Grignard Reaction * Mary McHale. 1 Lab 3: Grignard Reaction

Size: px
Start display at page:

Download "Grignard Reaction * Mary McHale. 1 Lab 3: Grignard Reaction"

Transcription

1 OpenStax-CNX module: m Grignard Reaction * Mary McHale This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License Lab 3: Grignard Reaction 1.1 Objective The purpose of this laboratory exercise is to perform a classic method for the synthesis of secondary alcohols: the addition of a Grignard reagent to an aldehyde (other than formaldehyde). 1.2 Background Information After the most remarkable discovery by Victor Grignard in 1900, organometallic (An organic compound containing a metal atom directly attached to a carbon) compounds are very useful in organic synthesis. This discovery changed the course of organic chemistry and earned him the Nobel Prize in We now refer to such compounds as Grignard Reagents. The Grignard reaction is one of the characteristic reactions of carbonyl compounds. It is especially useful as a means of forming new carbon-carbon bonds, something that we haven't seen much of until now. In this type of reaction a C-M bond is present (C=carbon and M=metal) which is covalent in nature. The metal is usually magnesium but lithiummore reactive and is also used. The more polar the C-M bond is, the more will be its reactivity. The reactivity order is known from electrochemical series: M= Li> K> Ca> Na> Mg> Al> Zn> Fe> Sn etc Traditionally alkyl magnesium halides are known as Grignard reagent (R-Mg-X). * Version 1.2: Oct 14, :47 pm

2 OpenStax-CNX module: m Figure 1 All kinds of alkyl halides react (Iodides are more reactive than bromides which in turn are more reactive than chlorides) and amazingly, even bromobenzene and other aryl bromides and iodides react easily with magnesium. This is particularly surprising since the aromatic halogen is so unreactive. For example, it is inert to reuxing with aqueous sodium hydroxide at temperatures in excess of 200 C. The unshared pair of electrons on ether oxygen complexing with the Mg is believed to contribute to the stability of the reagent. Note: Aryl halides (ArX) and vinyl halides that are inert to nucleophilic substitution are reactive with this Grignard reaction Preparation and Mechanism of Grignard reagent: The mechanism of Grignard reagent (GR) is not clear till today, but it is believed that the reaction is taking place on the metal surface. Since GR does not react with aprotic solvents (e.g. ether, THF etc), these solvents are widely used. The mechanism of formation of GR as follows: it goes via one electron transfer, followed by rapid combination of organic group with the metal center. From the mechanistic point of view, carbon-bromine bond should be broken prior to the reaction with magnesium.

3 OpenStax-CNX module: m Figure 2 Solutions of some Grignard reagents such as methylmagnesium bromide, ethylmagnesium bromide, and phenylmagnesiumbromides are commercially available. Here is an example of Grignard reaction which explains the eect of solvent. Figure 3 The Grignard reagent is made from the direct reaction of magnesium with an alkyl halide.

4 OpenStax-CNX module: m Figure 4 The key to the function of the Grignard reagent is the reversal of the normal polarity of bonds to carbon (This type of reversal of polarity in carbon center is known as Umpolung). Because magnesium is more electropositive than carbon the carbon acquires a δ charge whereas carbon, when it has a charge at all, usually has δ+ charge from bonding to halogens, oxygen, and nitrogen. Figure 5 This δ carbon consequently has signicant nucleophilic character. The Grignard reagent reacts well as a nucleophile with the δ+-carbon of the carbonyl group as a target. The C=O π-bond is broken and the carbonyl becomes an alcohol. In the process, a new carbon-carbon bond is formed between the Grignard reagent and the carbonyl carbon - now the alcohol carbon.

5 OpenStax-CNX module: m Figure 6 The intermediate alkoxymagnesium salt is neutralized by acid in the work-up to produce the alcohol product. Before we go on to look at more Grignard reactions with carbonyl groups, here is a problem for you to try. 1. Identify the product (A-E) (5 points) Figure 7 Answer:

6 OpenStax-CNX module: m Figure 8 Addition of GR to carbonyls: GR adds to a carbonyl compounds to generate alcohols. A more modern interpretation extends the scope of the reaction to include the addition of Grignard reagents to a wide variety of electrophilic substrates:

7 OpenStax-CNX module: m Figure 9

8 OpenStax-CNX module: m Figure 10 Depending upon the amount of GR used and the substrate, it can give dierent types of products after working up the reaction. Here is an example: Figure 11 Addition of GR to α, β unsaturated carbonyls: GR adds to carbonyl center mainly in two fashions. Alkyl lithium halides add only in 1, 2-fashion because R-Li is a more reactive organometallic compound than others, so it prefers to add to most HARD carbonyl carbon center (since it is more electrophilic in nature). On the other hand, R 2 CuLior R MgX/Cu 2+ adds only in 1,4- fashion, because C-4 is soft towards electrophilicity and soft cuprate reagents prefer to add only to soft centers according to HSAB (Hard Soft Acid Base ) theory. Traditional GR (alkyl magnesium halide) is intermediate in its' reactivity, so a mixture of 1, 2- and 1, 4- addition product is obtained. Here is an

9 OpenStax-CNX module: m example of a GR adding to a α, β unsaturated carbonyl compound: Figure 12 Most alcohols can be produced by a Grignard reaction. In deciding how to do this carry out the reaction, think about the Grignard reaction in reverse: if your target alcohol had been the result of a Grignard reaction, what would the carbonyl compound have to be? What would the Grignard reagent have to be? Consider the scheme below for the synthesis of 1-phenyl-1-butanol via a Grignard reaction. Two dierent ways to synthesize this compound are shown. Can you think of a third?

10 OpenStax-CNX module: m Figure Important Facts: Grignard reagent (RMgX) is a very polar reagent and a very strong Lewis base and therefore will be easily protonated by water, which acts as a strong acid when in contact with a Grignard reagent. The reagent's reaction with water produces a gelatinous metal hydroxide. Since it reacts rapidly with the acidic hydrogen atom, the reaction must be carried out under dry conditions since even a small amount of moisture can destroy the reagent. The reactivity of Grignard reagent depends on mainly two factors: 1. Types of metal center (Li> K> Mg etc) 2. Types of halides present (I> Br> Cl) and 3. Types of solvent used. In presence of dierent functional groups, the order of reactivity of GR is as follows:

11 OpenStax-CNX module: m Figure Our Experiment: In this experiment, the addition of a nucleophilic Grignard reagent (1-methylbutylmagnesium bromide), to the electrophilic carbonyl carbon of an aldehyde (propanal) is performed. Figure 15 The product obtained is a 2 alcohol, 4-methyl-3-heptanol. A mixture of diastereomeric products is formed as the product contains two chiral centers. It is possible to vary the structure of both the Grignard reagent and the aldehyde; a wide variety of 2 alcohols is prepared by this route. Primary alcohols result when formaldehyde is used as the aldehyde. Secondary alcohols may also be obtained with these reagents when ethyl formate, an ester, acts as the electrophile. This latter reaction, however, requires two molar equivalents of the Grignard reagent. The mechanism for the reaction is as follows.

