2 of the Edexcel standard module: UNIT 21746P APPLIED PNEUMATICS AND HYDRAULICS The material needed for outcome

More information

A Rationale for Pressure Relief Device(s) Qualification Requirements (LH2)

A Rationale for Pressure Relief Device(s) Qualification Requirements (LH2) UN-GTR PART A INSERTION Stand 09.02.2011, 17:20 Uhr A.3.3 HYDROGEN STORAGE SYSTEM The hydrogen storage system consists of all components that form the primary pressure boundary of the stored hydrogen in

More information

UKEPR Issue 05

UKEPR Issue 05 Title: PCSR Sub-chapter 10.5 Integrity of the main steam lines inside and outside the containment Total number of pages: 13 Page No.: I / III Chapter Pilot: M. LACHAISE Name/Initials Date 31-10-2012 Approved

More information

RESOLUTION A.567(14) adopted on 20 November 1985 REGULATION FOR INERT GAS SYSTEMS ON CHEMICAL TANKERS

RESOLUTION A.567(14) adopted on 20 November 1985 REGULATION FOR INERT GAS SYSTEMS ON CHEMICAL TANKERS INTERNATIONAL MARITIME ORGANIZATION A 14/Res.567 16 January 1986 Original: ENGLISH ASSEMBLY - 14th session Agenda item lo(b) IMO RESOLUTION A.567(14) adopted on 20 November 1985 THE ASSEMBLY, RECALLING

More information

Installation of Ballast Water Management Systems

Installation of Ballast Water Management Systems (Sept 2015) (Rev.1 May 2016) Installation of Ballast Water Management Systems 1. Application In addition to the requirements contained in BWM Convention (2004), the following requirements are applied to

More information

DISTRIBUTION LIST. Preliminary Safety Report Chapter 19 Internal Hazards UK HPR1000 GDA. GNS Executive. GNS all staff. GNS and BRB all staff CGN EDF

DISTRIBUTION LIST. Preliminary Safety Report Chapter 19 Internal Hazards UK HPR1000 GDA. GNS Executive. GNS all staff. GNS and BRB all staff CGN EDF Rev: 000 Page: 2 / 20 DISTRIBUTION LIST Recipients GNS Executive GNS all staff Cross Box GNS and BRB all staff CGN EDF Regulators Public Rev: 000 Page: 3 / 20 SENSITIVE INFORMATION RECORD Section Number

More information

Office for Nuclear Regulation

Office for Nuclear Regulation Generic Design Assessment New Civil Reactor Build GDA Close-out for the EDF and AREVA UK EPR Reactor GDA Issue GI-UKEPR-FS-02 Diversity for Frequent Faults Assessment Report: ONR-GDA-AR-12-011 March 2013

More information

HEALTH AND SAFETY EXECUTIVE HM NUCLEAR INSTALLATIONS INSPECTORATE

HEALTH AND SAFETY EXECUTIVE HM NUCLEAR INSTALLATIONS INSPECTORATE HEALTH AND SAFETY EXECUTIVE HM NUCLEAR INSTALLATIONS INSPECTORATE New Reactor Generic Design Assessment (GDA) - Step 2 Preliminary Review Assessment of: Structural Integrity Aspects of AREVA/EdF EPR HM

More information

Maintenance handbook

Maintenance handbook Maintenance handbook ontents HPU IDENTIFIATION SHEET... 4 1. MAINTENANE... 5 1.1 Filling level... 5 1.2 Fluid top-up... 5 1.3 Fluid replacing... 5 1.4 Fluid temperature control... 6 1.5 Functional control...

More information

Digester Processes. 1. Raw Sludge Pumping System

Digester Processes. 1. Raw Sludge Pumping System Digester Processes 1. Raw Sludge Pumping System Removes accumulated sludge from the primary clarifiers, pumped through 1 of 2 pipes either 150 or 200mm in diameter (Fig. 1.1). Fig 1.1 Pipes feeding Digesters

More information

Ranking of safety issues for

Ranking of safety issues for IAEA-TECDOC-640 Ranking of safety issues for WWER-440 model RANKING OF SAFETY ISSUES FOR WWER-440 MODEL PLEASE BE AWARE THAT ALL OF THE MISSING PAGES IN THIS DOCUMENT WERE ORIGINALLY BLANK RANKING OF SAFETY

More information

Unit 24: Applications of Pneumatics and Hydraulics

Unit 24: Applications of Pneumatics and Hydraulics Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 9 ACCUMULATORS The material needed for outcome 2 is very extensive so there are

More information

F All types of inert gas systems are to comply with the following:

F All types of inert gas systems are to comply with the following: (1974) (Rev.1 1983) (Rev.2 1987) (Rev.3 May 1998) (Corr. Sept 2001) (Rev.4 May 2004) (Rev.5 Nov 2005) (Rev.6 May 2012) (Rev.7 May 2015) Inert Gas Systems.1 General Requirements.1.1 All types of inert gas

More information

Copyright, 2005 GPM Hydraulic Consulting, Inc.

