Morphological Perspectives of the Seahorse Hippocampus kuda (Bleeler) Vertebral System

Size: px
Start display at page:

Download "Morphological Perspectives of the Seahorse Hippocampus kuda (Bleeler) Vertebral System"

Transcription

1 Abstract: Morphological Perspectives of the Seahorse Hippocampus kuda (Bleeler) Vertebral System K.Kumaravel, E.Rethina Priya, S.Ravichandran, and T.Balasubramanian Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai The vertebral system in Hippocampus kuda is highly specialized because of the vertical locomotion and tail prehensility. The vertebral elements represent a special case of morphological changes. We investigated the vertebral spine in H. kuda through skeletal morphometric characters, in order to describe functional and structural patterns. Actually, the dorso-ventral tail bending ability in the genus Hippocampus is one of the most impressive morphological modifications in the evolutionary history of fishes respectively. The vertebral size decreases from the anteriormost element backward, with some local variation at the dorsal area. The allometric trajectory leads to a natural ventral bending of the tail, promoting its prehensile function. A fan-shaped array of cartilaginous bones, the pterigiophores, forms the internal supporting structure of the dorsal fin. Each pterigiophore is composed of a proximal radial that extends from a vertebra to the dorsal side of the animal, where it fuses to a middle radial. The middle radials fuse with each other to form a dorsal ridge upon the spheroidal distal radials. The dorsal and pectoral fins are the primary locomotor organs in seahorses (Hippocampus) and pipefish (Syngnathus). The small dorsal fins beat at high oscillatory frequencies against the viscous medium of water. Key words: Seahorse, Vertebral system, Locomotion, Dorsal fins INTRODUCTION: Seahorses are found primarily in warm and coastal waters; they are worldwide distributed in tropical and temperate regions, roughly from 50 degrees north to 50 degrees south latitude. Seahorses and few other syngnathids are the only fishes that can bend the tail in a strict spiral used as a prehensile appendage. Considering the 52 genera of syngnathids (Nelson, 1994), the dorso-ventral tail bending ability have been evolved only in Hippocampus and in few other taxa like Acentronura and Amphelikturus (Dawson, 1985). Though Solenostomidae -the sister-group of Syngnathidae - share many characters and a common evolutionary history with them, the new movement of seahorse tail can be considered a real apomorphy into this family (Hale, 1993). Seahorses spend most of time attached to algae and corals by their prehensile tail, cryptic with the surrounding substratum. Swimming is highly specialized through rapid oscillations of the dorsal fin (Breder & Edgerton, 1942, Ashley-Ross, 2002), the caudal fin being absent and the whole caudal region having lost its role in locomotion. Locomotion by fin undulation is widespread among fishes that need of a slow 63

2 speed and high maneuverability within complex, obstacle-strewn environments such as coral reefs (Lindsey, 1978). A unique way of swimming called hovering (Videler, 1993) evolved with the seahorse new anatomy and the camouflage ability. Seahorse tail has also an important function in the social behavior of these animals: males strongly hang each other with the tail when competing for females and it is softly used by the couple during mating (Vincent, 1994). The new tail bending skills and posture of seahorses have probably opened ecological alternatives that revealed advantageous considering the high number of species into this genus. At least theoretically almost all pipefishes have preserved a lateral movement of the tail and in most cases the tail fin as well. Compared with the general organization of the biomechanical system of other fishes, Hippocampus undergoes substantial modifications in relation to the proportions of the myotome parts (Rauther, 1925, Hale, 1996). Previous experimental approaches have demonstrated a direct involvement of a couple of cordon like median ventral muscles, and their connection with hemal spines (Hale, 1996). Nevertheless, significant innovations in the axial skeleton of seahorses have not been explored. In this paper we explore the variation of the vertebral metameric series in Hippocampus kuda through geometric morphometrics. (e.g., Bookstein, 1996, Rohlf & Marcus, 1993, Adams et al., 2004). Metameric elements represent a specific case of morphological variation. Thus, shape variables can be regressed and compared by virtue of their serial position.hence this research paper focuses on the skeletal morphology of H.kuda based on their vertebral structures. LOCOMOTION DORSAL FINS: Locomotion via movements of the median fins has arisen independently multiple times in the evolution of fishes. The methods of median fin propulsion are as varied as the taxa that employ them (Lindsey, 1978). Locomotion by dorsal fin undulation is classified as amiiform exemplified by Amia calva, but also seen in many mormyrids, Gymnarchus, and syngnathids, including Syngnathus and Hippocampus). Gymnotiform locomotion is characterized by undulations of the anal fin only (seen in gymnotids and notopterids). Undulation of both dorsal and anal fins is referred to as balistiform (seen in triggerfish and their relatives, some cichlids, centriscids, and flatfish). Finally, tetraodontiform locomotion is defined as oscillations of short-based dorsal and anal fins (seen in pufferfish and ostraciids). Median fin propulsion is associated with relatively slow, but precise, locomotion in complex habitats such as coral reefs and obstacle-strewn stream or sea beds (Lindsey, 1978, Videler, 1993). Most fishes that use median fin propulsion generate low-frequency waves (E2 Hz) of high amplitude in the fins, allowing them to swim with high hydrodynamic efficiency (defined as useful power output divided by power input to move the fin; Blake, 1980). The family Syngnathidae, comprising the seahorses and pipefish, is an exception members of this group which undulate their dorsal fins at very high frequencies (440 Hz in seahorses(breder and Edgerton,1942,Blake, 1976) with low amplitude, leading to reduced efficiency and very slow swimming speeds (Blake,1980). Because the swimming speeds of seahorses and pipefish are slow, one may expect that the musculature powering dorsal fin movements would be relatively weak. However, the dorsal fin muscle is required to contract against substantial resistance as it beats the fin back and forth through the viscous medium of water. Furthermore, the muscle must contract at a high frequency while performing positive work against the environment. Indeed, the oscillation is so rapid 64

3 MATERIAL AND METHODS Sampling and configurations. Specimens of Hippocampus kuda were obtained from by catch in Tuticorin coastal environment during summer One adult male was selected according to its good maturity status and lack of pathological or sub pathological alterations. One individual has been used because of the explorative purpose of this study. The specimen has been cleaned by immersion in 2-3 % KOH solution for few hours. Digestion of skin and soft flesh parts has exposed the skeleton and the characteristic bony plates that cover syngnathids body. (Fig.1) Head Pectoral fin Eye Dorsal fin Snout Brood pouch Tail fin Fig.1: Morphology of Hippocampus kuda (male) RESULTS: The exposed skeletal parts of seahorses were arranged in order with respect to the vertebral status (Fig.2 &3). The dorsal and cervical vertebrae are clearly distinguished. 65