12 OpenStax-CNX module: m Figure 16 PreLab Questions (Total 10 points) Click here 1 for the Pre-Lab Name(Print then sign): Lab Day: Section: TA This assignment must be completed individually and turned in to your TA at the beginning of lab. You will not be allowed to begin the lab until you have completed this assignment. 1. A small crystal of iodine is used during the preparation of `Grignard reagent'-why? (1 point) 2. Which solvent can we use in the preparation of GR except ether? (1 point) 3. Why is the addition of the GR to propanal solution done over the period of 30 minutes? (2 points) 4. Write the major product of the following reactions: (4 points) 5. How will you synthesize the following molecule? (2 points) 1

13 OpenStax-CNX module: m Figure 17 from tertbu-br, dry ether, D 2 O and Mg(0). 1.3 Grading You will be assessed on: Completion of Pre lab questions. Write-up in your Lab Notebook (see Lab Notebook Guidelines 2 ) Analysis of product by Infrared and NMR Spectroscopy Completion of Post lab questions. 1.4 Materials Required Equipment Chemicals Water Bath 1. 2-bromopentane Stir bar 2. Mg metal, Iodine crystals Round bottom ask (10mL) 3. Propanal Hirsch funnel 4. Diethyl ether Beaker 5. 3M HCl, NaOH Glass rod (for recrystalisation) 6. Sodium sulfate (anhydrous) Safety Wear gloves all the time, especially working with NaOH, HCl. Keep safety glasses on all the time. 2

14 OpenStax-CNX module: m Experimental Procedure Part 1: Preparation of Grignard reagent Part 2: Grignard reaction Part 3: Isolation of product Part 4: Characterization of product NOTE: All the glassware used in the preparation of the Grignard reagent should be cleaned and dried in an oven at 110 C for at least 30 minutes, so you will need to plan on attending 15 minutes early on that day, dry your glassware and then attend the pre-lab lecture. (Use your glassware when it reaches room temperature, pressure builds up inside the apparatus) You will dry your glassware in the following way. Show up to the lab 15 minutes early and dry your glassware in the oven. The TA in charge of the lecture will then start his/her lecture on schedule. Place all your glassware that you will need into a beaker with your name on it. Place this in one of the ovens in the lab. Do not put any non-glass parts in the oven. NOTE: Check septum you are going to use for Grignard reaction. There should be no "open" holes. If septum has an obvious hole, it should be replaced with a new one Part 1: Preparation of 1-Methylbutyl Magnesium Bromide: 1. Prepare a 5.0 ml conical vial containing a magnetic spin vane and equipped with a condenser. Weigh and place 75 mg (approximately 3-4 pellets) of magnesium in the vial, and then add a small crystal of iodine (Do not add excess iodine), followed by 500 µl of anhydrous ether. NOTE: Metal magnesium you will be provided with has a coil shape and has been cut into small pieces. This material should be handled with forceps only. Four to ve small pieces of Mg weigh about 75 mg. NOTE: Plastic syringes tend to get stuck when lled with ethyl ether. Be ready to push a bit harder on a syringe plunger when adding liquid to the reaction mixture. 2. Prepare a solution of 520 µl of 2-bromopentane in 600 µl of anhydrous diethyl ether in a dry 5 ml conical vial. Use a syringe to deliver each solution. TA will do that. 3. After the assembly has cooled to room temperature, then draw the 2-bromopentane solution into a 1.0-mL syringe and then insert the syringe needle through the rubber septum on the top of the condenser. (Do not heat the closed system, it may explode!!!!) 4. While stirring the heterogeneous mixture, slowly add 6-8 drops of the 2-bromopentane ether solution to initiate the formation of the Grignard reagent. The evolution of tiny bubbles from the surface of the magnesium is evidence of a reaction. 5. When the reaction has started, slowly add the remainder of the 2-bromopentane-ether solution drop wise over a 3 to 5-min period. Warm the reactants slightly. Upon completion of this addition, draw the rinse in the capped vial into the syringe and add it through the septum in a single portion to the reaction vial. Stir the resulting solution for 15 min Caution Do not overheat. Overheating will cause loss of ether solvent. (The b.p. of ether is 34.6 C.) Small fragments of magnesium may remain at the end of the addition of the alkyl halide. 6. Cool the gray-colored solution of Grignard reagent to room temperature Preparation of Propanal (Propionaldehyde) 1. Prepare a solution of the aldehyde by weighing 100 µl of propanal into a tared, oven-dried, 3 ml conical vial followed by the addition of 200 µl of anhydrous diethyl ether. Cap the vial after solution is ready.

15 OpenStax-CNX module: m The propanal is the limiting reagent and therefore an accurate weight should be recorded for the yield calculations. TA Part 2: Grignard reaction 1. Now add the propanal solution carefully, with stirring, to the Grignard reagent over a period of about 30 sec at such a rate as to keep the ether solvent at a steady reux. 2. Rinse the vial that contained the propanal solution with 100 µl of anhydrous diethyl ether and add to the Grignard reagent. This step insures that all the propanal is added to the Grignard reagent. 3. Stir the reaction mixture for 5 min and then allow it to cool to room temperature. Remove the conical vial and take o the cap. It is recommended that the vial be placed in a beaker to prevent tipping and loss of product Part 3: Isolation of Product 1. Hydrolyze the magnesium alkoxide salt by addition of 2.0 ml of water. Stir the resulting mixture for 5 min. A two-phase (ether-water) reaction mixture develops as the magnesium salt is hydrolyzed. Remove any unreacted magnesium Caution The addition of water causes the evolution of heat. An ice bath should be handy to cool the solution if it begins to reux rapidly. 2. Now add 4-5 drops of 3 M HCl. Remove the vial, cap it, and stir it at room temperature for 5 min. Remove the vial from the stir plate and test the aqueous layer with litmus paper. The solution should be slightly acidic. Too much or too little aqueous HCl will cause problems in the subsequent workup procedure. Be careful in this step. NOTE: The water layer is the bottom layer. You will need to withdraw a few drops of the aqueous layer with a Pasteur pipette and drip it onto the litmus paper. 3. Remove the magnetic spin vane with forceps and set it aside to be rinsed with an ether wash. Cap the vial tightly, shake it, vent carefully, and allow the layers to separate. 4. Using a Pasteur pipette, transfer the aqueous (lower) layer to a clean 5.0 ml vial (see picture below). Save the ether layer since it contains the crude reaction product.

