V MW & 2.0 MW High output in modest winds

Size: px
Start display at page:

Download "V MW & 2.0 MW High output in modest winds"

Transcription

1 V MW & 2.0 MW High output in modest winds

2 Innovation in blade technology High output in modest winds With the V MW and V MW models, Vestas introduces two turbines that open up a whole new range of opportunities for exploiting sites with modest wind conditions and low turbulence. The goal of improving the competitiveness of wind power, combined with a desire to supply the large market for turbines in areas with modest wind conditions, led Vestas to develop these two new models, which can generate up to 25 per cent more energy compared to a V MW turbine. The two new turbines thus combine the well proven V MW nacelle with the newly developed 90-metre rotor. Vestas has reduced the nominal output of the turbine to 1.8 MW in areas with IEC category IIA wind speeds i.e. mean wind speeds of up to 8.5 m/s. To optimise the dynamic transmission loads, the V MW turbine has been designed for IEC IIIA sites, where the average wind speed is lower. The new blade is extremely light, a breakthrough Vestas achieved by using a range of new materials. For example, carbon fibre a strong, rigid yet very light material has been used instead of fibreglass for the load carrying structure of the blade. Due to the strength of carbon fibre, it has been possible to reduce the amount of material used for the blades, thus cutting the overall weight even further and consequently reducing loads. In fact, the new 44- metre blades for the V90 rotor are lighter than the 39- metre blades for the V80 rotor. Moreover, Vestas has made great improvements to the airfoil design of the new blades. These airfoils are the first in a new generation, improving energy production, reducing sensitivity to roughness on the leading edge of the blade, and maintaining a good geometrical relationship between one airfoil thickness and the next. The geometry of the new blades was defined by optimising the relationship between the overall impact of load on the turbine and its annual energy production. The airfoil was developed in collaboration with the Risø National Laboratory in. The innovative Vestas blade design improves performance and increases output yet reduces the loads transferred to the machine. 44 metres of innovative blade technology The conventional design approach states that the desire for greater output is inevitably linked with bigger and heavier turbines. This, however, would make it difficult to achieve the overall goal of producing energy at a lower cost price per kilowatt hour. The new V90 blade design features a number of new exciting developments.

3 Hub controller 6 Gearbox 11 Transformer 16 Machine foundation 2 Pitch cylinder 7 Parking brake 12 Blade 17 Yaw gears 3 Blade hub 8 Service crane 13 Blade bearing 18 Composite disc coupling 4 Main shaft 9 VMP-Top controller with converter 14 Rotor lock system 19 OptiSpeed generator 5 Oil cooler Ultrasonic wind sensors Hydraulic unit Generator cooler Power (kw) Power curve V MW & 2.0 MW 2,500 2,250 2,000 1,750 1,500 1,250 1, Wind speed (m/s) V MW V MW

4 Technical specifications Rotor 30 Wind Diameter: 90 m Area swept: 6,362 m 2 Nominal revolutions: 14.9 rpm Operational interval: rpm Number of blades: 3 Power regulation: Pitch/OptiSpeed Air brake: Three separate pitch cylinders Speed (m/s) 25 Hub height: 80 m Tower 30 Pitch Operational data IEC IIA: IEC IIIA: 1,800 kw 2,000 kw Cut-in wind speed: 4 m/s 4 m/s Nominal wind speed: 12 m/s 13 m/s Stop wind speed: 25 m/s 25 m/s Angle (degrees) Generator IEC IIA: IEC IIIA: Type: Asynchronous Asynchronous with OptiSpeed with OptiSpeed Nominal output: 1,800 kw 2,000 kw Operational data: 50 Hz 50 Hz 690 V 690 V Speed (rpm) Generator Gearbox 900 Type: Planetary/helical stages Control 2500 Output Type: Microprocessor-based control of all the turbine functions with the option of remote monitoring. Output regulation and optimisation via OptiSpeed and OptiTip pitch regulation. Power (kw) Hub height: Tower: Nacelle: Rotor: Total: t = metric tons Weight IEC IIA: 80 m 6 t 68 t 36 t 260 t OptiSpeed allows the nominal speed of revolution of both the rotor and the generator to vary by approximately 60%. This minimises both unwanted fluctuations in the output to the grid supply and the loads on the vital parts of the construction. All specifications subject to change without notice.

5 Improved gearboxes Vestas has taken into account the fact that longer blades mean higher loads on the mechanical components of the turbine. As a result, the transmission system in the nacelle has been reinforced. At the same time, adjustments have been made that reinforce the load-transferring bolt connections, the yaw system and the gearbox. As a result of 2 years of field research, analyses, testing and development work in co-oporation with main suppliers of gearboxes, the new turbines are equipped with a completely new, stronger and more efficient gearbox generation. Strong and light tower By implementing a number of improvements in the design, Vestas introduces a new tower for the V and V MW turbines. Intelligent design has resulted in a tower that is lighter. One of the breakthroughs increasing the fatigue strength of the tower was the innovative idea of using magnets to fasten the interior components to the tower wall rather than using welded brackets. Ultimate strength was achieved by using a stronger steel type than previously. The 80 metre tower for the V and V MW turbines weighs only approximately 6 tons, where a similar V80 tower model at the same height weighs around 0 tons. Vestas has reduced total tower weight by approximately 44 tons, thus facilitating more cost effective transport. Vestas OptiSpeed * The V MW and V MW turbines are fitted with OptiSpeed, a system that enables the rotor to operate at variable speed (RPM) and hereby optimises the aerodynamic efficiency of the rotor. OptiSpeed is a further development of the OptiSlip system, which allowed the rotor speed to vary by as much as %. With OptiSpeed, the rotor speed can now vary by up to approximately 60%. OptiSpeed is an efficient solution as the converter only converts the generator rotor energy, which accounts for a small part of the entire energy production of the turbine. The energy generated by the generator rotor is transformed back to the electrical grid by means of the converter. The use of a converter eliminates the need to consume reactive power from the electricical grid. Nevertheless, it is possible to adjust the turbine to supply or consume reactive power, if appropriate. In short: OptiSpeed optimises energy production, especially in modest winds, making it easy to adapt the operation of the turbine to the parameters of the electricity grid. * Vestas OptiSpeed is not available in the USA and Canada.