4 Fig.2. Skeletal morphology of H.kuda Fig.3.Cephalic part of H.kuda Cervical vertebrae: This group is heterogeneous, with the three elements showing different shapes. The first is mainly characterized by a compression of the posterior area, backward bending of the entire structure and protruding of the neuro-caudal edge. The second vertebra shows the enlargement of the neuro-cephalic quarter, and reduction of the neuro-caudal one. The third cervical vertebra is the less diversified, showing just a minor anterior enlargement of the upper neural edge. 66

5 Abdominal vertebrae. Compared to the consensus average shapes, the abdominal structures are characterized by a slightly shorter and higher neural area that is, a vertical stretching of the upper part.(fig.4&5).this pattern is more evidenced in the pre-dorsal segments than in the postdorsal ones. Dorsal vertebrae: The two dorsal elements show the vertical stretching of the posterior body, with consequent bending of the whole structure becoming relatively shorter. The supradorsal vertebra is conversely characterized by a marked development of the neuro-cephalic quarter, and reduction of the neuro-caudal area. The pattern is similar to that expressed in the 3rd vertebra, just more stressed and exaggerated. Furthermore, in the 10th element the enlargement of the neuro-cephalic area is more vertically directed. The dorsal fin ray is wedged (Fig.6) 3 4 Fig th Abdominal vertebrae Fig th Abdominal vertebrae 5 Fig.6. Dorsal Fin ray DISCUSSION: Outstanding position of the seahorses within the framework of the teleostean variability provides a very good opportunity to analyze a discrete and well delineated evolutionary casestudy. H.kuda displays a unique structural arrangement of the axial skeleton compared to the basic organization of teleosts, with changes in the relationships of the metameric elements (Rauther,1925, Hale, 1996). The tail apomorphy in seahorses differ from species to species and this diversity brings about their slight differences in their locomotion.the vertebral series in H. kuda shows variations both in size and shape. Concerning size, there is a general decrease from the cephalic to the caudal extremes. Nevertheless, changes are not always gradual a reduction 67

6 is evident mostly after the dorsal elements, and a homogeneous decrease in size is only displayed in the caudal set. The structural configuration of the vertebral series accounts for the vertical locomotion and posture, while the caudal morphology supports the prehensile properties of the tail. This study is aimed at characterizing the vertebral series in H. kuda testing the patterns of shape variation through a morphometric approach. Using morphometrics it is possible to recognize this taxon. These groups can be conventionally defined according to their position and role along the vertebral sequence. Seahorse body posture and dorso-ventral tail bending ability probably opened to a series of new ecological opportunities that have been revealed successful and possibly involved in the high speciation rate of the genus. ACKNOWLEDGEMENT: The authors are thankful to the Ministry of Earth Science; Government of India for providing financial supports for our research work and as well the director, CAS in Marine Biology, Annamalai University for rendering a great support. REFERENCES: 1. Adams, D. C.; Rohlf, F. J. & Slice, D. E Geometric morphometrics: ten years of progress following the"revolution". Ital. J. Zool., 71(1):5-16, 2. Ashley-Ross, M. A Mechanical properties of the dorsal fin muscle of seahorse (Hippocampus) and pipefish (Syngnathus). J. Exp. Zool., 293(6):561-77, 3. Blake, R. W On seahorse locomotion. J. Marine Biol. Assoc., 56: Blake RW Undulatory median fin propulsion of two teleosts with different modes of life. Can J Zool 58: Bookstein, F. L. Marcus, L.; Corti, M.; Loy, A.; Naylor, G. J. P. & Slice,D 1996.Combining the tools of geometric morphometrics. In: Advances in morphometrics. Eds.. Plenum Press, New York,. 6. Breder, C. M. & Edgerton, H. E An analysis of the locomotion. of the seahorse, Hippocampus, by means of high speed. Cinematography. Ann. N. Y. Acad. Sci., 43:145-72, 7. Dawson, C. E Indo-Pacific pipe fishes (Red Sea to the Americas). Gulf Coast Research Laboratory. Ocean Springs, Mississippi, 8. Hale, M. E Mechanisms of bending and holding in seahorses and pipefishes (Teleostei: Syngnathidae). Am. Zool., 33:120A. 9. Hale, M. E Functional morphology of ventral tail bending and prehensile abilities of the seahorse, Hippocampus kuda. J. Morphol., 227: Lewis, E. B A gene complex controlling segmentation in Drosophila. Nature, 276(5688):565-70, 68

7 11. Lourie, S. A.; Vincent, A. C. J. & Hall, H. J Seahorses: an identification guide to the world's species and their conservation. Project Seahorse, London, 12. Lindsey CC Form, function, and locomotory habits in fish. In: Hoar WS, Randall DJ, editors. Fish physiology. New York: Academic Press. Pp: Marcus, L. F.; Corti, M.; Loy, A.; Naylor, G. J. P. & Slice, D. E Advances in Morphometrics. Plenum Press, New York. 14. Nelson, J. S Fishes of the world. 3rd. Ed. John Wiley & Sons, New York, 15. Rauther, M Die Syngnathiden des Golfes von Neapel. Friedlander & Sohn, Berlin, 16. Rohlf, F. J. & Marcus, L. F A Revolution in Morphometrics. Trends Ecol. Evol., 8:129-32, 17. Videler, J. J Fish swimming. Chapman & Hall, London,. 18. Vincent, A. C. J Seahorses exhibit conventional sex roles in mating competition, despite male pregnancy. Behavior, 128(1-2):135-51, FIGURE LEGENDS: Figure 1 Figure.2 Figure.3 Figure.4 Figure.5 Figure.6 - Morphology of Hippocampus kuda (male) - Skeletal morphology of H.kuda - Cephalic part of H.kuda - 12th Abdominal vertebrae - 19th Abdominal vertebrae - Dorsal Fin ray 69

FAO SPECIES IDENTIFICATION SHEETS FISTULARIIDAE. Cornetfishes, flutemouths

FAO SPECIES IDENTIFICATION SHEETS FISTULARIIDAE. Cornetfishes, flutemouths click for previous page FIST 1982 FAO SPECIES IDENTIFICATION SHEETS FISHING AREA 51 (W. Indian Ocean) FISTULARIIDAE Cornetfishes, flutemouths Body elongate and depressed. Mouth small, at end of a long