16 OpenStax-CNX module: m Now wash the aqueous layer that you have previously transferred to a 5.0-mL vial, with three 1.0-mL portions of diethyl ether: 6. Hold the magnetic spin vane with clean forceps and rinse it with the rst portion of ether as it is added to the vial. Upon addition of each portion of ether (using a calibrated Pasteur pipette, see picture below), cap the vial, shake it (or use a Vortex mixer), vent carefully, and allow the layers to separate. With the aid of a Pasteur pipette, remove each subsequent ether (i.e. top) layer and combine it with the ether

17 OpenStax-CNX module: m solution retained above. After the nal extraction, do not forget to save the aqueous (lower) layer until you have isolated and characterized the nal product. Figure 18 NOTE: Pipette calibration: 1.0ml (diagram shows a previous version where we only used 0.5 ml. NOW we use 1.0 ml.) of ether which will give approximately 1.0 in height of solvent in the pipette above its "shoulder" 7. Extract the combined ether fractions with 2.0-mL of cold water to remove any acidic material. 8. Dry the ether solution by transferring it, using a Pasteur pipet, to a Pasteur lter pipet lled with 0.5g of anhydrous sodium sulfate. The elute is collected in a test tube. In the hood, remove the ether solvent from the elute by simply, putting the solution on an evaporation dish and allow the ether to evaporate. Alternate Method of Removing Solvent: 1. Attach a Pasteur pipette to an air-line, turn the air on (gently) and place pipette in test tube to evaporate the ether (Ask TA for demonstration). 2. Gently warming the elute in a hot water bath to concentrate the solution to a weight less than 90 mg.

18 OpenStax-CNX module: m Part 4: Purication and Characterization The product, 4-methyl-3-heptanol, will be used as is with no further purication. Once all the solvent is gone, mass the product and the test tube (the mass of which has already been recorded). Assuming no impurities, calculate the yield (remember, one of the reagents was taken in excess though). 2. Take this sample and dissolve in it in a small amount of methylene chloride (add 2 ml rst then add 1 ml each time if you really need it). Prepare two TLC plates. On each plate spot both of the starting materials as well as the product mixture and standard provided by TA (i.e. four spots on each plate). Run one TLC plate in 100% Methylene Chloride, the other in 1:9 ethyl acetate: hexane. Record both plates under UV light and with the p-anisaldehyde stain. 3. Calculate the R f of all of the compounds for both plates. Draw TLC plates in the notebook. 4. One sample will be taken for NMR and GC-MS studies Waste Disposal Syringes and needles are to be disposed separately. Needles will go into the Sharps waste basket and syringes in the waste basket. Pipettes should not go into the Sharps waste basket. Organic and inorganic waste should be disposed in their proper containers.approximate Lab time: hours Report Questions (Total 30 points) (Click here 3 for the Report Form Note: In preparing this report you are free to use references and consult with others. However, you may not copy from other students' work or misrepresent your own data (see honor code). Name(Print then sign): Lab Day: Section: TA 1. Explain why Grignard reagents cannot be prepared from an organic halide that also contains a hydroxyl (-OH), a carboxyl ( CO 2 H), a thiol (-SH), or an amino ( NH 2 ) group. (2 points) 2. Why does the 2-bromopentane not appear under UV light for TLC? (2 points) 3. Draw and show your R f calculations for each TLC run. Which solvent was better? (3 points) 4. Show your theoretical and percent yield calculations. (4 points) 5. Draw the structure of your product and assign a proton to each peak in your NMR spectrum. Try and determine, if any, the impurities are in the sample. (4 points) 6. An NMR and GC-MS of the product are provided. What information can you obtain from the GC-MS? (5 points) 7. Write the major product of the following reactions: (10 points) 3

19 OpenStax-CNX module: m Figure 19 Figure 20

20 OpenStax-CNX module: m Figure 21 Figure 22

21 OpenStax-CNX module: m Figure Identify the compounds (A-F). (Extra credit 6 points) Figure 24

19. The Grignard Reaction

19. The Grignard Reaction 19. The Grignard eaction A. Introduction The Grignard reaction is an extremely valuable reaction in organic chemistry because it allows for the formation of carbon-carbon bonds. The reaction was discovered

More information

Paper No and Title. Paper 9: Organic Chemistry-III (Reaction Mechanism-2) Module no.13: Addition of Grignard reagent

Paper No and Title. Paper 9: Organic Chemistry-III (Reaction Mechanism-2) Module no.13: Addition of Grignard reagent Subject Chemistry Paper No and Title Module No and Title Module Tag 9: Organic Chemistry-III (Reaction Mechanism-2) 13: Addition of Grignard reagent CHE_P9_M13 TABLE OF CONTENTS 1. Learning Outcomes 2.

More information

CHEM254 #4 The Synthesis of a Tertiary Alcohol Using a Pre-Made Grignard Reagent 1

CHEM254 #4 The Synthesis of a Tertiary Alcohol Using a Pre-Made Grignard Reagent 1 CHEM254 #4 The Synthesis of a Tertiary Alcohol Using a Pre-Made Grignard Reagent 1 Background In this project, we will perform a Grignard reaction using a pre-made Grignard reagent. Grignard reagents can

More information

François Auguste Victor Grignard, was a French chemist who discovered one of the world s first synthetic organometallic reactions.