Copyright, 2005 GPM Hydraulic Consulting, Inc. Troubleshooting and Preventive Maintenance of Hydraulic Systems Learning to Read the Signs of Future System Failures Instructed by: Al Smiley & Alan Dellinger Copyright, 2005 GPM Hydraulic Consulting,

More information

METHOD 21 - DETERMINATION OF VOLATILE ORGANIC COMPOUND LEAKS. 1.2 Scope. This method is applicable for the

METHOD 21 - DETERMINATION OF VOLATILE ORGANIC COMPOUND LEAKS. 1.2 Scope. This method is applicable for the 1151 METHOD 21 - DETERMINATION OF VOLATILE ORGANIC COMPOUND LEAKS 1.0 Scope and Application. 1.1 Analytes. Analyte Volatile Organic Compounds (VOC) CAS No. No CAS number assigned 1.2 Scope. This method

More information

SAFETY APPROACHES. The practical elimination approach of accident situations for water-cooled nuclear power reactors

SAFETY APPROACHES. The practical elimination approach of accident situations for water-cooled nuclear power reactors SAFETY APPROACHES The practical elimination approach of accident situations for water-cooled nuclear power reactors 2017 SUMMARY The implementation of the defence in depth principle and current regulations

More information

Verification and validation of computer codes Exercise

Verification and validation of computer codes Exercise IAEA Safety Assessment Education and Training (SAET) Programme Joint ICTP- IAEA Essential Knowledge Workshop on Deterministic Safety Assessment and Engineering Aspects Important to Safety Verification

More information

Review and Assessment of Engineering Factors

Review and Assessment of Engineering Factors Review and Assessment of Engineering Factors 2013 Learning Objectives After going through this presentation the participants are expected to be familiar with: Engineering factors as follows; Defense in

More information

Spiratec ST14, ST16 and ST17 Sensor Chambers and sensors

Spiratec ST14, ST16 and ST17 Sensor Chambers and sensors 0862050/1 IM-P086-18 MI Issue 1 Spiratec ST14, ST16 and ST17 Sensor Chambers and sensors Installation and Maintenance Instructions 1. Safety Information 2. General product information 3. Installation 4.

More information

Considerations for the Practical Application of the Safety Requirements for Nuclear Power Plant Design

Considerations for the Practical Application of the Safety Requirements for Nuclear Power Plant Design Considerations for the Practical Application of the Safety Requirements for Nuclear Power Plant Design Joint ICTP-IAEA Essential Knowledge Workshop on Deterministic Safety Analysis and Engineering Aspects

More information

Spirax Compact FREME Flash Recovery Energy Management Equipment

Spirax Compact FREME Flash Recovery Energy Management Equipment IM-UK-cFREME UK Issue 1 Spirax Compact FREME Flash Recovery Energy Management Equipment Installation and Maintenance Instructions 1. Safety information 2. General product information 3. Installation 4.

More information

Safety in Petroleum Industry

Safety in Petroleum Industry Chemical ( Industrial ) Disaster Management Conference, Bangalore 30 January 2014 Safety in Petroleum Industry Refineries and Petrochemical plants are highly energyintensive Handle highly inflammable and

More information

Dry Gas Seal Rack CH-3185 Schmitten Tel Mail:

Dry Gas Seal Rack CH-3185 Schmitten Tel Mail: Dry Gas Seal Rack CH-3185 Schmitten Tel. +41 26 497 55 66 Mail: info@felcon.ch Usually, compressor modifications are carried out because of adaptations to new operating parameters. However, in cases of

More information

This test shall be carried out on all vehicles equipped with open type traction batteries.