More information

Anatomy, Physiology, and Ecology of Fishes I Biology of Fishes

Anatomy, Physiology, and Ecology of Fishes I Biology of Fishes Anatomy, Physiology, and Ecology of Fishes I Biology of Fishes 10.18.12 Overview Exam I Return & Review next week Presentations & Other Assignments Introduction to Anatomy, Physiology, and Ecology of Fishes

More information

Fish Biorobotics. Fishes as model systems for understanding aquatic propulsion. George V. Lauder Harvard University

Fish Biorobotics. Fishes as model systems for understanding aquatic propulsion. George V. Lauder Harvard University Fish Biorobotics Fishes as model systems for understanding aquatic propulsion 28,000 species of fishes Half of all vertebrates are fishes Fishes are 550 million years old Tremendous opportunity for selection

More information

Functional Morphology of Locomotion and Feeding. Functional Morphology of Locomotion and Feeding

Functional Morphology of Locomotion and Feeding. Functional Morphology of Locomotion and Feeding Functional Morphology of Structure and Function tied together Locomotion: Terrestrial = gravity Aquatic = density of water and drag exerted by it remember 800xdense and 50x viscous. Energetically it is

More information

!"#$%&'() Mola mola *+,+-./

!#$%&'() Mola mola *+,+-./ Mola mola 2008 Summary A study on the reproductive biology of ocean sunfish Mola mola Toshiyuki akatsubo 1. Introduction Ocean sunfish, Mola mola, which belongs to the family Molidae in the order Tetraodontiformes,

More information

Internal Anatomy of Fish

Internal Anatomy of Fish Internal Anatomy of Fish The Systems of a Fish Skeletal System Muscular System Respiratory System Digestive System Circulatory System Nervous System Reproductive System Special Organs Skeletal System

More information

Microbrotula randalli Cohen and Wourms, Samoa and Vanuatu at 30 to 38 m near reef-sand interface. Rare.

Microbrotula randalli Cohen and Wourms, Samoa and Vanuatu at 30 to 38 m near reef-sand interface. Rare. click for previous page Ophidiiform Fishes of the World 107 Diagnosis and description: Body completely covered with small imbricate scales; head partly naked; snout depressed; eyes small, more than 6 times

More information

NATIONAL BIORESOURCE DEVELOPMENT BOARD Dept. of Biotechnology Government of India, New Delhi

NATIONAL BIORESOURCE DEVELOPMENT BOARD Dept. of Biotechnology Government of India, New Delhi NATIONAL BIORESOURCE DEVELOPMENT BOARD Dept. of Biotechnology Government of India, New Delhi For office use only MARINE BIORESOURCES FORMS DATA ENTRY: Form- 1(general ) Ref. No.: (please answer only relevant

More information

Lecture 4. Musculature

Lecture 4. Musculature Lecture 4. Musculature As with osteology headmusculaturewill becovered later with the jaws Muscles arranged in blocks called myotomes, comprised of myomeres and arranged in bundles. Separated by myosepta

More information

How small puffers (Teleostei: Tetraodontidae) swim

How small puffers (Teleostei: Tetraodontidae) swim How small puffers (Teleostei: Tetraodontidae) swim Itai Plaut 1* and Tamar Chen 2 1 Department of Biology, Faculty of Sciences and Science Education, University of Haifa Oranim, Tivon, 36006, Israel (e-mail:

More information

30 a. Allothunnus fallai Fig b.

30 a. Allothunnus fallai Fig b. click for previous page - 18-30 a. Jaw teeth tiny, 40 to 55 on each side of upper and lower jaws; gillrakers fine and numerous, total of 70 to 80 on first arch; body elongate; distance from snout to second

More information

2. SYSTEMATIC CATALOGUE

2. SYSTEMATIC CATALOGUE click for previous page 15 2. SYSTEMATIC CATALOGUE 2.1 General Aids to Identification 2.1.1 Diagnostic Features of the Family Caesionidae Oblong to fusiform, moderately compressed, medium-sized to small

More information

Materials: Field notebook and pencil INTRODUCTION:

Materials: Field notebook and pencil INTRODUCTION: Field Methods of Fish Biology 2014 Exercise 1: Basic Anatomy and Finding and Measuring Characters *Labs modified from Caillet et al. 1986 and Eric Schultz s Biology of Fishes lab Materials: Field notebook

More information

Marine Fishes. Chapter 8

Marine Fishes. Chapter 8 Marine Fishes Chapter 8 Osteichthyes, The Bony Fish Flat bony scales (ctenoid or cycloid) protect body Ctenoid scales on Paradise Fish Osteichthyes, The Bony Fish Bony operculum covers the gills (provides

More information

Distribution Pattern of Seahorse Species (Genus: Hippocampus) in Tamilnadu and Kerala Coasts of India

Distribution Pattern of Seahorse Species (Genus: Hippocampus) in Tamilnadu and Kerala Coasts of India Available online at www.notulaebiologicae.ro Print ISSN 2067-3205; Electronic 2067-3264 Not Sci Biol, 2013, 5(1):20-24 Notulae Scientia Biologicae Distribution Pattern of Seahorse Species (Genus: Hippocampus)

More information

Field Identification of Tunas from Indian Waters

Field Identification of Tunas from Indian Waters 3 Field from Indian Waters Subal Kumar Roul and Retheesh T. B. Pelagic Fisheries Division The Family Scombridae is one of the largest and most economically important fish family which comprises of most

More information

STUDIES IN ANIMAL LOCOMOTION

STUDIES IN ANIMAL LOCOMOTION 39 1 STUDIES IN ANIMAL LOCOMOTION III. THE PROPULSIVE MECHANISM OF THE WHITING (GADUS MERLANGUS) BY J. GRAY. (From the Laboratory of Experimental Zoology, Cambridge.) {Received ^th February, 1933.) (With

More information

Fantastic Fish. Lesson 10. Leafy Sea Dragon

Fantastic Fish. Lesson 10. Leafy Sea Dragon Fantastic Fish Lesson 10 Fish are cold-blooded vertebrates that live in streams, lakes and oceans. They are abundant in both fresh and salt water. There are over 28,000 known species of fish on the planet.