François Auguste Victor Grignard, was a French chemist who discovered one of the world s first synthetic organometallic reactions. CHEM254 #6 The Synthesis of a Tertiary Alcohol Using a Pre-Made Grignard Reagent 1 Introduction/Background Image: François Auguste Victor Grignard (1871-1935) 1 François Auguste Victor Grignard, was a

More information

Chemistry 222 Fall 2012

Chemistry 222 Fall 2012 Experiment 2: Grignard Reaction Report Sheet Last Name: Siva First Name: Krishnaa Date: September 27, 2012 Section Number: 005 Objective: 1 mark (What is the purpose of this experiment?) The purpose of

More information

More Carbonyl Chemistry

More Carbonyl Chemistry Lecture 15 More arbonyl hemistry Shared Nobel Prize with Sabatier in 1912 student of Philippe Barbier François Auguste Victor Grignard 1871-1935 March 3, 2016 Reaction Theme The most common reaction of

More information

PREPARING GAS SAMPLES IN LARGE PLASTIC SYRINGES

PREPARING GAS SAMPLES IN LARGE PLASTIC SYRINGES PREPARING GAS SAMPLES IN LARGE PLASTIC SYRINGES A wide variety of gases can be prepared safely inside a 60 ml plastic syringe. Here you will practice making carbon dioxide, so that you know the technique

More information

Experiment 18 Properties of Gases

Experiment 18 Properties of Gases Experiment 18 Properties of Gases E18-1 E18-2 The Task In this experiment you will investigate some of the properties of gases, i.e. how gases flow, their phase changes and chemical reactivity. Skills

More information

Gas Laws. Figure 1: Experimental Set-up with Leveling Bulb. GCC CHM 151LL: Gas Laws GCC, 2019 page 1 of 8

Gas Laws. Figure 1: Experimental Set-up with Leveling Bulb. GCC CHM 151LL: Gas Laws GCC, 2019 page 1 of 8 Gas Laws Introduction Although we cannot see gases, we can observe their behavior and study their properties. This lab will apply several concepts from Ideal Gas Laws. You will use your knowledge of chemical

More information

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq)

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq) Gas Laws Introduction: Although we cannot see gases, we can observe their behavior and study their properties. For example, we can watch a balloon filled with helium gas floating in air and conclude that

More information

CH361/361H Week 5 Lecture Synthesis of. 2,3-Dimethylbutene Isomers. Identify unknown. carboxylic acid

CH361/361H Week 5 Lecture Synthesis of. 2,3-Dimethylbutene Isomers. Identify unknown. carboxylic acid sodium salt of unknown aromatic carboxylic acid + soluble impurities + insoluble impurities total mass:? g insoluble impurities mass:? g dissolve in water, filter aq. sol n of unk. sodium salt + sol. impurities

More information

More Carbonyl Chemistry

More Carbonyl Chemistry Lecture 16 More arbonyl hemistry March 8, 2018 Victor Grignard Georg Wittig Exam II Wed March 21 from 7pm to 9pm In this room overs through todays lecture Know the reactions Play cards Please practice.old

More information

The Safe Use of Pyrophoric Substances

The Safe Use of Pyrophoric Substances The Safe Use of Pyrophoric Substances INTRODUCTION In light of a fatality of a researcher earlier this year at UCLA, The University of Queensland has released a guideline for The Safe Use of Pyrophoric

More information

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq)

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq) Gas Laws Introduction: Although we cannot see gases, we can observe their behavior and study their properties. For example, we can watch a balloon filled with helium gas floating in air and conclude that

More information

Figure. Experimental set up of catalyst, reactants and product syringes.

Figure. Experimental set up of catalyst, reactants and product syringes. Construction and Use of the Gas Reaction Catalyst Tube** As shown in the figures, the experimental apparatus consists of a 60 ml syringe containing the gaseous reactants connected to a gas phase catalyst

More information

1. The Safe Use of Pyrophoric Reagents

1. The Safe Use of Pyrophoric Reagents Rubin s group laboratory operating procedure series 1. The Safe Use of Pyrophoric Reagents REVISION RECORD Rev.# Date By Description 1 August 17, 2009 Mitsuharu Suzuki Initial release APPROVED (Signature

More information

General Safety Rules

General Safety Rules General Safety Rules 1. The goggles provided by the university are to be properly worn at all times in the lab. 2. You are to be properly dressed in the lab. a. Close-toed shoes. b. At least a short sleeve

More information

General Chemistry I Percent Yield of Hydrogen Gas From Magnesium and HCl

General Chemistry I Percent Yield of Hydrogen Gas From Magnesium and HCl Introduction For chemical reactions involving gases, gas volume measurements provide a convenient means of determining stoichiometric relationships. A gaseous product is collected in a long, thin graduated

More information

Part 1: Distillation and Analysis of an Unknown Alcohol Mixture

Part 1: Distillation and Analysis of an Unknown Alcohol Mixture Experiment DE: Part 1 Experiment DE has multiple goals, including -separation and quantification of a 2-component mixture (fractional distillation and GC); preliminary ID of both components -preparation

More information

Name:. Correct Questions = Wrong Questions =.. Unattempt Questions = Marks =

Name:. Correct Questions = Wrong Questions =.. Unattempt Questions = Marks = Name:. Correct Questions = Wrong Questions =.. Unattempt Questions = Marks = Lab Problem 1 One way of using solar energy is to capture heat from the sun in a reservoir to be released later. You have been

More information

PRE LABORATORY ASSIGNMENT: Lab Section Score: /10 READ THE LAB TEXT BEFORE ATTEMPTING THESE PROBLEMS!

PRE LABORATORY ASSIGNMENT: Lab Section Score: /10 READ THE LAB TEXT BEFORE ATTEMPTING THESE PROBLEMS! EXPERIMENT # 6 Name: PRE LABORATORY ASSIGNMENT: Lab Section Score: /10 READ THE LAB TEXT BEFORE ATTEMPTING THESE PROBLEMS! 1. Calculate the height of a corresponding column of mercury (in mm) that is at

More information

acrolein, acetaldehyde and acetone( cm -1 ); methanol (1306 cm -1 ); ethylene (949 cm -1 ); and isoprene (893 cm -1 ).

acrolein, acetaldehyde and acetone( cm -1 ); methanol (1306 cm -1 ); ethylene (949 cm -1 ); and isoprene (893 cm -1 ). acrolein, acetaldehyde and acetone(1550 1800 cm -1 ); methanol (1306 cm -1 ); ethylene (949 cm -1 ); and isoprene (893 cm -1 ). 5 Figure 4a 6 Figure 4b Figure 4c 7 Figure 5 Questions in Student Handout

More information

Working correctly with gas

Working correctly with gas Working correctly with gas When working with a reactive gas in a cylinder, there is an inherent risk. Special care has to be taken to allow safe handling. This example is with HCl. 1) Fixing the gas bottle.