This test shall be carried out on all vehicles equipped with open type traction batteries. 5.4. Determination of hydrogen emissions page 1 RESS-6-15 5.4.1. This test shall be carried out on all vehicles equipped with open type traction batteries. 5.4.2. The test shall be conducted following

More information

Pressure Equipment Directive (PED) 97/23/EC Page 033 of 124

Pressure Equipment Directive (PED) 97/23/EC Page 033 of 124 Pressure Equipment Directive (PED) 97/23/EC Page 033 of 124 13.7 Pressure Equipment Directive (PED) 97/23/EC 1 The Pressure Equipment Directive (PED) 97/23/EC applies to the design, manufacturing and conformity

More information

MDEP Common Position No AP

MDEP Common Position No AP MDEP Validity: until net update or archiving MDEP Common Position No AP1000-01 Related to : AP1000 Working Group activities THE DESIGN AND USE OF EXPLOSIVE - ACTUATED (SQUIB) VALVES IN NUCLEAR POWER PLANTS

More information

Pipe-Away Pressure Vacuum Vent /Conservation Vent

Pipe-Away Pressure Vacuum Vent /Conservation Vent R R Pressure Vacuum Vent / End of Line Conservation Vent Flame Arrester with Pressure Vacuum Vent Pipe Away Pressure Vacuum Vent / Conservation Vent Vacuum Relief Vent Pressure Emergency Vent Free Vents

More information

Every things under control High-Integrity Pressure Protection System (HIPPS)

Every things under control High-Integrity Pressure Protection System (HIPPS) Every things under control www.adico.co info@adico.co Table Of Contents 1. Introduction... 2 2. Standards... 3 3. HIPPS vs Emergency Shut Down... 4 4. Safety Requirement Specification... 4 5. Device Integrity

More information

Installation Operation Maintenance

Installation Operation Maintenance 682 Seal Cooler New generation seal cooler to meet and exceed the seal cooler requirements stated in the 4th Edition of API Standard 682 Installation Operation Maintenance Experience In Motion Description

More information

Self-operated Pressure Regulators for special applications

Self-operated Pressure Regulators for special applications Self-operated Pressure Regulators for special applications Type 2357-31 Pressure Build-up Regulator with safety function and integrated excess pressure valve Application Pressure regulators for cryogenic

More information

Vehicle-mounted meters, pump supplied

Vehicle-mounted meters, pump supplied Purpose This inspection procedure outline (IPO) defines the minimum tests which must be performed to ensure that basic volumetric measuring devices comply with the legislation. Application Vehicle-mounted

More information

Complementarity between Safety and Physical Protection in the Protection against Acts of Sabotage of Nuclear Facilities

Complementarity between Safety and Physical Protection in the Protection against Acts of Sabotage of Nuclear Facilities Complementarity between Safety and Physical Protection in the Protection against Acts of Sabotage of Nuclear Facilities Robert Venot Institut de Radioprotection et de Sûreté Nucléaire 77-83, avenue du

More information

ACCIDENT MANAGEMENT AND EPR AT DUKOVANY NPP

ACCIDENT MANAGEMENT AND EPR AT DUKOVANY NPP ACCIDENT MANAGEMENT AND EPR AT DUKOVANY NPP 27-29 September 2017 Vienna IAEA Miroslav Trnka OVERVIEW General EOPs and SAMGs (changes) DAM (FLEX) EDMG Equipment (new + ongoing projects) Staff (drills and

More information

CHE Well Testing Package/Service:

CHE Well Testing Package/Service: CHE Well Testing Package/Service: CHE delivers well testing package And services, trailer mounted well testing package and offshore/onshore well testing services with over 10 years experience. Our testing

More information

DESIGN OF REACTOR CONTAINMENT STRUCTURE AND SYSTEMS FOR NUCLEAR POWER PLANTS

DESIGN OF REACTOR CONTAINMENT STRUCTURE AND SYSTEMS FOR NUCLEAR POWER PLANTS SAFETY STANDARDS SERIES No. NS-G-1.10 DESIGN OF REACTOR CONTAINMENT STRUCTURE AND SYSTEMS FOR NUCLEAR POWER PLANTS SAFETY GUIDE DS 482 2016-04-20 INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, C-41 (May 13)

More information

Reduce Turnaround Duration by Eliminating H 2 S from Flare Gas Utilizing VaporLock Scrubber Technology

Reduce Turnaround Duration by Eliminating H 2 S from Flare Gas Utilizing VaporLock Scrubber Technology Reduce Turnaround Duration by Eliminating H 2 S from Flare Gas Utilizing VaporLock Scrubber Technology Jim Woodard Vice President of Sales Bryant Woods Lead Project Engineer 4/3/18 Page 1 Objectives Impact

More information

TA10A and TA10P Steam Tracing Temperature Control Valves Installation and Maintenance Instructions

TA10A and TA10P Steam Tracing Temperature Control Valves Installation and Maintenance Instructions 3500032/2 IM-P350-02 CH Issue 2 TA10A and TA10P Steam Tracing Temperature Control Valves Installation and Maintenance Instructions 1. Safety information 2. General product information 3. Installation 4.