6 Contacts Subsidiaries Vestas - Danish Wind Technology A/S Smed Sørensens Vej 1 Fax vestas-dwt@vestas.com Vestas - Scandinavian Wind Technology A/S Smed Sørensens Vej 1 Fax vestas-swt@vestas.com Vestas - International Wind Technology A/S Smed Sørensens Vej 1 Fax vestas-int@vestas.com Vestas - American Wind Technology, Inc. 111 SW Columbia Street, Suite 480 Portland, OR 971 USA Tel Fax vestas-awt@vestas-awt.com Vestas Deutschland GmbH Otto-Hahn-Strasse Husum/Nordsee Germany Tel Fax vestas@vestas.de Vestasvind Svenska AB Åkarevägen Falkenberg Sweden Tel Fax info@vestasvind.se Vestas - Nederland Windtechnologie B.V. Dr. Langemeijerweg 1 a Postbus AB Rheden The Netherlands Tel Fax vestas@vestas.nl IWT - Italian Wind Technology S.r.l. Via Ariosto 12 Zona Industriale 740 Taranto Italy Tel Fax vestas@vestas-iwt.it Vestas - Celtic Wind Technology Ltd. P.O. Box 9263 Campbeltown, PA28 6WA, Argyll Scotland Tel Fax v-celtic@vestas.com Sales companies Vestas Hellas Wind Technology S.A. 0, A. Papandreou Ave. 2nd Floor Glyfada, Athens Greece Tel Fax Vestas France SAS Le Millénium Bâtiment A 501, rue Denis Papin Montpellier France Tel Fax vestas-france@vestas.com Vestas - Australian Wind Technology Pty. Ltd. 33 Coventry Street, Southbank Melbourne, Victoria 3006 Australia Tel Fax Beijing Vestas Wind Technology Ltd. 29A2, China Merchants Tower, Jianguo Rd. Chaoyang District Beijing 0022 China Tel: Fax: Vestas - Canadian Wind Technology, Inc. R.R No Concession 5 Kincardine, Ontario N2Z 2X6 Canada Tel Fax Associated company Vestas RRB India Ltd. 189, Sukhdev Vihar New Delhi India Tel Fax vrrb@gndel.global.net.in 09/03 Vestas Wind Systems A/S Smed Sørensens Vej 5 Fax vestas@vestas.com

V MW Versatile megawattage

V MW Versatile megawattage V80-1.8 MW Versatile megawattage This system features microprocessors that rotate the blades around their longitudinal axes, thus ensuring continuous adjustment to maintain optimal blade angles in relation

More information

V MW Offshore leadership

V MW Offshore leadership V120-4.5 MW Offshore leadership OptiSpeed allows the rotor speed to vary within a range of approximately 60 per cent in relation to nominal rpm. Thus with OptiSpeed, the rotor speed can vary by as much

More information

V MW. Exceptional performance and reliability at high-wind-speed sites. vestas.com

V MW. Exceptional performance and reliability at high-wind-speed sites. vestas.com V90-3.0 MW Exceptional performance and reliability at high-wind-speed sites vestas.com We deliver on the promise of wind power SUPERIOR YIELD AT HIGH-WIND-SPEED SITES High standards for weight and performance

More information

The power of the wind

The power of the wind The Vestas profile The power of the wind The wind has been a key factor in world economy for thousands of years. However, the fundamental principle remains the same transforming wind energy into motion.

More information

General Specification. V MW 60 Hz OptiSlip Wind Turbine. Item no R3 Class 1

General Specification. V MW 60 Hz OptiSlip Wind Turbine. Item no R3 Class 1 General Specification V80 1.8 MW 60 Hz OptiSlip Wind Turbine Item no. 944411.R3 Class 1 (6a) Date: 28. May 2002 Class: 1 Item no.: 944411.R3 Page: 2 of 18 Contents... Page 1. Introduction...3 2. Wind Climate...3

More information

TOPICS TO BE COVERED

TOPICS TO BE COVERED UNIT-3 WIND POWER TOPICS TO BE COVERED 3.1 Growth of wind power in India 3.2 Types of wind turbines Vertical axis wind turbines (VAWT) and horizontal axis wind turbines (HAWT) 3.3 Types of HAWTs drag and

More information

Expertise, Innovation and reduction of cost of energy: Vestas experience

Expertise, Innovation and reduction of cost of energy: Vestas experience Expertise, Innovation and reduction of cost of energy: Vestas experience Nicolas Wolff, VP General Manager Vestas France Conference on Cost of Wind Energy, Embassy of Germany in Paris 15 November 2012

More information

Control Strategies for operation of pitch regulated turbines above cut-out wind speeds

Control Strategies for operation of pitch regulated turbines above cut-out wind speeds Control Strategies for operation of pitch regulated turbines above cut-out wind speeds Helen Markou 1 Denmark and Torben J. Larsen, Risø-DTU, P.O.box 49, DK-4000 Roskilde, Abstract The importance of continuing

More information

Lely Aircon LA30 Wind turbine

Lely Aircon LA30 Wind turbine Lely Aircon LA30 Wind turbine Summary Details for Performance, Duration and Acoustic Measurements Lely Aircon 30 Wind Turbine UK MCS Certification Summary List of contents 1. List of included Amendments...