More information

ExamLearn.ie. The Air & Oxygen

ExamLearn.ie. The Air & Oxygen ExamLearn.ie The Air & Oxygen The Air & Oxygen The air is a mixture of gases, which forms a blanket around the earth. Another name for the air is the atmosphere. *To investigate the percentage of oxygen

More information

CHM 2045L Physical Properties

CHM 2045L Physical Properties CHM 2045L Physical Properties Purpose: To observe and record some common physical properties. Background: Physical properties can tell us a lot about an unknown chemical. In this experiment you will look

More information

CH 2 CH 2 CHO CH 3. (d) C H PCC PCC H 3 O + LiAlH PCC CH 2 Cl 2 CH 3 CH 2 CH 2 CH 2 CHO

CH 2 CH 2 CHO CH 3. (d) C H PCC PCC H 3 O + LiAlH PCC CH 2 Cl 2 CH 3 CH 2 CH 2 CH 2 CHO hem 226 Problem Set #9 Fundamentals of rganic hemistry, 4 th edition, John McMurry. hapter 9 2. Name the following aldehydes and ketones. 3 2 ( 3 ) 2 (c) 3 2 2 2 2 3 2 2 (d) 3 2-methyl-3-pentanone, 3-phenylpropanal,

More information

Safe Use of Solvent Stills

Safe Use of Solvent Stills Safe Use of Solvent Stills Introduction: o The following guide is intended to describe the minimum requirements for using the hot pot distillation technique. o Lab workers who intend to use the hot pot

More information

Objective To identify a pure liquid substance using the physical properties of solubility, density, and boiling point.

Objective To identify a pure liquid substance using the physical properties of solubility, density, and boiling point. Chemistry 1020 Identification of an Unknown Liquid Objective To identify a pure liquid substance using the physical properties of solubility, density, and boiling point. Text reference solubility, density,

More information

7.9. Flash Column Chromatography Guide

7.9. Flash Column Chromatography Guide WARNING NOTICE: The experiments described in these materials are potentially hazardous and require a high level ofsafety training, special facilities and equipment, and supervision by appropriate individuals.

More information

Chemical Class Standard Operating Procedures. Pyrophoric Chemicals (PYR) & Water Reactive Chemicats (WRC) Diethylzinc

Chemical Class Standard Operating Procedures. Pyrophoric Chemicals (PYR) & Water Reactive Chemicats (WRC) Diethylzinc Chemical Class Standard Operating Procedures Pyrophoric Chemicals (PYR) & Water Reactive Chemicats (WRC) Diethylzinc Department: Chemistry Date SOP was written: April 16, 2014 Principal Investigator: Dr.

More information

Setting up and running a column

Setting up and running a column Setting up and running a column PART 1: What you need and theory PART 2: Using a bellow and packing the column PART 3: Loading sample to silica PART 4: Running column PART 5: TLC analysis and combining

More information

DEMONSTRATION 2.1 PROPERTIES OF CO 2. Chapter 2: Gases

DEMONSTRATION 2.1 PROPERTIES OF CO 2. Chapter 2: Gases DEMONSTRATION 2.1 Chapter 2: Gases PROPERTIES OF CO 2 This demonstration has two aims: firstly, to show that carbon dioxide gas is denser than air; secondly, to show that carbon dioxide will not support

More information

CHM 317H1S Winter Section P Procedures and Tables

CHM 317H1S Winter Section P Procedures and Tables CHM 317H1S Winter 2018 Section P Procedures and Tables Procedures Page 1 Standard Operating Procedures Throughout the laboratory portion of this course, you will be required to perform a number of operations

More information

D. De La Matter 2004 Swimming Pool Chemistry STUDENT ACTIVITIES:

D. De La Matter 2004 Swimming Pool Chemistry STUDENT ACTIVITIES: D. De La Matter 2004 Swimming Pool Chemistry STUDENT ACTIVITIES: Good News! Flinn Scientific Inc. has developed a classroom kit of experiments based on these activities. The Kit Catalog # is AP6599. Ordering

More information

VOLUMETRIC TECHNIQUES

VOLUMETRIC TECHNIQUES REVISED 10/14 CHEMISTRY 1101L VOLUMETRIC TECHNIQUES Volume measurements are important in many experimental procedures. Sometimes volume measurements must be exact; other times they can be approximate.

More information

CHM250 Calibration and Measurement Lab. Balance Calibration

CHM250 Calibration and Measurement Lab. Balance Calibration CHM250 Calibration and Measurement Lab Green Profile Balance Calibration Introduction: Balances that are properly operated, calibrated and maintained are crucial for laboratory operations. The accuracy

More information

CHE : Organic Chemistry I Fall 2017 Syllabus MWF 8:10-9:10 AM in Hoyt PLH

CHE : Organic Chemistry I Fall 2017 Syllabus MWF 8:10-9:10 AM in Hoyt PLH CHE 261 04: Organic Chemistry I Fall 2017 Syllabus MWF 8:10-9:10 AM in Hoyt PLH Professor: Dr. Pete Smith Office: Hoyt 215 Email: smithpm@westminster.edu (Best way to contact me.) Phone: 724-946-7299 Office

More information

Technical Procedure for General Laboratory Equipment

Technical Procedure for General Laboratory Equipment Technical Procedure for General Laboratory Equipment 1.0 Purpose - This procedure specifies the required elements for the use of general laboratory equipment. 2.0 Scope - This procedure applies to all

More information

Experiment 12: MOLAR VOLUME OF AN IDEAL GAS

Experiment 12: MOLAR VOLUME OF AN IDEAL GAS Experiment 1: MOLAR VOLUME OF AN IDEAL GAS Purpose: Determine the molar volume of a gas at standard temperature and pressure (STP, 0 C and pressure of 1 atm) Performance Goals: Collect and measure the

More information

Grignard Reaction. John Goodwin. Since Victor Grignard discovered his Grignard reagent 110 years ago, these

Grignard Reaction. John Goodwin. Since Victor Grignard discovered his Grignard reagent 110 years ago, these Grignard Reaction John Goodwin Abstract Since Victor Grignard discovered his Grignard reagent 110 years ago, these organomagnesium compounds have been highly utilized in synthetic organic chemistry. These

More information

R: The Ideal Gas Constant Pre-Lab Assignment

R: The Ideal Gas Constant Pre-Lab Assignment R: The Ideal Gas Constant Pre-Lab Assignment Read the entire laboratory investigation and the relevant pages in your textbook, then answers the questions that follow in the space provided below. 1 Describe