More information

CARTRIDGE FILTERS TECHNICAL MANUAL MT 080. Installation, commissioning and maintenance instructions. 08/02 Edition

CARTRIDGE FILTERS TECHNICAL MANUAL MT 080. Installation, commissioning and maintenance instructions. 08/02 Edition CARTRIDGE FILTERS TECHNICAL MANUAL MT 080 Installation, commissioning and maintenance instructions 08/02 Edition 1 2 CONTENTS 1.0 PAGE INTRODUCTION 1.1 MAIN FEATURES 1.2 OPERATION 1.3 CLOSING OF HEAD WITH

More information

DF1 and DF2 Diffusers

DF1 and DF2 Diffusers 1550650/4 IM-P155-07 ST Issue 4 and Diffusers Installation and Maintenance Instructions 1. Safety information 2. General product information 3. Installation 4. Commissioning 5. Operation 6. Maintenance

More information

HYDROSTATIC LEAK TEST PROCEDURE

HYDROSTATIC LEAK TEST PROCEDURE This information is proprietary and shall not be disclosed outside your organization, nor shall it be duplicated, used or disclosed for purposes other than as permitted under the agreement with Kinetics

More information

Compressors. Basic Classification and design overview

Compressors. Basic Classification and design overview Compressors Basic Classification and design overview What are compressors? Compressors are mechanical devices that compresses gases. It is widely used in industries and has various applications How they

More information

Dri-Line Mk3 Monnier Compressed Air Drain Trap

Dri-Line Mk3 Monnier Compressed Air Drain Trap 5044050/2 IM-P504-24 CH Issue 2 Dri-Line Mk3 Monnier Compressed Air Drain Trap Installation and Maintenance Instructions 1. Safety information 2. General product information 3. Installation and Operation

More information

LAKOS Waterworks. PWC Series Sand Separators. Installation & Operation Manual LS-829 (10/12)

LAKOS Waterworks. PWC Series Sand Separators. Installation & Operation Manual LS-829 (10/12) LAKOS Waterworks PWC Series Sand Separators Installation & Operation Manual LS-829 (10/12) Table of Contents Separator Operation... 3 Individual Model Details.... 4 Flow vs. Pressure Loss Chart 4 Installation

More information

MST21 Stainless Steel Balanced Pressure Thermostatic Steam Trap

MST21 Stainless Steel Balanced Pressure Thermostatic Steam Trap 1250650/6 IM-P125-07 ST Issue 6 MST21 Stainless Steel Balanced Pressure Thermostatic Steam Trap Installation and Maintenance Instructions 1. Safety information 2. General product information 3. Installation

More information

Manual Actuated Boiler Blowdown Valves

Manual Actuated Boiler Blowdown Valves Manual Actuated Boiler Blowdown Valves Installation and Maintenance Instructions 1. Safety information 2. General product information 3. Installation 4. Operation 5. Maintenance 6. Spare parts p.1 1. Safety

More information

Installation, Operation and Maintenance Instructions for Pacific PA Non-Storage Heat Exchanger

Installation, Operation and Maintenance Instructions for Pacific PA Non-Storage Heat Exchanger OM008 Installation, Operation and Maintenance Instructions for Pacific PA Non-Storage Heat Exchanger The operating and maintenance instructions contained within this package are for Pacific water/water

More information

STEP 3 INTERNAL HAZARDS ASSESSMENT OF THE EDF and AREVA UK EPR DIVISION 6 ASSESSMENT REPORT NO. AR 09/026-P

STEP 3 INTERNAL HAZARDS ASSESSMENT OF THE EDF and AREVA UK EPR DIVISION 6 ASSESSMENT REPORT NO. AR 09/026-P Health and Safety Executive NUCLEAR DIRECTORATE GENERIC DESIGN ASSESSMENT NEW CIVIL REACTOR BUILD STEP 3 INTERNAL HAZARDS ASSESSMENT OF THE EDF and AREVA UK EPR DIVISION 6 ASSESSMENT REPORT NO. AR 09/026-P