More information

LECTURE 18 WIND POWER SYSTEMS. ECE 371 Sustainable Energy Systems

LECTURE 18 WIND POWER SYSTEMS. ECE 371 Sustainable Energy Systems LECTURE 18 WIND POWER SYSTEMS ECE 371 Sustainable Energy Systems 1 HISTORICAL DEVELOPMENT The first wind turbine used to generate electricity was built by La Cour of Denmark in 1891 2 HISTORICAL DEVELOPMENT

More information

Wind Energy Technology. What works & what doesn t

Wind Energy Technology. What works & what doesn t Wind Energy Technology What works & what doesn t Orientation Turbines can be categorized into two overarching classes based on the orientation of the rotor Vertical Axis Horizontal Axis Vertical Axis Turbines

More information

Bijlage 2-2 Specificaties Windturbines

Bijlage 2-2 Specificaties Windturbines Bijlage 2-2 Specificaties Windturbines Bijlage 2-2a Specificaties Vestas V90 2MW Document no.: 0004-6207 V15 2016-02-16 V90 1.8/2.0 MW 50 Hz VCS Vestas Wind Systems A/S Hedeager 42 8200 Aarhus N Denmark

More information

2MW baseline wind turbine: model development and verification (WP1) The University of Tokyo & Hitachi, Ltd.

2MW baseline wind turbine: model development and verification (WP1) The University of Tokyo & Hitachi, Ltd. 2MW baseline wind turbine: model development and verification (WP1) The University of Tokyo & Hitachi, Ltd. Downwind turbine technology, IEA Wind Task 40 First Progress Meeting, Tokyo, Japan 11 Dec, 2017

More information

Wind Power generation

Wind Power generation Lecture 28 Wind Power generation Basic technology Wind electric generator converts kinetic energy available in wind to electrical energy by using rotor, gear box and generator. Wind Power The terms "wind

More information

IIIYEAR/VISEMESTER ME2023 RENEWABLE SOURCES OF ENERGY UNIT II WIND ENERGY

IIIYEAR/VISEMESTER ME2023 RENEWABLE SOURCES OF ENERGY UNIT II WIND ENERGY Department Of Mechanical Engineering IIIYEAR/VISEMESTER ME2023 RENEWABLE SOURCES OF ENERGY UNIT II WIND ENERGY 9 Wind Data and Energy Estimation wind Energy Conversion Systems Wind Energy generators and

More information

CACTUS MOON EDUCATION, LLC

CACTUS MOON EDUCATION, LLC CACTUS MOON EDUCATION, LLC ENERGY FROM THE WIND WIND ENERGY TECHNOLOGIES EDUCATION MODULE www.cactusmooneducation.com TEACHER S NOTES (wnd01tn) _ Cactus Moon Education, LLC. ENERGY FROM THE WIND WIND ENERGY

More information

Wind farm performance

Wind farm performance Wind farm performance Ali Marjan Wind Energy Submission date: June 2016 Supervisor: Lars Sætran, EPT Norwegian University of Science and Technology Department of Energy and Process Engineering Wind

More information

Small Scale Wind Technologies Part 2. Centre for Renewable Energy at Dundalk IT CREDIT

Small Scale Wind Technologies Part 2. Centre for Renewable Energy at Dundalk IT CREDIT Small Scale Wind Technologies Part 2 Centre for Renewable Energy at Dundalk IT CREDIT 1 Part 2 Small and large scale wind turbine technologies 2 Overview of small scale grid connected system Wind Turbine

More information

Henvey Inlet Wind LP Henvey Inlet Wind Henvey Inlet Wind Energy Centre Wind Turbine Specifications Report. Final

Henvey Inlet Wind LP Henvey Inlet Wind Henvey Inlet Wind Energy Centre Wind Turbine Specifications Report. Final LP Energy Centre Wind Turbine Specifications Report Final LP Energy Centre (HIWEC) - Wind Turbine Specifications Report Final Prepared by: AECOM 105 Commerce Valley Drive West, Floor 7 905 886 7022 tel

More information

Wind Turbine Noise Emission Customised Solutions for French Legislation

Wind Turbine Noise Emission Customised Solutions for French Legislation Wind Turbine Noise Emission Customised Solutions for French Legislation Énergie éolienne et innovation : quelles solutions face aux exigences techniques, réglementaires et environnementales? MEDDTL le

More information

PRESSURE DISTRIBUTION OF SMALL WIND TURBINE BLADE WITH WINGLETS ON ROTATING CONDITION USING WIND TUNNEL

PRESSURE DISTRIBUTION OF SMALL WIND TURBINE BLADE WITH WINGLETS ON ROTATING CONDITION USING WIND TUNNEL International Journal of Mechanical and Production Engineering Research and Development (IJMPERD ) ISSN 2249-6890 Vol.2, Issue 2 June 2012 1-10 TJPRC Pvt. Ltd., PRESSURE DISTRIBUTION OF SMALL WIND TURBINE

More information

Power curves - use of spinner anemometry. Troels Friis Pedersen DTU Wind Energy Professor

Power curves - use of spinner anemometry. Troels Friis Pedersen DTU Wind Energy Professor Power curves - use of spinner anemometry Troels Friis Pedersen DTU Wind Energy Professor Spinner anemometry using the airflow over the spinner to measure wind speed, yaw misalignment and flow inclination

More information

Wind Turbine on Telecom Tower

Wind Turbine on Telecom Tower Wind Turbine on Telecom Tower Load Estimation and Structural Design Approach Anil Agarwal (IIT Hyderabad) Srinivas Aluri (Hara Industries) Project overview 2 Motivation Telecom towers get average 13.5

More information

III. Wind Energy CHE 443 III. Wind Energy

III. Wind Energy CHE 443 III. Wind Energy WIND ENERGY Wind energy is the kinetic energy of air moving from one place to another in the form of wind. Wind is created as the results of uneven heating of the earth by the sun: Warm air rises leaving