More information

Fish Dissection. Background

Fish Dissection. Background Fish Dissection The Fish Dissection program at Hatfield Marine Science Center is a 50-minute hands-on program for 4th through 12th grade students. Students will work in small groups as they examine a variety

More information

Climate Researchers Feeling Heat. By Juliet Eilperin Washington Post Staff Writer Thursday, April 6, 2006; A27

Climate Researchers Feeling Heat. By Juliet Eilperin Washington Post Staff Writer Thursday, April 6, 2006; A27 Biology 2010 April 19, 2006 Readings - From Text (Campbell et al. Biology, 7 th ed.) Chapter 34 pp. 671-707. Climate Researchers Feeling Heat. By Juliet Eilperin Washington Post Staff Writer Thursday,

More information

5/3/15. Vertebrate Evolution Traces a Long and Diverse History. Construction of Complex Chordate Bodies Begins on a Stiffening Scaffold

5/3/15. Vertebrate Evolution Traces a Long and Diverse History. Construction of Complex Chordate Bodies Begins on a Stiffening Scaffold Construction of Complex Chordate Bodies Begins on a Stiffening Scaffold Chordata is the most advanced animal phylum. All chordates have, at some time during development, a notochord. Both invertebrate

More information

MORPHOMETRIC CHARACTERISTICS OF EUROPEAN GRAYLING ( YMALLUS THYMALLUS L.) IN TRANSCARPATHIAN RIVERS A. I. KUCHERUK 1 A. I. MRUK 1 V. O.

MORPHOMETRIC CHARACTERISTICS OF EUROPEAN GRAYLING ( YMALLUS THYMALLUS L.) IN TRANSCARPATHIAN RIVERS A. I. KUCHERUK 1 A. I. MRUK 1 V. O. UDC 597-14:597.553.2(477) MORPHOMETRIC CHARACTERISTICS OF EUROPEAN GRAYLING ( YMALLUS THYMALLUS L.) IN TRANSCARPATHIAN RIVERS A. I. KUCHERUK 1 A. I. MRUK 1 V. O. KOVALENKO 2 1 Institute of Fisheries of

More information

BI 101: Chordate Animals & Biodiversity

BI 101: Chordate Animals & Biodiversity BI 101: Chordate Animals & Biodiversity Final Exam tomorrow Announcements Same time, same place Review Mary s Peak biodiversity results Lab 10 today 1 Deuterostome Development 2 Phylum Chordata Contains

More information

- 7 - DESCRIPTION OF SPECIES

- 7 - DESCRIPTION OF SPECIES I - 7 - DESCRIPTION OF SPECIES./' Anguilla bicolor McClelland ' Level-finned eel (Figs.i & 2) Length of head 6-8 times in length of body; Diameter of eye 8-10 times, Inter-orbital length 2-2.5 times, Gape

More information

They re under the sea, with their strange horse like heads and. kangaroo pouches. They re interesting and strange sea

They re under the sea, with their strange horse like heads and. kangaroo pouches. They re interesting and strange sea They re under the sea, with their strange horse like heads and kangaroo pouches. They re interesting and strange sea creatures. They re sea horses. You will learn about their habitat, body, prey and predators,

More information

Chlorurus japanensis (Bloch, 1789) (Plate VIII, 57 and 58)

Chlorurus japanensis (Bloch, 1789) (Plate VIII, 57 and 58) click for previous page Perciformes: Labroidei: Scaridae 3477 Chlorurus japanensis (Bloch, 1789) (Plate VIII, 57 and 58) En - Palecheek parrotfish; Sp - Loro rostro pálido. Maximum standard length about

More information

CAUDAL FIN AND BODY MOVEMENT IN THE PROPULSION OF SOME FISH

CAUDAL FIN AND BODY MOVEMENT IN THE PROPULSION OF SOME FISH J. Exp. Biol. (1963), 40. 23-56 23 With 1 plate and 21 text-figures Printed in Great Britain CAUDAL FIN AND BODY MOVEMENT IN THE PROPULSION OF SOME FISH BY RICHARD BAINBRIDGE Zoological Laboratory, Cambridge

More information

Chapter 10. Part 1: Cartilaginous Fishes

Chapter 10. Part 1: Cartilaginous Fishes Chapter 10 Part 1: Cartilaginous Fishes Objectives Understand how hagfishes and lampreys differ from all other fishes. Describe how sharks, skates, and rays are related. Differentiate between cartilaginous

More information

Landmarking protocol

Landmarking protocol Landmarking protocol Jonathan Chang Introduction You will be marking key points on images of fish, which will help determine the shape of different fishes and how that affects their performance in the

More information

Cichlids of East Africa A Model of Vertebrate Radiation. ww.waveformenergetics.com

Cichlids of East Africa A Model of Vertebrate Radiation. ww.waveformenergetics.com Cichlids of East Africa A Model of Vertebrate Radiation ww.waveformenergetics.com www.wikipedia.com Lake Malawi 2-2020 million years old Fifth largest lake in the world by volume Bordered by Tanzania,

More information

SCHOOLING BEHAVIOR OF HAEMULON SPP. IN BERMUDA REEFS AND SEAGRASS BEDS

SCHOOLING BEHAVIOR OF HAEMULON SPP. IN BERMUDA REEFS AND SEAGRASS BEDS SCHOOLING BEHAVIOR OF HAEMULON SPP. IN BERMUDA REEFS AND SEAGRASS BEDS Hillary, Department of Biology,, Worcester, MA 01610 (hisullivan@clarku.edu) Abstract Schooling behavior is common among many different

More information

Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus: three-dimensional kinematics during propulsion and maneuvering

Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus: three-dimensional kinematics during propulsion and maneuvering The Journal of Experimental Biology 28, 273-2763 Published by The Company of Biologists 2 doi:1.1242/jeb.176 273 Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus: three-dimensional

More information

Marine Life. Fishes. Introductory Oceanography Ray Rector - Instructor

Marine Life. Fishes. Introductory Oceanography Ray Rector - Instructor Marine Life Fishes Introductory Oceanography Ray Rector - Instructor MARINE FISHES - Main Concepts 1) Fishes are the oldest group of vertebrates 2) Fish inhabit virtually every marine habitat worldwide

More information

CHAPTER 12 FISH GUIDED NOTES

CHAPTER 12 FISH GUIDED NOTES Name Date Period CHAPTER 12 FISH GUIDED NOTES Class Osteichthyes includes all Osteichthyes are cold-blooded vertebrates that breathe through gills and use fins for swimming. Bony fishes share several distinguishing

More information

Slide 1. Slide 1. Next. 5:30:08 AM

Slide 1. Slide 1. Next.  5:30:08 AM Slide 1 Slide 1 http://www3.utep.edu/leb/mosquito/larvslide1.htm10/27/2004 5:30:08 AM Slide 1 Slide 2 Recognition that the specimens are mosquito larvae is a prerequisite to identification of the genera.