More information

Record of Assessment OFFICER IN CHARGE OF AN ENGINEERING WATCH

Record of Assessment OFFICER IN CHARGE OF AN ENGINEERING WATCH Record of Assessment for OFFICER IN CHARGE OF AN ENGINEERING WATCH Candidate s Name Candidate s Signature Candidate s Mariner Reference NOTE TO QUALIFIED ASSESSOR(S): In performing your function as a Qualified,

More information

REDUNDANT PROPULSION SHIPS RULES FOR CLASSIFICATION OF NEWBUILDINGS DET NORSKE VERITAS SPECIAL EQUIPMENT AND SYSTEMS ADDITIONAL CLASS PART 6 CHAPTER 2

REDUNDANT PROPULSION SHIPS RULES FOR CLASSIFICATION OF NEWBUILDINGS DET NORSKE VERITAS SPECIAL EQUIPMENT AND SYSTEMS ADDITIONAL CLASS PART 6 CHAPTER 2 RULES FOR CLASSIFICATION OF SHIPS NEWBUILDINGS SPECIAL EQUIPMENT AND SYSTEMS ADDITIONAL CLASS PART 6 CHAPTER 2 REDUNDANT PROPULSION JANUARY 1996 CONTENTS PAGE Sec. 1 General Requirements... 5 Sec. 2 System

More information

ST/SG/AC.10/C.3/2016/8. Secretariat. United Nations. Transport of gas tanks for motor vehicles. Introduction

ST/SG/AC.10/C.3/2016/8. Secretariat. United Nations. Transport of gas tanks for motor vehicles. Introduction United Nations Secretariat Distr.: General 29 March 2016 ST/SG/AC.10/C.3/2016/8 Original: English Committee of Experts on the Transport of Dangerous Goods and on the Globally Harmonized System of Classification

More information

KBV21i and KBV40i Key Operated Boiler Blowdown Valves Installation and Maintenance Instructions

KBV21i and KBV40i Key Operated Boiler Blowdown Valves Installation and Maintenance Instructions 4059051/3 IM-P405-48 EMM Issue 3 KBV21i and KBV40i Key Operated Boiler Blowdown Valves Installation and Maintenance Instructions 1. Safety information 2. General product information 3. Installation 4.

More information

Technical Service Bulletin March 2015 TSB142.01

Technical Service Bulletin March 2015 TSB142.01 Technical Service Bulletin March 2015 TSB142.01 Commissioning Procedure for HYDRAcap This Technical Service Bulletin provides information for commissioning of a HYDRAcap membrane system in a water treatment

More information

Safety and efficiency go hand in hand at MVM Paks NPP

Safety and efficiency go hand in hand at MVM Paks NPP International Forum Atomexpo 2018 Safety and efficiency go hand in hand at MVM Paks NPP József Elter MVM Paks Nuclear Power Plant Ltd. Hungary Start up Four of the VVER-440/V213 unit Power units up-rate

More information

Thank You for Attending Today s Webinar. Today s Featured Speaker

Thank You for Attending Today s Webinar. Today s Featured Speaker Thank You for Attending Today s Webinar Your Host Mike DeLacluyse President Lesman Instrument Company miked@lesman.com Today s Featured Speaker A.J. Piskor Combustion & Controls Specialist Lesman Instrument

More information

DESIGN OF REACTOR CONTAINMENT STRUCTURE AND SYSTEMS FOR NUCLEAR POWER PLANTS

DESIGN OF REACTOR CONTAINMENT STRUCTURE AND SYSTEMS FOR NUCLEAR POWER PLANTS SAFETY STANDARDS SERIES No. NS-G-1.10 DESIGN OF REACTOR CONTAINMENT STRUCTURE AND SYSTEMS FOR NUCLEAR POWER PLANTS SAFETY GUIDE DS 482 2016-04-20 INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, C-41 (May 13)

More information

CLASS D - SENSITIVE LEAK TEST GAS AND BUBBLE METHOD. 1.1 To provide definitive requirements for PNEUMATIC pressure testing of piping systems.