More information

THE HORNS REV WIND FARM AND THE OPERATIONAL EXPERIENCE WITH THE WIND FARM MAIN CONTROLLER

THE HORNS REV WIND FARM AND THE OPERATIONAL EXPERIENCE WITH THE WIND FARM MAIN CONTROLLER Copenhagen Offshore Wind 25, 26-28 October 25 1 THE HORNS REV WIND FARM AND THE OPERATIONAL EXPERIENCE WITH THE WIND FARM MAIN CONTROLLER Jesper Runge Kristoffersen M.Sc.EE Elsam Engineering A/S, Kraftværksvej

More information

Upgrading Vestas V47-660kW

Upgrading Vestas V47-660kW Guaranteed performance gains and efficiency improvements Upgrading Vestas V47-660kW Newly developed controller system enables increased Annual Energy Production up to 6.1% and safe turbine lifetime extension

More information

Experience with the design, manufacture, test and commercialisation of the REpower 6M turbine

Experience with the design, manufacture, test and commercialisation of the REpower 6M turbine Experience with the design, manufacture, test and commercialisation of the REpower 6M turbine UK Offshore Wind Danish Embassy in London 4th of December 2012 Norbert Giese, REpower Systems SE REpower founded

More information

青岛宝通进出口贸易有限公司. Wind Products List and Introductions

青岛宝通进出口贸易有限公司. Wind Products List and Introductions Wind Products List and Introductions 400W Wind Turbine e 1.1 400W diffuse wind turbine technical parameters Blade material & quality Reinforced fiber glass*8 Wind rotor diameter (m) 1.25 Rated power/maximum

More information

Comparison of Wind Turbines Regarding their Energy Generation.

Comparison of Wind Turbines Regarding their Energy Generation. Comparison of Wind Turbines Regarding their Energy Generation. P. Mutschler, Member, EEE, R. Hoffmann Department of Power Electronics and Control of Drives Darmstadt University of Technology Landgraf-Georg-Str.

More information

Load Consequences when Sweeping Blades - A Case Study of a 5 MW Pitch Controlled Wind Turbine

Load Consequences when Sweeping Blades - A Case Study of a 5 MW Pitch Controlled Wind Turbine Downloaded from orbit.dtu.dk on: Nov 26, 2018 Load Consequences when Sweeping Blades - A Case Study of a 5 MW Pitch Controlled Wind Turbine Verelst, David Robert; Larsen, Torben J. Publication date: 2010

More information

Wind turbine Varying blade length with wind speed

Wind turbine Varying blade length with wind speed IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, PP 01-05 www.iosrjournals.org Wind turbine Varying blade length with wind speed Mohammed Ashique

More information

Test Summary Report Giraffe 2.0 Hybrid Wind-Solar Power Station - for wind: according to IEC Annex M - for solar: measurement report

Test Summary Report Giraffe 2.0 Hybrid Wind-Solar Power Station - for wind: according to IEC Annex M - for solar: measurement report Contact person Tanja Tränkle 2016-06-29 4P05805-R01 rev. 1 1 (7) Safety +46 10 516 57 19 Tanja.Trankle@sp.se Innoventum AB Morgan Widung / Marcus Ulmefors Turning Torso office 275 Lilla Varvsgatan 14 211

More information

Workshop Session 1: Resources, technology, performance

Workshop Session 1: Resources, technology, performance IBC 3rd Annual Wind Energy Conference Adelaide February 2004 Workshop Session 1: Resources, technology, performance Iain MacGill and Hugh Outhred School of Electrical Engineering and Telecommunications

More information

Study Of Wind Turbines

Study Of Wind Turbines Study Of Wind Turbines Dr. Sumit Gupta,AbhishekMathur, AjayKr.Panwar, AjayKr. Thagriya,Dilipsatoliya Professor, Department of Physics,Maharishi Arvind Institute of Engineering & Technology, Jaipur ABSTRACT:There

More information

Ameliorating the Negative Damping in the Dynamic Responses of a Tension Leg Spar-Type Support Structure with a Downwind Turbine

Ameliorating the Negative Damping in the Dynamic Responses of a Tension Leg Spar-Type Support Structure with a Downwind Turbine 1 Ameliorating the Negative Damping in the Dynamic Responses of a Tension Leg Spar-Type Support Structure with a Downwind Turbine Madjid Karimirad Torgeir Moan Author CeSOS Centre Centre for Ships for

More information

How Does A Wind Turbine's Energy Production Differ from Its Power Production? 1

How Does A Wind Turbine's Energy Production Differ from Its Power Production? 1 Siting Wind Power: Wind Power Curves & Community Considerations (Teacher Notes) (Assessing the Feasibility of Wind Power for Pennsylvania) Notes on Part 1 A Beaufort scale is included on the next page

More information

An Analysis of Damaged Wind Turbines by Typhoon Maemi in 2003

An Analysis of Damaged Wind Turbines by Typhoon Maemi in 2003 An Analysis of Damaged Wind Turbines by Typhoon Maemi in 23 Takeshi Ishihara 1), Atsushi Yamaguchi 1), Keiji Takahara 2), Takehiro Mekaru 2) and Shinich Matsuura 3) 1) Institute of Engineering Innovation,

More information

WIND TURBINE DESIGN. Dušan Medveď

WIND TURBINE DESIGN. Dušan Medveď WIND TURBINE DESIGN ABSTRACT Dušan Medveď This paper deals with main design of wind turbine concerning with structure of wind turbines, option between vertical and horizontal axis wind turbines to optimising

More information

Modulation of Vertical Axis Wind Turbine

Modulation of Vertical Axis Wind Turbine Modulation of Vertical Axis Wind Turbine Apurwa Gokhale 1, Nehali Gosavi 2, Gurpreet Chhabda 3, Vikrant Ghadge 4, Dr. A.P.Kulkarni 5 1,2,3,4 Vishwakarma Institute of Information Technology, Pune. 5 Professor,

More information

CONTROL STRATEGIES FOR LARGE WIND TURBINE APPLICATIONS

CONTROL STRATEGIES FOR LARGE WIND TURBINE APPLICATIONS CONTROL STRATEGIES FOR LARGE WIND TURBINE APPLICATIONS L. MIHET-POPA I. BOLDEA POLITEHNICA University of Timisoara, Dept. of Electrical Machines and Drives V. Parvan, no.2, 300223 Timisoara, Romania, Tel.