More information

EXPERIMENT. Identification of Gases

EXPERIMENT. Identification of Gases EXPERIMENT Identification of Gases Hands-On Labs, Inc. Version 42-0189-00-02 Review the safety materials and wear goggles when working with chemicals. Read the entire exercise before you begin. Take time

More information

Technical Bulletin AL-134

Technical Bulletin AL-134 Technical Bulletin AL-134 Handling Air-Sensitive Reagents The Aldrich Sure/Seal system Anhydrous solvents and air-sensitive reagents from Aldrich are packaged in our exclusive Sure/Seal bottles which provide

More information

The Ideal Gas Constant

The Ideal Gas Constant Chem 2115 Experiment # 8 The Ideal Gas Constant OBJECTIVE: This experiment is designed to provide experience in gas handling methods and experimental insight into the relationships between pressure, volume,

More information

Chemistry Promo 119W 800 766 5676 www.wilkem.com Free Shipping Solvents List Price Promo Price 190764-4X4L 2-PROPANOL, >=99.5%, A.C.S. REAGENT $ 497.00 $ 148.20 190764-18L-CS 2-PROPANOL, >=99.5%, A.C.S.

More information

INSTRUCTIONS: CHEMICAL ANALYSIS OF ACTIVE SULFIDES IN OIL-BASED DRILLING FLUID

INSTRUCTIONS: CHEMICAL ANALYSIS OF ACTIVE SULFIDES IN OIL-BASED DRILLING FLUID OFI Testing Equipment Chemical Analysis of Active Sulfides Instructions Page 1 of 4 INSTRUCTIONS: CHEMICAL ANALYSIS OF ACTIVE SULFIDES IN OIL-BASED DRILLING FLUID DESCRIPTION: 1. The Garrett Gas Train

More information

Intermolecular Forces

Intermolecular Forces Experiment 2 Intermolecular Forces Prepared by Ross S. Nord, Eastern Michigan University with large parts adapted from Chemistry with Computers by Dan D. Holmquist and Donald D. Volz PURPOSE The purpose

More information

LABORATORY TECHNIQUES. Pouring Liquids

LABORATORY TECHNIQUES. Pouring Liquids LABORATORY TECHNIQUES Working in the chemistry laboratory you will be handling potentially dangerous substances and performing unfamiliar tasks. This section provides you with a guide to the safe laboratory

More information

1. Determining Solution Concentration

1. Determining Solution Concentration In this exercise you will determine the concentration of salt solutions by measuring samples with known concentration and making a calibration curve. You will review units of concentration, and how to

More information

Slide 1. Slide 2. Slide 3 What do YOU know about oxygen? Dissolved Oxygen. Oxygen. I can t breath in the water but the fish can!

Slide 1. Slide 2. Slide 3 What do YOU know about oxygen? Dissolved Oxygen. Oxygen. I can t breath in the water but the fish can! Slide 1 Dissolved Oxygen I can t breath in the water but the fish can! Slide 2 Oxygen Oxygen is one of the fundamental resources required by life forms on Earth. Aquatic ecosystems have a wide assortment

More information

A Quick Start Guide for the ER 4123D CW-Resonator

A Quick Start Guide for the ER 4123D CW-Resonator Bruker BioSpin A Quick Start Guide for the ER 4123D CW-Resonator The ER 4123D with the TPX system was designed for measurements of relaxation effects using CW EPR. These measurements are often performed

More information

LAB 06 Organismal Respiration

LAB 06 Organismal Respiration LAB 06 Organismal Respiration Objectives: To learn how a respirometer can be used to determine a respiration rate. Identify and explain the effect of seed germination on cell respiration. To design and

More information

Determination of the Gas-Law Constant (R) using CO2

Determination of the Gas-Law Constant (R) using CO2 Determination of the Gas-Law Constant (R) using CO2 EXPERIMENT 11 Prepared by Edward L. Brown and Miranda Raines, Lee University The student will become familiar with ideal gases and how their properties

More information

Before you start sampling, be sure to read

Before you start sampling, be sure to read 6. DISSOLVED OXYGEN MONITORING: MONITORING: Using the Titration Method Before you start sampling, be sure to read the following pages to familiarize yourself with the equipment and the procedures that

More information

SOLUBILITY OF A SOLID IN WATER

SOLUBILITY OF A SOLID IN WATER 1516L Experiment 2 SOLUBILITY OF A SOLID IN WATER Objectives In this experiment you will determine the solubility of potassium nitrate (KNO 3 ) in water at various temperatures. You will prepare a plot

More information

NMR Service. How to Prepare Samples for NMR

NMR Service. How to Prepare Samples for NMR NMR Service How to Prepare Samples for NMR In NMR, unlike other types of spectroscopy, the quality of the sample has a profound effect on the quality of the resulting spectrum. If you follow a few simple

More information

Solvent System Walkthrough

Solvent System Walkthrough v2.0 1 Solvent System Walkthrough The Contour Glass solvent system is designed to give you air-free anhydrous solvent with minimal effort. However, the system is only as good as its users so please read

More information

Properties of Gases Observing Atom Pressure of a Gas Measuring Gas Products of Chemical Inferring Molecule Reactions

Properties of Gases Observing Atom Pressure of a Gas Measuring Gas Products of Chemical Inferring Molecule Reactions It s a Gas! In a gas, molecules or atoms move constantly and spread far apart. If a gas cannot escape its container, it applies pressure on the container. For example, gas pressure inflates a balloon.

More information

Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 1. Atmospheric pressure is 760 mm Hg. 2. The SI unit of pressure is

More information

Name:. Correct Questions = Wrong Questions =.. Unattempt Questions = Marks =

Name:. Correct Questions = Wrong Questions =.. Unattempt Questions = Marks = Name:. Correct Questions = Wrong Questions =.. Unattempt Questions = Marks = Lab Problem 1 Design and carry out an experiment to determine the density of the plastic object you have been given. You may

More information

Pyrrole Chemistry. Part XII. The Mechanism of the Reaction Between the Pyrrole Grignard Reagent and Acylating Agents1

Pyrrole Chemistry. Part XII. The Mechanism of the Reaction Between the Pyrrole Grignard Reagent and Acylating Agents1 Pyrrole Chemistry. Part XII. The Mechanism of the Reaction Between the Pyrrole Grignard Reagent and Acylating Agents1 C. E. LOADER AND HUGH J. ANDERSON Department of Chemistry, Memorial University, St.