CLASS D - SENSITIVE LEAK TEST GAS AND BUBBLE METHOD. 1.1 To provide definitive requirements for PNEUMATIC pressure testing of piping systems. Page 1 of 7 CLASS D - SENSITIVE LEAK TEST GAS AND BUBBLE METHOD 1. SCOPE 1.1 To provide definitive requirements for PNEUMATIC pressure testing of piping systems. 1.2 The piping system as used herein is

More information

Inerting System Design for Medium Speed Vertical Spindle Coal Pulverizers TABLE OF CONTENTS

Inerting System Design for Medium Speed Vertical Spindle Coal Pulverizers TABLE OF CONTENTS Inerting System Design for Medium Speed Vertical Spindle Coal Pulverizers The PRB Coal Users Group plans to develop a Design Guide for Mill Inerting as an aid to users when designing a mill inerting system.

More information

23.1 Functions, Basic Configuration, and Interfaces

23.1 Functions, Basic Configuration, and Interfaces 23 (6.6.D) SF 6 and Other Special Gases 23.1 Functions, Basic Configuration, and Interfaces 23.1.1 Functions The primary function performed by the SF 6 and other special gases system is to provide SF 6

More information

CompAir provide high quality and reliable Nitrogen solutions

CompAir provide high quality and reliable Nitrogen solutions Nitrogen Compressor Guide CompAir provide high quality and reliable Nitrogen solutions Technical Data Model Typical Inlet Pressure Max Pressure Typical FAD Drive Bar PSI Bar PSI m³/hr CFM kw HP 5209 B

More information

TROUBLESHOOTING GUIDELINES

TROUBLESHOOTING GUIDELINES TROUBLESHOOTING GUIDELINES PROBLEM: Performance 1. The most common problem in this area comes from inadequate flow to the LAKOS Separator(s). All LAKOS Separators operate within a prescribed flow range

More information

Transport of gas tanks for motor vehicles

Transport of gas tanks for motor vehicles United Nations Secretariat ST/SG/AC.10/C.3/2016/51 Distr.: General 30 August 2016 Original: English Committee of Experts on the Transport of Dangerous Goods and on the Globally Harmonized System of Classification

More information

The «practical elimination» approach for pressurized water reactors

The «practical elimination» approach for pressurized water reactors The «practical elimination» approach for pressurized water reactors V. TIBERI K.HERVIOU International Conference on Topical Issues in Nuclear Installation Safety: Safety Demonstration of Advanced Water

More information

CAST IRON SAFETY VALVE TYPE 6301

CAST IRON SAFETY VALVE TYPE 6301 CHARACTERISTICS The 6301 safety valve is dedicated to protect the equipment from potential overpressure. This is an automatic device that closes when the pressure conditions are back to normal. It is a

More information

NEW PROGRAM! OIL AND GAS TECHNOLOGY PROGRAM

NEW PROGRAM! OIL AND GAS TECHNOLOGY PROGRAM NEW PROGRAM! PROGRAM Mechanical Maintenance MODEL H-IRT-1 Industrial Refrigeration Trainer MODEL H-RIG-1C Rigging Systems Trainer MODEL H-IMTS-1 Industrial Maintenance Training System MODEL H-FP-223-14

More information

PV4 and PV6 Piston Valves

PV4 and PV6 Piston Valves 1181250/1 IM-P118-05 ST Issue 1 PV4 and PV6 Piston Valves Installation and Maintenance Instructions 1. Safety information 2. General product information 3. Installation 4. Commissioning 5. Operation 6.

More information

M-06 Nitrogen Generator (Nitrogen Making Machine)

M-06 Nitrogen Generator (Nitrogen Making Machine) Guideline No.M-06 (201510) M-06 Nitrogen Generator (Nitrogen Making Machine) Issued date: 20 th October, 2015 China Classification Society Foreword This Guideline is a part of CCS Rules, which contains

More information

KBV21i and KBV40i Air Actuated Boiler Blowdown Valves

KBV21i and KBV40i Air Actuated Boiler Blowdown Valves 4059051/1 IM-P405-48 AB Issue 1 KBV21i and KBV40i Air Actuated Boiler Blowdown Valves Installation and Maintenance Instructions 1. Safety information 2. General product information 3. Installation 4. Commissioning

More information

HTR Systems and Components

HTR Systems and Components IAEA Course on HTR Technology Beijing, 22-26.October 2012 HTR Systems and Components Dr. Gerd Brinkmann Dieter Vanvor AREVA NP GMBH Henry-Dunant-Strasse 50 91058 Erlangen phone +49 9131 900 96840/95821

More information

IC67 - Pre-Instructional Survey

IC67 - Pre-Instructional Survey IC67 - Pre-Instructional Survey 1. What does the term code refer to in the installation of power plant piping? a. National welders code b. Fire protection code c. ASME Boiler and Pressure Vessel Code Section

More information