More information

Sheet 7 The Wind Turbine

Sheet 7 The Wind Turbine Sheet 7 The Wind Turbine 1. Blade 2. Rotor 3. Pitch 4. Shaft 5. Gear box 6. Generator 7. Nacelle 8. Anemometer 9. Wind vane 10. Yaw 11. Tower 12. Foundations Name: Date: Sheet 8 How a Turbine Works Look

More information

Wind power generation

Wind power generation 6.2 Wind power generation Wind energy was the source of power for sailing ships and has been used for at least 3,000 years in windmills. However, this form of energy fell into disuse with the spread of

More information

Alstom Ocean Energy Path towards Industrailsation. Ken Street 18 th April 2013

Alstom Ocean Energy Path towards Industrailsation. Ken Street 18 th April 2013 Alstom Ocean Energy Path towards Industrailsation Ken Street 18 th April 2013 Three main activities in four Sectors Equipment & services for power generation Equipment & services for rail transport ALSTOM

More information

Part I: Blade Design Methods and Issues. James L. Tangler

Part I: Blade Design Methods and Issues. James L. Tangler Part I: Blade Design Methods and Issues James L. Tangler Senior Scientist National Renewable Energy Laboratory National Wind Technology Center Steady-State Aerodynamics Codes for HAWTs Selig, Tangler,

More information

Evaluation of aerodynamic criteria in the design of a small wind turbine with the lifting line model

Evaluation of aerodynamic criteria in the design of a small wind turbine with the lifting line model Evaluation of aerodynamic criteria in the design of a small wind turbine with the lifting line model Nicolas BRUMIOUL Abstract This thesis deals with the optimization of the aerodynamic design of a small

More information

AN ISOLATED SMALL WIND TURBINE EMULATOR

AN ISOLATED SMALL WIND TURBINE EMULATOR AN ISOLATED SMALL WIND TURBINE EMULATOR Md. Arifujjaman Graduate Student Seminar: Master of Engineering Faculty of Engineering and Applied Science Memorial University of Newfoundland St. John s, NL, Canada

More information

Pressure distribution of rotating small wind turbine blades with winglet using wind tunnel

Pressure distribution of rotating small wind turbine blades with winglet using wind tunnel Journal of Scientific SARAVANAN & Industrial et al: Research PRESSURE DISTRIBUTION OF SMALL WIND TURBINE BLADES WITH WINGLET Vol. 71, June 01, pp. 45-49 45 Pressure distribution of rotating small wind

More information

7 th International Conference on Wind Turbine Noise Rotterdam 2 nd to 5 th May 2017

7 th International Conference on Wind Turbine Noise Rotterdam 2 nd to 5 th May 2017 7 th International Conference on Wind Turbine Noise Rotterdam 2 nd to 5 th May 2017 Sound power level measurements 3.0 ir. L.M. Eilders, Peutz bv: l.eilders@peutz.nl ing. E.H.A. de Beer, Peutz bv: e.debeer@peutz.nl

More information

Job Sheet 1 Blade Aerodynamics

Job Sheet 1 Blade Aerodynamics Job Sheet 1 Blade Aerodynamics The rotor is the most important part of a wind turbine. It is through the rotor that the energy of the wind is converted into mechanical energy, which turns the main shaft

More information

Introduction to Wind Energy Systems

Introduction to Wind Energy Systems Introduction to Wind Energy Systems Hermann-Josef Wagner Institute for Energy Systems and Energy Economy Ruhr-University Bochum, Germany lee@lee.rub.de Summer School of Physical Societies, Varenna 01.08.2012

More information

PVK OPEN LOOP PUMPS. Bulletin E

PVK OPEN LOOP PUMPS. Bulletin E PVK OPEN LOOP PUMPS Bulletin 47025-E Table of Contents Performance Assurance page 3 Features and Benefits page 4-5 Specifications page 6 Pump Controls page 7 Table of Contents Curves Performance page 8

More information

Fundamentals of Wind Energy

Fundamentals of Wind Energy Fundamentals of Wind Energy Alaska Wind Energy Applications Training Symposium Bethel, Alaska E. Ian Baring-Gould National Renewable Energy Laboratory TOPICS Introduction Energy and Power Wind Characteristics

More information

Post-mortem study on structural failure of a wind farm impacted by super typhoon Usagi

Post-mortem study on structural failure of a wind farm impacted by super typhoon Usagi Downloaded from orbit.dtu.dk on: Nov 26, 2018 Post-mortem study on structural failure of a wind farm impacted by super typhoon Usagi Chen, Xiao; Li, Chuan Feng; Xu, Jian Zhong Publication date: 2015 Document

More information

Energy Utilisation of Wind

Energy Utilisation of Wind Ing. Pavel Dostál, Ph.D., Ostrava University 1 Energy Utilisation of Wind Choice of locality Energy and wind output Wind-power installations Wind-power installations: types and classification Basic parts

More information

Windar Photonics Wind Sensor. Great at Control

Windar Photonics Wind Sensor. Great at Control Windar Photonics Wind Sensor Version 1.0 2012 Contents Imagine Being Able to Predict the Wind 5-6 Wind Sensors in a New Light 7-8 You Harvest the Wind Better from the Top 9-10 Result of a Bright Idea 11-12

More information

5-Blade High Output 3500W Max. Hybrid Output/3000W Rated/48V WindMax Hybrid Wind Turbine w/controller, Xantrex XW4548 Inverter, Grid-tie w/backup