More information

Lab: Biology of Fishes

Lab: Biology of Fishes Lab: Biology of Fishes The Basic Fish: The essential elements of the fish framework include a skull, a backbone made up of a series of vertebrae, and two pairs of fins- the pectorals and the pelvics. The

More information

DESCRIPTION OF A BATHYPELAGIC FISH, LESTIDIUM BLANCI SP. NOV. (FAMILY PARALEPIDIDAE) FROM THE ARABIAN SEA*

DESCRIPTION OF A BATHYPELAGIC FISH, LESTIDIUM BLANCI SP. NOV. (FAMILY PARALEPIDIDAE) FROM THE ARABIAN SEA* J.: mar. biol. Ass. India, 10, 12 (1 & 2): 146-150 DESCRIPTION OF A BATHYPELAGIC FISH, LESTIDIUM BLANCI SP. NOV. (FAMILY PARALEPIDIDAE) FROM THE ARABIAN SEA* K. N. RASACHANDRA KARTHA Central Marine Fisheries

More information

Atsuko YAMAGUCHI. Since the catches of these fish decrease as the waters, including those around western Kyushu and

Atsuko YAMAGUCHI. Since the catches of these fish decrease as the waters, including those around western Kyushu and Atsuko YAMAGUCHI distributions, feeding habits, reproductive behavior, off the coast of Nagasaki, western Kyushu. It is growth, migration, population structure, and other relatively large biological aspects

More information

oxfitates AMiiiui?can JMllselIm Threadfin from New Guinea BY J. T. NICHOLS A New Blenny from Bali and a New

oxfitates AMiiiui?can JMllselIm Threadfin from New Guinea BY J. T. NICHOLS A New Blenny from Bali and a New AMiiiui?can JMllselIm oxfitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER i68o JUNE 30, 1954 A New Blenny from Bali and a New Threadfin

More information

-8- spinous. nape caudal fin. body depth. pectoral fin. anus. total length Fig. 4

-8- spinous. nape caudal fin. body depth. pectoral fin. anus. total length Fig. 4 click for previous page -8-1.3 Illustrated Glossary of Technical Terms and Measurements External Morphology and Measurements spinous dorsal fin soft nape caudal fin interorbital body depth snout lateral

More information

Unit 19.2: Fish. Vocabulary fish spawning swim bladder

Unit 19.2: Fish. Vocabulary fish spawning swim bladder Unit 19.2: Fish Lesson Objectives Describe structure and function in fish. Explain how fish reproduce and develop. Give an overview of the five living classes of fish. Summarize the evolution of fish.

More information

FAO SPECIES IDENTIFICATION SHEETS. FAMILY: LETHRINIDAE FISHING AREA 51 (W. Indian Ocean) Lethrinus conchyliatus (Smith, 1959)

FAO SPECIES IDENTIFICATION SHEETS. FAMILY: LETHRINIDAE FISHING AREA 51 (W. Indian Ocean) Lethrinus conchyliatus (Smith, 1959) click for previous page LETH Leth 9 1983 FAO SPECIES IDENTIFICATION SHEETS FAMILY: LETHRINIDAE FISHING AREA 51 (W. Indian Ocean) Lethrinus conchyliatus (Smith, 1959) OTHER SCIENTIFIC NAMES STILE IN USE:

More information

FAO SPECIES IDENTIFICATION SHEETS CONGIOPODIDAE* Horsefishes

FAO SPECIES IDENTIFICATION SHEETS CONGIOPODIDAE* Horsefishes click for previous page CONGIO 1983 FAO SPECIES IDENTIFICATION SHEETS FISHING AREA 51 (W. Indian Ocean) CONGIOPODIDAE* Horsefishes Bottom fishes, with large heads and strongly compressed bodies. Snout

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature17654 Contents Supplementary Text S1. Calculating Locomotor Costs Supplementary Table 1. Estimated ranging costs for humans and other hominoids Supplementary Text S2. Estimating the Costs

More information

FICHES D IDENTIFICATION DU PLANCTON

FICHES D IDENTIFICATION DU PLANCTON FICHES D IDENTIFICATION DU PLANCTON Edited by G.A. ROBINSON Institute for Marine Environmental Research Prospect Place, The Hoe, Plymouth PLl 3DH, England FICHE NO. 176 GADIDAE Ciliata Couch, 1832 by NECLA

More information

DURING the last 520 million years, the process of evolution

DURING the last 520 million years, the process of evolution 556 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 29, NO. 3, JULY 2004 Morphology and Experimental Hydrodynamics of Fish Fin Control Surfaces George V. Lauder and Eliot G. Drucker Abstract Over the past 520

More information

FAO SPECIES IDENTIFICATION SHEETS CAESIONIDAE. Fusiliers

FAO SPECIES IDENTIFICATION SHEETS CAESIONIDAE. Fusiliers click for previous page CAES FAO SPECIES IDENTIFICATION SHEETS FISHING AREA 51 (W. Indian Ocean) CAESIONIDAE Fusiliers Lutjanoid fishes, moderately deep-bodied to slender and fusiform, laterally compressed.

More information

Order Cichliformes, cichlids. Cichlid mouth part diversity

Order Cichliformes, cichlids. Cichlid mouth part diversity Order Cichliformes, cichlids South America, Africa, India, one North American species 112 genera, 1300 species, many undescribed Interrupted lateral line Oviparous, Variable forms of parental care Centrarchid

More information

Biology 11. Phylum Chordata: Subphylum Vertebrata: The Fishys

Biology 11. Phylum Chordata: Subphylum Vertebrata: The Fishys Biology 11 Phylum Chordata: Subphylum Vertebrata: The Fishys Phylum Chordata is typically divided into four subphyla: Higher Chordates We are going to spend the next few classes talking about the Subphylum

More information

Dogfish Shark Dissection Introduction 1. What are two reasons why spiny dogfish are used for study in laboratories?

Dogfish Shark Dissection Introduction 1. What are two reasons why spiny dogfish are used for study in laboratories? Dogfish Shark Dissection Introduction 1. What are two reasons why spiny dogfish are used for study in laboratories? 2. Someone who studies fish is called an. 3. Sharks and fish belong to the Phylum a.