More information

Introduction to ChemSense

Introduction to ChemSense Introduction to ChemSense As you may have seen, the ChemSense software allows you to create drawings and animation of chemical phenomena (and non-chemical phenomena for some of you). The software also

More information

PRODUCT SHEET. Order probe only as RXPROBE02

PRODUCT SHEET. Order probe only as RXPROBE02 SS69L DISSOLVED OXYGEN PROBE TRANSDUCER Order probe only as RXPROBE02 Order interface only as BSL-TCI16 SS69L Components The SS69L transducer measures dissolved oxygen. The SS69L includes a dissolved oxygen

More information

Eric Sheagley, Lab Supervisor Fall, 2015

Eric Sheagley, Lab Supervisor Fall, 2015 CH 107, Intro to Chemistry Lab Portland State University Eric Sheagley, Lab Supervisor Fall, 2015 Description: CH 107 is the laboratory associated with the CH 104 Intro to Chemistry lecture. Concurrent

More information

AP Biology 12 Cellular Respiration Lab

AP Biology 12 Cellular Respiration Lab AP Biology 12 Cellular Respiration Lab Background: Each individual cell is responsible for the energy exchanges necessary to sustain its ordered structure. Cells accomplish this task by breaking down nutrient

More information

Salt Lowers the Freezing Point of Water

Salt Lowers the Freezing Point of Water Salt Lowers the Freezing Point of Water Topic Sodium chloride (NaCl), salt, lowers the freezing point of water. Introduction Salt is added to ice in ice cream freezers because salt lowers the freezing

More information

The Decomposition of Potassium Chlorate

The Decomposition of Potassium Chlorate The Decomposition of Potassium Chlorate Small quantities of molecular oxygen (O 2 ) can be obtained from the thermal decomposition of certain oxides, peroxides, and salts of oxoacids. Some examples of

More information

Aerobic Respiration. Evaluation copy

Aerobic Respiration. Evaluation copy Aerobic Respiration Computer 17 Aerobic cellular respiration is the process of converting the chemical energy of organic molecules into a form immediately usable by organisms. Glucose may be oxidized completely

More information

SOLUBILITY OF A SOLID IN WATER

SOLUBILITY OF A SOLID IN WATER 1516L Experiment 1 SOLUBILITY OF A SOLID IN WATER Objectives In this experiment you will determine the solubility of potassium nitrate (KNO 3 ) in water at various temperatures. You will prepare a plot

More information

Pipetting and Determining Protein Concentration

Pipetting and Determining Protein Concentration Pipetting and Determining Protein Concentration Background Information: When performing experiments in Cell Biology, it is often necessary to use very small volumes of reagents sometimes because the reagents

More information

CLASS COPY-DO NOT WRITE ON

CLASS COPY-DO NOT WRITE ON Save Our Shells - Central Question: How does carbon dioxide affect salt water? CLASS COPY-DO NOT WRITE ON Overview of experiment: Exhaling carbon dioxide into a beaker of salt water mimics the gas exchange

More information

download instant at Experiment 2 A Submarine Adventure: Density Saves the Day

download instant at  Experiment 2 A Submarine Adventure: Density Saves the Day Experiment 2 A Submarine Adventure: Density Saves the Day Instructor Notes and Lab Preparation: Chemicals and Equipment: various metal shapes of copper, nickel, lead, aluminum, brass, iron and magnesium

More information

PREPARATION AND PROPERTIES OF ATMOSPHERIC GASES I: Carbon Dioxide and Oxygen

PREPARATION AND PROPERTIES OF ATMOSPHERIC GASES I: Carbon Dioxide and Oxygen PREPARATION AND PROPERTIES OF ATMOSPHERIC GASES I: Carbon Dioxide and Oxygen.... :O = C = O:.... :O = O: INTRODUCTION The atmosphere consists predominantly of three gases -- nitrogen (N 2 ) 78%, oxygen

More information

DISSOLVED OXYGEN SENSOR BT34i

DISSOLVED OXYGEN SENSOR BT34i DISSOLVED OXYGEN SENSOR BT34i USER S GUIDE CENTRE FOR MICROCOMPUTER APPLICATIONS http://www.cma-science.nl Short description The CMA Dissolved Oxygen (DO) sensor BT34i measures the concentration of dissolved

More information

School of Chemistry SOP For Operation Of Glove Boxes

School of Chemistry SOP For Operation Of Glove Boxes School SOP for Operation of Glove Boxes: The following SOP provides guidelines on how to adequately and safely operating a standard laboratory glove box and its associated devices. General Information:

More information

Research Question How does the concentration of catalase affect the speed of the decomposition reaction of Hydrogen Peroxide into oxygen and water?

Research Question How does the concentration of catalase affect the speed of the decomposition reaction of Hydrogen Peroxide into oxygen and water? Research Question How does the concentration of catalase affect the speed of the decomposition reaction of Hydrogen Peroxide into oxygen and water? Aim To observe the effect of increasing enzyme (catalase)

More information

Standard Operating Procedure

Standard Operating Procedure Standard Operating Procedure Settlement Class: Pyrophorics Organolithium Reagents This SOP is not complete until it has been signed and dated by the PI and relevant lab personnel. Print a copy and insert

More information

1. If grams of the vapor of a volatile liquid can fill a 498 ml flask at o C and 775 mm Hg, what is the molecular mass of the gas?

1. If grams of the vapor of a volatile liquid can fill a 498 ml flask at o C and 775 mm Hg, what is the molecular mass of the gas? MOLECULAR MASS OFA VOLATILE LIQUID A lab to study the ideal gas law Introduction The ideal gas law indicates that the observed properties of a gas sample are directly related to the number of moles of

More information

Experiment #2. Density and Measurements

Experiment #2. Density and Measurements Experiment #2. Density and Measurements Goals 1. To measure and record length, volume and mass accurately with the correct number of significant figures 2. To use significant figures correctly in calculations.