5-Blade High Output 3500W Max. Hybrid Output/3000W Rated/48V WindMax Hybrid Wind Turbine w/controller, Xantrex XW4548 Inverter, Grid-tie w/backup 5-Blade High Output 3500W Max. Hybrid Output/3000W Rated/48V WindMax Hybrid Wind Turbine w/controller, Xantrex XW4548 Inverter, Grid-tie w/backup Xantrex XW-SCP XW System Control Panel is needed to configure

More information

Wind Projects: Optimizing Site Selection

Wind Projects: Optimizing Site Selection Wind Projects: Optimizing Site Selection ECOWAS Regional Workshop on Wind Energy Babul Patel, Principal Alain Rosier, Vice President Nexant, Inc. Praia, Cape Verde November 4-5, 2013 Basic Criteria for

More information

Spinner Anemometry Pedersen, T.F.; Sørensen, Niels; Madsen, H.A.; Møller, R.; Courtney, M.; Enevoldsen, P.; Egedal, P.

Spinner Anemometry Pedersen, T.F.; Sørensen, Niels; Madsen, H.A.; Møller, R.; Courtney, M.; Enevoldsen, P.; Egedal, P. Aalborg Universitet Spinner Anemometry Pedersen, T.F.; Sørensen, Niels; Madsen, H.A.; Møller, R.; Courtney, M.; Enevoldsen, P.; Egedal, P. Published in: Proceedings of The European Wind Energy Conference

More information

OFFSHORE WIND: A CRASH COURSE

OFFSHORE WIND: A CRASH COURSE OFFSHORE WIND: A CRASH COURSE OFFSHORE WIND: DEFINED OFFSHORE WIND: Construction of wind farms in bodies of water to generate electricity from wind. Unlike the typical usage of the term offshore in the

More information

Precise Finish. Fast Results. Easy to Use.

Precise Finish. Fast Results. Easy to Use. trimjet E Precise Finish. Fast Results. Easy to Use. The WINTERSTEIGER trimjet is an automatic edge grinding machine for skis and snowboards. Equipped with disc technology from the ski industry, the trimjet

More information

Wind Energy Basics Lecture 13

Wind Energy Basics Lecture 13 Wind Energy Basics Lecture 13 Based on a Presentation made by Marc Chappell, MSC Enterprises, Energy Efficiency and Renewable and Energy Workshop, Feb. 5, 2003, Kingston, ON, and information from http://www.windpower.org

More information

Wind loads investigations of HAWT with wind tunnel tests and site measurements

Wind loads investigations of HAWT with wind tunnel tests and site measurements loads investigations of HAWT with wind tunnel tests and site measurements Shigeto HIRAI, Senior Researcher, Nagasaki R&D Center, Technical Headquarters, MITSUBISHI HEAVY INDSUTRIES, LTD, Fukahori, Nagasaki,

More information

Flexible Engineered Solutions International CALM Buoy Swivels

Flexible Engineered Solutions International CALM Buoy Swivels Flexible Engineered Solutions International CALM Buoy Swivels Merchant Court, North Seaton Industrial Estate, Ashington, Northumberland, NE63 0YH, England Telephone: +44 (0) 1670 524 960 I Fax: +44 (0)

More information

Development and evaluation of a pitch regulator for a variable speed wind turbine PINAR TOKAT

Development and evaluation of a pitch regulator for a variable speed wind turbine PINAR TOKAT Development and evaluation of a pitch regulator for a variable speed wind turbine PINAR TOKAT Department of Energy and Environment Division of Electric Power Engineering CHALMERS UNIVERSITY OF TECHNOLOGY

More information

A COMPARATIVE STUDY OF MIX FLOW PUMP IMPELLER CFD ANALYSIS AND EXPERIMENTAL DATA OF SUBMERSIBLE PUMP

A COMPARATIVE STUDY OF MIX FLOW PUMP IMPELLER CFD ANALYSIS AND EXPERIMENTAL DATA OF SUBMERSIBLE PUMP IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN 2321-8843 Vol. 1, Issue 3, Aug 2013, 57-64 Impact Journals A COMPARATIVE STUDY OF MIX FLOW PUMP IMPELLER CFD ANALYSIS

More information

WHITE PAPER Copyright Cicli Pinarello SRL - C.F. e P.I

WHITE PAPER Copyright Cicli Pinarello SRL - C.F. e P.I WHITE PAPER 2017 - Copyright Cicli Pinarello SRL - C.F. e P.I. 05994100963 INDEX 0. INTRODUCTION... 3 1. PINARELLO NYTRO BIKE CONCEPT... a. PURPOSES OF THE PROJECT... b. HANDLING AND RIDING FEELING...

More information

Evaluation of wind loads by a passive yaw control at the extreme wind speed condition and its verification by measurements

Evaluation of wind loads by a passive yaw control at the extreme wind speed condition and its verification by measurements Evaluation of wind loads by a passive yaw control at the extreme wind speed condition and its verification by measurements Dec/11/2017 Soichiro Kiyoki Takeshi Ishihara Mitsuru Saeki Ikuo Tobinaga (Hitachi,

More information

Wake measurements from the Horns Rev wind farm

Wake measurements from the Horns Rev wind farm Wake measurements from the Horns Rev wind farm Leo E. Jensen, Elsam Engineering A/S Kraftvaerksvej 53, 7000 Fredericia Phone: +45 7923 3161, fax: +45 7556 4477 Email: leje@elsam.com Christian Mørch, Elsam

More information

That is why. April 24, 2008

That is why. April 24, 2008 That is why Page 1 Our Vision: Wind, Oil and Gas Page 2 Our Product R&D and manufacture Assembly and testing Sales and planning Transport Installation Maintenance A 100% focused value chain Producing turbines

More information

Operating Manual for the Evance Iskra R9000 Wind Turbine

Operating Manual for the Evance Iskra R9000 Wind Turbine L3 CS-01 Operating Manual Operating Manual for the Evance Iskra R9000 Wind Turbine //Level 3 Procedures/L3-CS-01 Operating Manual Date of Issue : 8 th December 2009 Page 1 of 13 Description Author Checked

More information

LiDAR Application to resource assessment and turbine control

LiDAR Application to resource assessment and turbine control ENERGY LiDAR Application to resource assessment and turbine control Dr. Avishek Kumar The New Zealand Wind Energy Conference 13 th April 2016 1 SAFER, SMARTER, GREENER Agenda What is LiDAR? Remote Sensing

More information

Computational studies on small wind turbine performance characteristics

Computational studies on small wind turbine performance characteristics Journal of Physics: Conference Series PAPER OPEN ACCESS Computational studies on small wind turbine performance characteristics To cite this article: N Karthikeyan and T Suthakar 2016 J. Phys.: Conf. Ser.