More information

Key Words: Attraction, Color Cue, and Wavelength. Introduction

Key Words: Attraction, Color Cue, and Wavelength. Introduction COLOR CUE AND MOVEMENT ATTRACTION OF BERMUDA BREAM DIPLODUS-BERMUDENSIS 1 Jason Silva 2, Biology Department,, 950 Main Street, Worcester, Ma 01610 (jmoreira@clarku.edu) Abstract Bermuda bream (Diplodus

More information

A COMPARATIVE STUDY OF THE MECHANICS OF FLYING AND SWIMMING IN SOME COMMON BROWN BATS

A COMPARATIVE STUDY OF THE MECHANICS OF FLYING AND SWIMMING IN SOME COMMON BROWN BATS A COMPARATIVE STUDY OF THE MECHANICS OF FLYING AND SWIMMING IN SOME COMMON BROWN BATS THOMAS J. CRAFT, MARIAN I. EDMONDSON, AND ROBERT AGEE Central State College, Wilberforce, Ohio Although bats made their

More information

DROPLETS FROM THE PLANKTON NET. XXI Title.

DROPLETS FROM THE PLANKTON NET. XXI Title. DROPLETS FROM THE PLANKTON NET. XXI Title RECORD OF SAPPHIRINA SALPAE GIESBRE THE NORTH PACIFIC, WITH NOTES ON IT COPEPODITE STAGES- Author(s) Furuhashi, Kenzo Citation PUBLICATIONS OF THE SETO MARINE

More information

Mobula hypostoma (Lesser Devil Ray)

Mobula hypostoma (Lesser Devil Ray) Mobula hypostoma (Lesser Devil Ray) Family: Myliobatidae (Eagle and Manta Rays) Order: Rajiformes (Rays and Sawfish) Class Chondrichthyes (Cartilaginous Fish) Fig. 1. Lesser devil ray, Mobula hypostoma.

More information

Readings in Chapter 2, 3, and 7.

Readings in Chapter 2, 3, and 7. Early Vertebrates Readings in Chapter 2, 3, and 7. Using the Tree of Life Web Project www.tolweb.org org A project to put the entire tree of life, a phylogeny of all life, on the web. Biologists world-wide

More information

Fish. Water Dwelling Animals

Fish. Water Dwelling Animals Fish Water Dwelling Animals Class Agnatha (Jawless fish) They are believed to be the most primitive and oldest vertebrates. Lamprey and hagfish are the only 2 living members of this class and are placed

More information

Perch Dissection Lab

Perch Dissection Lab Perch Dissection Lab Introduction: The fish in the class Osteichthyes have bony skeletons. There are three groups of the bony fish - -- ray-finned fish, lobe-finned fish, and the lung fish. The perch is

More information

Prototypical Robotic Fish with Swimming Locomotive Configuration in Fluid Environment

Prototypical Robotic Fish with Swimming Locomotive Configuration in Fluid Environment Prototypical Robotic Fish with Swimming Locomotive Configuration in Fluid Environment P.Nilas, N. Suwanchit, and R. Lumpuprakarn Abstract--Aquatic animal has always inspired many researchers interest to

More information

February 17, Unit 2. Biodiversity. Chordata, the vertebrates

February 17, Unit 2. Biodiversity. Chordata, the vertebrates Unit 2 Biodiversity Chordata, the vertebrates Phylum Chordata Examples: Sea squirts, fish, birds, dinosaurs, humans. General characteristics: 1. Bilaterally symmetrical 2. Coelomate 3. One way digestive

More information

Focus Fish anatomy and acoustic technology

Focus Fish anatomy and acoustic technology NOAA Gray s Reef National Marine Sanctuary Acoustic Fish Tagging Project Activity: Make and Implant a tag (transmitter) into a Snapper or Grouper Species Then Dissect Fish Grades 9-12 Developed by C.J.

More information

64 FAO Species Catalogue Vol. 18

64 FAO Species Catalogue Vol. 18 click for previous page 64 FAO Species Catalogue Vol. 18 Epetriodus Cohen and Nielsen, 1978 Type species: Epetriodus freddyi Cohen and Nielsen, 1978 by original designation. Fig. 61 Epetriodus freddyi

More information

NATIONAL BIORESOURCE DEVELOPMENT BOARD Dept. of Biotechnology Government of India, New Delhi

NATIONAL BIORESOURCE DEVELOPMENT BOARD Dept. of Biotechnology Government of India, New Delhi NATIONAL BIORESOURCE DEVELOPMENT BOARD Dept. of Biotechnology Government of India, New Delhi MARINE BIORESOURCES FORMS DATA ENTRY: Form- 1(general) For office use: Fauna: Flora Microorganisms General Category:

More information

click for previous page D E

click for previous page D E click for previous page D E DREP FAO SPECIES IDENTIFICATION SHEETS 1974 FISHING AREAS 57, 71 (E Ind. Ocean) (W Cent. Pacific) DREPANIDAE Sicklefishes (placed by some authors, together with the Platacidae,

More information

Euteleostomi. Actinopterygii. Class Actinopterygii, Subclass Chondrostei, Order Acipenseriformes, Sturgeon and Paddlefish

Euteleostomi. Actinopterygii. Class Actinopterygii, Subclass Chondrostei, Order Acipenseriformes, Sturgeon and Paddlefish Acipenseriformes: spiracles heterocercal caudal fin Cartilaginous skeleton (secondary) spiral valve Actinopterygii Euteleostomi Class Actinopterygii, Subclass Chondrostei, Order Acipenseriformes, Sturgeon

More information

O'opu Prints and Dissections

O'opu Prints and Dissections O'opu Prints and Dissections Tina Alcain Konawaena High School HCPS III Science Standards Addressed: SC.BS.4.6 Grade Level: 9 th -12th Project Time Span: 2-3 class periods To The Teacher: This lesson is

More information

Table: IUCN Red List Assessment Results

Table: IUCN Red List Assessment Results Table: IUCN Red List Assessment Results Extinction Risk & Conservation of the World s Sharks & Rays Species Group No. of Species Assessed under Red List TM Criteria No. of Species Classified as Threatened*

More information

Sea urchin density along a depth gradient at Rodney's Rock and Champagne Bay, Dominica

Sea urchin density along a depth gradient at Rodney's Rock and Champagne Bay, Dominica Sea urchin density along a depth gradient at Rodney's Rock and Champagne Bay, Dominica Michele Felix Cassie Kalinec Julia Lemmon Carl Raetzsch A.J. Vale Andrew Woolley May 28 June 17, 2004 1 Abstract The

More information

Design of a Robotic Fish Propelled by Oscillating Flexible Pectoral Foils

Design of a Robotic Fish Propelled by Oscillating Flexible Pectoral Foils The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems October 11-15, 2009 St. Louis, USA Design of a Robotic Fish Propelled by Oscillating Flexible Pectoral Foils Yueri Cai, Shusheng