More information

POLYMER TEST KIT (CLAPPER METHOD) OFI PART No

POLYMER TEST KIT (CLAPPER METHOD) OFI PART No OFI Testing Equipment Polymer Test Kit (Clapper Method) Part # 295-00 Instructions Page 1 of 4 POLYMER TEST KIT (CLAPPER METHOD) OFI PART No. 295-00 This test determines the Partially Hydrolyzed Polyacrylamide

More information

Pipette apparatus. Meet the difference. Manual. T E I

Pipette apparatus. Meet the difference. Manual. T E I Pipette apparatus Manual Meet the difference Eijkelkamp Soil & Water Nijverheidsstraat 30, 6987 EM Giesbeek, the Netherlands T +31 313 880 200 E info@eijkelkamp.com I www.eijkelkamp.com 2018-07 M-0816E

More information

Lipodrop 2.0 device coating

Lipodrop 2.0 device coating Lipodrop 2.0 device coating Compiled by K.V., K.Ž, J.R AIM: To selectively coat channels in order to make them hydrophobic (pre junction channels) or hydrophilic (post junction channels). REAGENTS USED:

More information

The Determination of the Value for Molar Volume

The Determination of the Value for Molar Volume Objective The Determination of the Value for Molar Volume Using a chemical reaction that produces a gas, measure the appropriate values to allow a determination of the value for molar volume. Brief Overview

More information

MOLEBIO LAB #1: Microquantity Measurement

MOLEBIO LAB #1: Microquantity Measurement MOLEBIO LAB #1: Microquantity Measurement Introduction: This lab introduces micropipetting and sterile pipetting techniques used throughout this course. Mastery of these techniques is important for good

More information

UNIT 10 - GASES. Notes & Worksheets - Honors

UNIT 10 - GASES. Notes & Worksheets - Honors Ideal Gas Equation 1 WKSHT 1.) What is the pressure exerted by 2.0 moles of an ideal gas when it occupies a volume of 12.0 L at 373 K? 2.) A flashbulb of volume 2.6 cm 3 contains O 2 gas at a pressure

More information

Standard Operating Procedure. Air Displacement Pipette Calibration

Standard Operating Procedure. Air Displacement Pipette Calibration University of Colorado at Denver October 28, 2003 - Revision 1.00 Page 1 of 7 1 Background: Standard Operating Procedure An accurate pipette is one of the most important tools in performing accurate analytical

More information

Boyle s Law VC 09. Experiment 9: Gas Laws. Abstract

Boyle s Law VC 09. Experiment 9: Gas Laws. Abstract Experiment 9: Gas Laws VC 09 Abstract In this laboratory activity, you will experimentally confirm Boyle s Law, determine absolute zero from Gay-Lussac's Law, and determine the molecular weight of acetone,

More information

Completed ALL 2 Warm-up IC Kinetic Molecular Theory Notes. Kinetic Molecular Theory and Pressure Worksheet

Completed ALL 2 Warm-up IC Kinetic Molecular Theory Notes. Kinetic Molecular Theory and Pressure Worksheet Name: Unit 10- Gas Laws Day Page # Description IC/HW Due Date Completed ALL 2 Warm-up IC 1 3 5 Kinetic Molecular Theory Notes IC 1 6 8 Kinetic Molecular Theory and Pressure Worksheet IC 2 9 10 Gas Law

More information

THE DECOMPOSITION OF POTASSIUM CHLORATE This lab is derived almost entirely from a lab used at the United States Naval Academy

THE DECOMPOSITION OF POTASSIUM CHLORATE This lab is derived almost entirely from a lab used at the United States Naval Academy THE DECOMPOSITION OF POTASSIUM CHLORATE This lab is derived almost entirely from a lab used at the United States Naval Academy PURPOSE: The purpose of this experiment is to study the decomposition of potassium

More information

Chemistry 1B Chapter 10 Worksheet - Daley. Name

Chemistry 1B Chapter 10 Worksheet - Daley. Name Name 1) The National Weather Service routinely supplies atmospheric pressure data to help pilots set their altimeters. The units the NWS uses for atmospheric pressure are inches of mercury. A barometric

More information

Lab Equipment ANALYTICAL BALANCE

Lab Equipment ANALYTICAL BALANCE Lab Equipment ANALYTICAL BALANCE Analytical balances are used for very accurate, quantitative measurements of mass to the nearest 0.001 g. (Some read to 0.0001 g.) These are delicate instruments, subject

More information

Phase Changes * OpenStax

Phase Changes * OpenStax OpenStax-CNX module: m42218 1 Phase Changes * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Interpret a phase diagram. State Dalton's

More information

Chapter 5 TEST: Gases

Chapter 5 TEST: Gases Chapter 5 TEST: Gases 1) Gases generally have A) low density B) high density C) closely packed particles D) no increase in volume when temperature is increased E) no decrease in volume when pressure is

More information

Purpose. Introduction

Purpose. Introduction Purpose The objective of this experiment is to determine the density of an unknown liquid and solid. The students will become familiar with the techniques for measuring mass and volume of several samples

More information

Standard Operating Procedure

Standard Operating Procedure Standard Operating Procedure Read the EH&S Standard Operating Procedures Fact Sheet before filling out this form. Print out the completed form and keep a readily accessible hard copy in the lab (also keeping

More information

Analysis of Deuterium Enrichment by Fourier Transform Infrared Spectrometry (FTIR): Practice. Christine Slater PhD

Analysis of Deuterium Enrichment by Fourier Transform Infrared Spectrometry (FTIR): Practice. Christine Slater PhD Analysis of Deuterium Enrichment by Fourier Transform Infrared Spectrometry (FTIR): Practice Christine Slater PhD Nutrition Specialist C.Slater@iaea.org International Atomic Energy Agency Preparation of

More information

3 Solubility and Concentration

3 Solubility and Concentration CHAPTER 8 SECTION Solutions 3 Solubility and Concentration KEY IDEAS As you read this section, keep these questions in mind: What is solubility? What happens when you add more solute to a saturated solution?

More information

Enzyme Activity Lab. Wear safety goggles when handling hydrogen peroxide.

Enzyme Activity Lab. Wear safety goggles when handling hydrogen peroxide. Enzyme Activity Lab This laboratory involves the use of an enzyme that will react with hydrogen peroxide. The enzyme is catalase and hydrogen peroxide (H2O2) is the substrate. The reaction is as follows:

More information

BIL 151 Laboratory Enzymes: Practicing the Protocol

BIL 151 Laboratory Enzymes: Practicing the Protocol BIL 151 Laboratory Enzymes: Practicing the Protocol Bring a laptop, electronic pad, or other USB-equipped device for recording and storing data. Today you will learn a technique for measuring the rate

More information

COMBINED SCIENCE 0653/6 CO-ORDINATED SCIENCES 0654/6

COMBINED SCIENCE 0653/6 CO-ORDINATED SCIENCES 0654/6 Centre Number Candidate Number Candidate Name International General Certificate of Secondary Education UNIVERSITY OF CAMBRIDGE LOCAL EXAMINATIONS SYNDICATE COMBINED SCIENCE 0653/6 CO-ORDINATED SCIENCES

More information