More information

HydroCOM: High energy savings and excellent controllability

HydroCOM: High energy savings and excellent controllability HydroCOM: High energy savings and excellent controllability Almost all applications require efficient capacity control systems Most of them simply waste energy, are slow and inaccurate. HydroCOM, however,

More information

CFD Analysis of Giromill Type Vertical Axis Wind Turbine

CFD Analysis of Giromill Type Vertical Axis Wind Turbine 242 CFD Analysis Giromill Type Vertical Axis Wind Turbine K. Sainath 1, T. Ravi 2, Suresh Akella 3, P. Madhu Sudhan 4 1 Associate Pressor, Department Mechanical Engineering, Sreyas Inst. Engg. & Tech.,

More information

TEPZZ 69Z 85A T EP A2 (19) (11) EP A2 (12) EUROPEAN PATENT APPLICATION

TEPZZ 69Z 85A T EP A2 (19) (11) EP A2 (12) EUROPEAN PATENT APPLICATION (19) TEPZZ 69Z 8A T (11) EP 2 690 28 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 29.01.14 Bulletin 14/0 (21) Application number: 13177476.2 (1) Int Cl.: F03D 7/02 (06.01) F03D 7/00 (06.01)

More information

Comparison of upwind and downwind operation of the NREL Phase VI Experiment

Comparison of upwind and downwind operation of the NREL Phase VI Experiment Journal of Physics: Conference Series PAPER OPEN ACCESS Comparison of upwind and downwind operation of the NREL Phase VI Experiment To cite this article: S M Larwood and R Chow 2016 J. Phys.: Conf. Ser.

More information

Statistical analysis of fatigue loads in a direct drive wind turbine

Statistical analysis of fatigue loads in a direct drive wind turbine Statistical analysis of fatigue loads in a direct drive wind turbine Håan Johansson Dept. Applied Mechanics Chalmers University of Technology haan.johansson@chalmers.se Vitor Berbyu Dept. Applied Mechanics

More information

10/18/2010. Wind Energy: Agenda. Introduction Wind Industry Wind Turbines Wind Industry Challenges Crawler Cranes

10/18/2010. Wind Energy: Agenda. Introduction Wind Industry Wind Turbines Wind Industry Challenges Crawler Cranes Wind Energy: challenges for the lifting i industry Scott Sanders Manitowoc Cranes Aviad Shapira Technion Israel Institute of Technology Agenda Introduction Wind Industry Wind Turbines Wind Industry Challenges

More information

EXPERIMENTAL INVESTIGATIONS OF BARGE FLOATER WITH MOONPOOL FOR 5 MW WIND TURBINE

EXPERIMENTAL INVESTIGATIONS OF BARGE FLOATER WITH MOONPOOL FOR 5 MW WIND TURBINE EXPERIMENTAL INVESTIGATIONS OF BARGE FLOATER WITH MOONPOOL FOR 5 MW WIND TURBINE 1 MR. G.VIJAYA KUMAR, 2 DR. R. PANNEER SELVAM 1 M.S. Research Scholar, Department of Ocean Engineering, IIT Madras, Chennai,

More information

Weightlifter Nacelle Only

Weightlifter Nacelle Only Weightlifter Nacelle Only i n s t r u c t i o n s About KidWind The KidWind Project is a team of teachers, students, engineers, and practitioners exploring the science behind wind energy in classrooms

More information

Wind Resource Assessment for FALSE PASS, ALASKA Site # 2399 Date last modified: 7/20/2005 Prepared by: Mia Devine

Wind Resource Assessment for FALSE PASS, ALASKA Site # 2399 Date last modified: 7/20/2005 Prepared by: Mia Devine 813 W. Northern Lights Blvd. Anchorage, AK 99503 Phone: 907-269-3000 Fax: 907-269-3044 www.aidea.org/wind.htm Wind Resource Assessment for FALSE PASS, ALASKA Site # 2399 Date last modified: 7/20/2005 Prepared

More information

Yawing and performance of an offshore wind farm

Yawing and performance of an offshore wind farm Yawing and performance of an offshore wind farm Troels Friis Pedersen, Julia Gottschall, Risø DTU Jesper Runge Kristoffersen, Jan-Åke Dahlberg, Vattenfall Contact: trpe@risoe.dtu.dk, +4 2133 42 Abstract

More information

Wind Energy Resource and Technologies

Wind Energy Resource and Technologies Wind Energy Resource and Technologies Dr. Ram Chandra DBT s Energy Bioscience Overseas Fellow Centre for Rural Development and Technology Indian Institute of Technology Delhi Hauz Khas, New Delhi 110 016

More information

FABRICATION OF VERTICAL AXIS WIND TURBINE WITH WIND REDUCER AND EXPERIMENTAL INVESTIGATIONS

FABRICATION OF VERTICAL AXIS WIND TURBINE WITH WIND REDUCER AND EXPERIMENTAL INVESTIGATIONS 87 CHAPTER-4 FABRICATION OF VERTICAL AXIS WIND TURBINE WITH WIND REDUCER AND EXPERIMENTAL INVESTIGATIONS 88 CHAPTER-4 FABRICATION OF VERTICAL AXIS WIND TURBINE WITH WIND REDUCER AND EXPERIMENTAL INVESTIGATIONS