More information

FISHES. Agnatha Chondrichthyes Osteichthyes

FISHES. Agnatha Chondrichthyes Osteichthyes FISHES Agnatha Chondrichthyes Osteichthyes General Characteristics! Ectothermic! Vertebrates! Have scales! Swim with fins! Almost all exclusively aquatic! Filter oxygen from water over gills Classes of

More information

Characteristics of Animals pp Topic 7: Animal Diversity Ch Symmetry pp Characteristics of Animals

Characteristics of Animals pp Topic 7: Animal Diversity Ch Symmetry pp Characteristics of Animals Topic 7: Animal Diversity Ch. 32-34 Characteristics of Animals pp.704-705 Animals: Are eukaryotic Are multicellular Are ingestive heterotrophs Have no cell walls Most are motile Most have tissues organized

More information

Function of the Dorsal Fin in Bluegill Sunfish: Motor Patterns During Four Distinct Locomotor Behaviors

Function of the Dorsal Fin in Bluegill Sunfish: Motor Patterns During Four Distinct Locomotor Behaviors JOURNAL OF MORPHOLOGY 228:37-326 (1996) Function of the Dorsal Fin in Bluegill Sunfish: Motor Patterns During Four Distinct Locomotor Behaviors BRUCE C. JAYNE, ADRIAN F. LOZADA, AND GEORGE V. LAUDER Department

More information

Chapter 25: Fishes 1

Chapter 25: Fishes 1 Chapter 25: Fishes 1 2 Jawless Fishes (Agnatha) Cartilaginous Fishes (Chondrichthyes) Bony Fishes (Osteichthyes) Lamprey Whale shark Scorpion fish 3 Gills Single-loop Blood Circulation Vertebral column

More information

Dead Perch Parts. ACADEMIC STANDARDS: 4 th Grade B. Know that living things are made up of parts that have specific functions.

Dead Perch Parts. ACADEMIC STANDARDS: 4 th Grade B. Know that living things are made up of parts that have specific functions. Dead Perch Parts Fish Anatomy Adapted from: An original Creek Connections activity created from the Fish Anatomy model. Grade Level: Intermediate or advanced Duration: 30 minutes Setting: classroom Summary:

More information

40- BURROWING MECHANISM

40- BURROWING MECHANISM 40- BURROWING MECHANISM The anguilliform fishes are capable of swimming and burrowing. The simplest type A.bicolor swims about freely and only occasionally hides in the bottom clay, while the most advanced

More information

EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS

EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS *Jeong-Rok Kim 1), Hyeok-Jun Koh ), Won-Sun Ruy 3) and Il-Hyoung Cho ) 1), 3), ) Department of Ocean System Engineering, Jeju

More information

ADAPTIVE RADIATION AND EVOLUTION: FISHES

ADAPTIVE RADIATION AND EVOLUTION: FISHES ADAPTIVE RADIATION AND EVOLUTION: FISHES Purpose The purpose of this exercise is to illustrate some of the adaptive radiation and subsequent evolution of fishes. We will make direct observations of living

More information

Experimental Hydrodynamics Analysis of Trout Locomotion for Simulation in Robot-Fish

Experimental Hydrodynamics Analysis of Trout Locomotion for Simulation in Robot-Fish J. Basic. Appl. Sci. Res., 3(4)221-226, 2013 2013, TextRoad Publication ISSN 2090-4304 Journal of Basic and Applied Scientific Research www.textroad.com Experimental Hydrodynamics Analysis of Trout Locomotion

More information

NATIONAL BIORESOURCE DEVELOPMENT BOARD Dept. of Biotechnology Government of India, New Delhi

NATIONAL BIORESOURCE DEVELOPMENT BOARD Dept. of Biotechnology Government of India, New Delhi NATIONAL BIORESOURCE DEVELOPMENT BOARD Dept. of Biotechnology Government of India, New Delhi MARINE BIORESOURCES FORMS DATA ENTRY: Form- 1(general ) (please answer only relevant fields;add additional fields

More information

K. N. Mishm and P. S. Ohoudhary. Central Institute of Fisheries Education, Bombay-61 INTRODUCTION

K. N. Mishm and P. S. Ohoudhary. Central Institute of Fisheries Education, Bombay-61 INTRODUCTION BIOLOGY AND MORPHOMETRY STUDY OF DREPANE PUNCTATA (CUV & VAL) AT JUVENILE STAGE OF BOMBAY COAST K. N. Mishm and P. S. Ohoudhary Central Institute of Fisheries Education, Bombay-61 ABSTRACT The metric and

More information

Natural History of Vertebrates Characters Used in Fish Identification (modified )

Natural History of Vertebrates Characters Used in Fish Identification (modified ) Natural History of Vertebrates Characters Used in Fish Identification 1-9-03 (modified 20050118) This lab is designed to familiarize the student with characters used in the identification of fishes. Only

More information

NATIONAL BIORESOURCE DEVELOPMENT BOARD Dept. of Biotechnology Government of India, New Delhi

NATIONAL BIORESOURCE DEVELOPMENT BOARD Dept. of Biotechnology Government of India, New Delhi NATIONAL BIORESOURCE DEVELOPMENT BOARD Dept. of Biotechnology Government of India, New Delhi For office use: MARINE BIORESOURCES FORMS DATA ENTRY: Form- 1(general ) Ref. No.: (please answer only relevant

More information

Development and Identification of Three Species of Thai Ricefish, Oryzias, in the Mekong Basin

Development and Identification of Three Species of Thai Ricefish, Oryzias, in the Mekong Basin Tropical Natural History 12(1): 75-88, April 2012 2012 by Chulalongkorn University Development and Identification of Three Species of Thai Ricefish, Oryzias, in the Mekong Basin APICHART TERMVIDCHAKORN

More information

Contribution to the morphology of the third-instar larvae of Laccophilus poecilus KLUG (Coleoptera: Dytiscidae)

Contribution to the morphology of the third-instar larvae of Laccophilus poecilus KLUG (Coleoptera: Dytiscidae) Genus Vol. 15(1): 31-36 Wroc³aw, 30 III 2004 Contribution to the morphology of the third-instar larvae of Laccophilus poecilus KLUG (Coleoptera: Dytiscidae) EUGENIUSZ BIESIADKA and IWONA KA KAŹMIERSKA

More information

Aquatic vertebrates that are characterized by:

Aquatic vertebrates that are characterized by: Aquatic vertebrates that are characterized by: Paired fins Used for movement Scales Used for protection Gills Used for exchanging gases Fishes were the first vertebrates to evolve The evolution of jaws

More information

Figure 1: Chordate Characteristics

Figure 1: Chordate Characteristics I. General Chordate Characteristics Chordates are distinguished as a group by the presence of four embryonic features that may persist into adulthood in some species, but disappear as development progresses

More information

Exhibit Show (Use handout in Visitor s Guide to determine show times) (6 pts): 1. What was the name of the presentation that you attended?