More information

Effect of wind flow direction on the loads at wind farm. Romans Kazacoks Lindsey Amos Prof William Leithead

Effect of wind flow direction on the loads at wind farm. Romans Kazacoks Lindsey Amos Prof William Leithead Effect of wind flow direction on the loads at wind farm Romans Kazacoks Lindsey Amos Prof William Leithead Objectives: Investigate the effect of wind flow direction on the wind turbine loads (fatigue)

More information

Extreme Wind in the Asia Pacific:

Extreme Wind in the Asia Pacific: Extreme Wind in the Asia Pacific: A guessing game or an exact science? Megan Briggs April 2014 Agenda 01 02 03 04 05 Introduction to Extreme Winds Conventional Methods Extreme Winds in Aus/NZ Extreme Winds

More information

Computational Fluid Dynamics

Computational Fluid Dynamics Computational Fluid Dynamics A better understanding of wind conditions across the whole turbine rotor INTRODUCTION If you are involved in onshore wind you have probably come across the term CFD before

More information

Liebherr Top Technology. Cranes for Wind Power

Liebherr Top Technology. Cranes for Wind Power Liebherr Top Technology Cranes for Wind Power 5 concepts for the wind power Liebherr offers optimized crane concepts for the most diverse situations and requirements for the erection of wind s for highest

More information

Courseware Sample F0

Courseware Sample F0 Electric Power / Controls Courseware Sample 85303-F0 A ELECTRIC POWER / CONTROLS COURSEWARE SAMPLE by the Staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this publication

More information

Dräger PAS AirPack 1 Compressed Air Breathing Apparatus

Dräger PAS AirPack 1 Compressed Air Breathing Apparatus Dräger PAS AirPack 1 Compressed Air Breathing Apparatus Designed using leading technology and materials, Dräger s range of heavy-duty airline apparatus is ideal for use where an extended duration of breathing

More information

Offshore // Marine // Subsea Cable solutions that thrive under pressure

Offshore // Marine // Subsea Cable solutions that thrive under pressure Offshore // Marine // Subsea Cable solutions that thrive under pressure Underwater and pressure resistant cables and harnesses for your needs For over 40 years Habia Cable has developed and manufactured

More information

Energy Output. Outline. Characterizing Wind Variability. Characterizing Wind Variability 3/7/2015. for Wind Power Management

Energy Output. Outline. Characterizing Wind Variability. Characterizing Wind Variability 3/7/2015. for Wind Power Management Energy Output for Wind Power Management Spring 215 Variability in wind Distribution plotting Mean power of the wind Betz' law Power density Power curves The power coefficient Calculator guide The power

More information

Analyses of the mechanisms of amplitude modulation of aero-acoustic wind turbine sound

Analyses of the mechanisms of amplitude modulation of aero-acoustic wind turbine sound Analyses of the mechanisms of amplitude modulation of aero-acoustic wind turbine sound Andreas Fischer Helge Aagaard Madsen Knud Abildgaard Kragh Franck Bertagnolio DTU Wind Energy Technical University

More information

Wind Resource Assessment for DEADHORSE, ALASKA

Wind Resource Assessment for DEADHORSE, ALASKA 813 W. Northern Lights Blvd. Anchorage, AK 99503 Phone: 907-269-3000 Fax: 907-269-3044 www.akenergyauthority.org Wind Resource Assessment for DEADHORSE, ALASKA Date last modified: 4/18/2006 Compiled by:

More information

Dräger P7 Pressure, Leak and Leak Rate Measurement

Dräger P7 Pressure, Leak and Leak Rate Measurement Dräger P7 Pressure, Leak and Leak Rate Measurement The gas field entails many dangers and requires maximum safety. This industry has a corresponding number of test standards. Play it safe with the Dräger

More information

FITTINGS AND VALVES Düker Plunger Valve RKV Type 7015 Professional control of flow rates, reservoir levels and pressures Safe, hygienic and durable!

FITTINGS AND VALVES Düker Plunger Valve RKV Type 7015 Professional control of flow rates, reservoir levels and pressures Safe, hygienic and durable! FITTINGS AND VALVES Düker Plunger Valve RKV Type 7015 Professional control of flow rates, reservoir levels and pressures Safe, hygienic and durable! 1 The New Düker Plunger Valve Type 7015 St Plunger valves

More information

WOLFF luffing cranes - latticework frames by specialists. WOLFF luffing cranes An overview of the crane family

WOLFF luffing cranes - latticework frames by specialists. WOLFF luffing cranes An overview of the crane family WOLFF luffing cranes - latticework frames by specialists WOLFF luffing cranes An overview of the crane family Good visibility all around the new WOLFF driver s cab The new driver s cab offers lots of safety

More information

Centriflow Plus High-pressure plug fan - Technical Data

Centriflow Plus High-pressure plug fan - Technical Data Centriflow Plus 3 High-pressure plug fan - Technical Data Contents General description...3 General survey chart...4 Design description Fan Impeller...5 Fan Inlet...5 base with base frame...5 Hub...5 Air

More information

Impact on wind turbine loads from different down regulation control strategies

Impact on wind turbine loads from different down regulation control strategies Downloaded from orbit.dtu.dk on: Jan 24, 2019 Impact on wind turbine loads from different down regulation control strategies Galinos, Christos; Larsen, Torben J.; Mirzaei, Mahmood Published in: Journal

More information

Urban wind turbines do they have a future? Or will they be white elephants?

Urban wind turbines do they have a future? Or will they be white elephants? Urban wind turbines do they have a future? Or will they be white elephants? Presented by Brian Kirke As part of the What On Earth series, UniSA, 1 November 2012 WWEA* is optimistic about small wind (defined

More information