Exhibit Show (Use handout in Visitor s Guide to determine show times) (6 pts): 1. What was the name of the presentation that you attended? Name: Aquarium of the Pacific Bio 20 Field Trip (60 pts.) Guidelines For The Trip: 1. Parking in the aquarium parking structure costs $8. 2. Pick up a visitor s guide and the handout listing the exhibit

More information

Constraints on starting and stopping: behavior compensates for reduced pectoral fin area during braking of the bluegill sunfish Lepomis macrochirus

Constraints on starting and stopping: behavior compensates for reduced pectoral fin area during braking of the bluegill sunfish Lepomis macrochirus The Journal of Experimental Biology 28, 4735-4746 Published by The Company of Biologists 25 doi:1.1242/jeb.1966 4735 Constraints on starting and stopping: behavior compensates for reduced pectoral fin

More information

Technique. Observations were made on 25 skates caught by trawl. by a small transverse wound in the mid-dorsal line immediately behind

Technique. Observations were made on 25 skates caught by trawl. by a small transverse wound in the mid-dorsal line immediately behind THE SPINAL REFLEXES OF THE SKATE. BY C. HELEN CRAW (Richardson Fellow in Anatomy, University of Toronto). (From the Atlantic Biological Station, St Andrews, New Brunswick.) THE skate is an Elasmobranch,

More information

FISH ANATOMY DIAGRAM AND QUESTIONS

FISH ANATOMY DIAGRAM AND QUESTIONS Name Block FISH ANATOMY DIAGRAM AND QUESTIONS External: 1. What percentage of fish are bony fish? 2. What is the operculum s function? 3. The nostrils are used for, not. 4. Which fins keeps the fish level

More information

Perch Dissection Lab

Perch Dissection Lab Name: Block: Due Date: Perch Dissection Lab Background The fish in the class Osteichthyes have bony skeletons. There are three groups of the bony fish: ray-finned, lobe-finned, and the lungfish. The perch

More information

A Study on Roll Damping of Bilge Keels for New Non-Ballast Ship with Rounder Cross Section

A Study on Roll Damping of Bilge Keels for New Non-Ballast Ship with Rounder Cross Section International Ship Stability Workshop 2013 1 A Study on Roll Damping of Bilge Keels for New Non-Ballast Ship with Rounder Cross Section Tatsuya Miyake and Yoshiho Ikeda Department of Marine System Engineering,

More information

Apogon abrogramma Fraser and Lachner, 1985

Apogon abrogramma Fraser and Lachner, 1985 Apogon abrogramma Fraser and Lachner, 1985 English Name: Faintstripe cardinalfish Family: APOGONIDAE Local Name: Ehrongu boadhi Order: Perciformes Size: Common to 7cm; max. 10cm Specimen: MRS/0203/88 Distinctive

More information

Osteichthyes: Bony Fish

Osteichthyes: Bony Fish About 23,000 different species Osteichthyes: Bony Fish AKA: Teleosts Diversity of fishes Anatomical terminology Dorsal Posterior or caudal Anterior Lateral Lateral Ventral Used for relating different parts.eye

More information

1. Myxinoides (hagfish) are sister to. what monophyletic group? 2. Which is NOT a characteristic of chordata?

1. Myxinoides (hagfish) are sister to. what monophyletic group? 2. Which is NOT a characteristic of chordata? 1. Myxinoides (hagfish) are sister to a) Verterbrata what monophyletic group? b) Gnathastomata c) Urochordata d) Cephalachordata 2. Which is NOT a characteristic of chordata? a) Pharyngeal pouches b) Notochord

More information

LOCOMOTION, ENERGETICS & THERMOREGULATION

LOCOMOTION, ENERGETICS & THERMOREGULATION Simone Baumann-Pickering May 7, 2013 sbaumann@ucsd.edu (858) 534-7280 Marine Mammal Biology SIO 133 LOCOMOTION, ENERGETICS & THERMOREGULATION HYPERPHALANGY (POLY/)HYPERDACTILY A) Risso s dolphin B) Killer

More information

Chordates. Bởi: OpenStaxCollege

Chordates. Bởi: OpenStaxCollege Chordates Bởi: OpenStaxCollege Vertebrates are members of the kingdom Animalia and the phylum Chordata ([link]). Recall that animals that possess bilateral symmetry can be divided into two groups protostomes

More information

Chapter 30 Nonvertebrate Chordates, Fishes, and Amphibians Name

Chapter 30 Nonvertebrate Chordates, Fishes, and Amphibians Name Chapter 30 Nonvertebrate Chordates, Fishes, and Amphibians Name Lab Dissecting a Perch Background Information Fish are the largest group of vertebrates found in fresh and salt water. In fact, over 25,000

More information

Origin and Importance! ! Fish were the first vertebrates to appear on Earth about 500 million years ago.

Origin and Importance! ! Fish were the first vertebrates to appear on Earth about 500 million years ago. 2/9/14 Origin and Importance Evolution Marine Fish Fish were the first vertebrates to appear on Earth about 500 million years ago. Fish are the most economically important organism and are a vital source

More information

FAO SPECIES IDENTIFICATION SHEETS ISTIOPHORIDAE. Billfishes (spearfishes, marlins and sailfishes)

FAO SPECIES IDENTIFICATION SHEETS ISTIOPHORIDAE. Billfishes (spearfishes, marlins and sailfishes) click for previous page ISTIO 1983 FAO SPECIES IDENTIFICATION SHEETS FISHING AREA 51 (W. Indian Ocean) ISTIOPHORIDAE Billfishes (spearfishes, marlins and sailfishes) Body elongate and more or less compressed.

More information

Pleuronectiformes: Pleuronectidae 3863 PLEURONECTIDAE. Righteye flounders

Pleuronectiformes: Pleuronectidae 3863 PLEURONECTIDAE. Righteye flounders click for previous page Pleuronectiformes: Pleuronectidae 3863 PLEURONECTIDAE Righteye flounders by D.A. Hensley Diagnostic characters: Body oval-shaped or elongate, strongly compressed (size to about

More information