# Wingin It. Students learn about the Bernoulli effect by building an airfoil (airplane wing) and making it fly.

Save this PDF as:

Size: px
Start display at page:

Download "Wingin It. Students learn about the Bernoulli effect by building an airfoil (airplane wing) and making it fly."

## Transcription

1 Wingin It Students learn about the Bernoulli effect by building an airfoil (airplane wing) and making it fly. Grade Levels 5 8 Science Topics Aerodynamics of lift Bernoulli effect Force Velocity Pressure Key Science Skills Formulating models Observing Inferring Questioning Controlling variables Hypothesizing Making models Time Required Advance Preparation Set Up Activity Clean-up 10 minutes 5 minutes minutes with introduction and discussion 2 minutes What you ll need Regular weight copy paper 5 x 10 corrugated cardboard Ruler Bamboo skewers (shish kebab sticks, available in grocery stores) or knitting needles Clear tape Scissors Pencil Small electric fan Cardboard, cardstock, manila file folder or heavy weight paper 4 x6 or larger Pencil-top erasers 2000 OMSI 1

2 Do this first! Assemble the base Build two bases for the class to use as wing testers. 1. With a 5 x10 piece of corrugated cardboard, make a fold at 2, 4, and 6 from the end. 2. Fold the cardboard into a box-like structure with open ends shaped like a trapezoid with the widest edge on the bottom. 3. Tape the structure together into this shape Repeat steps 1 3 to make a second base. Insert the rods 1. Make two dots 3 in. apart in the center of the top side of the cardboard base. 2. Poke the rods (skewers or needles) through the top of the base at the dots. Make sure that the rods are straight with the ends secured in the bottom of the base to keep them stationary. CAUTION: Place pencil end erasers on the sharp ends of the skewers or knitting needles for safety. Make a sample paper wing 1. Photocopy one wing worksheet for each student or student group, and extras for optional extensions. 2. Follow directions under Student Procedure, steps 1 3 to make your sample wing. 3. Place the wing over the skewers onto your assembled base. The holes should be large enough that the wing falls freely to the base over the rods OMSI 2

3 Getting Ready 1. Tape the trapezoidal base with the rods to the table. 2. Set up the fan. Test and adjust using the sample base and wing. Position the fan so that the wind blows over the top of the wing, and the wing rises up the rods. Start with the fan approximately 12 in. away from the base and adjust the distance as needed. Depending on the size and capacity of your fan, you may need to adjust its height, angle, or distance from the base. CAUTION: Always replace eraser tops on skewer ends immediately after airfoil is placed on base to avoid eye injuries with active students OMSI 3

4 Why do this? Ask Students: How do planes fly? Students may suggest that the motor pulls it up, the air lifts it up, propellers push it up, or air pressure forces it up. In reality, there are many factors, which contribute to the airplane lifting into the sky. The Bernoulli effect is one of those factors. Is an airplane wing like a bird s wing? How is it similar or different? Students may suggest that an airplane wing is different than a bird s wing because it is not made of feathers, or because it doesn t go up and down. They may suggest it s the same as a bird s wing because it sticks out sideways from the body. Show the students a sample wing for the activity. This type of wing is called an airfoil. Hand out the Wing Worksheet and ask students not to fold it yet. Make some observations about the placement of the dotted fold line on the Wing Worksheet. Students will notice that it is not in the middle. It does not divide the wing into equal halves. Make observations about the wing you have made. Students will notice that it is curved on top and pointed on one side. Demonstrate how to gently fold the wing along the fold line without making a heavy crease. Demonstrate how to tape the edges of the wing neatly together to form the wing. (See Make a paper wing Student Procedure, steps 1 2.) Consider a red ant starting at the dashed line and walking along the top (the long arched surface) of the wing. Now suppose a black ant starts in the same place at the same time and travels along the bottom (short flat surface) of the wing. Which ant will travel farther? If the two ants meet at the same time at the end of the wing, which ant will have to go faster? 2000 OMSI 4

5 The red ant traveling along the top of the wing will have to go faster since it will have to travel farther in the same amount of time. The red ant travels a greater distance because the top surface of the wing is longer. Normally ants do not walk across airplane wings, but air and wind does pass across the wing. What is air/wind made of? Students may suggest any of the following, all of which are correct: gas, oxygen, nitrogen, carbon dioxide, molecules, atoms. Remind students that we can t always see molecules of a gas (like the air they re breathing right now!). Sometimes we can see gases, such as the steam (gaseous water molecules) from a teapot. If air is made of molecules, imagine wind (moving air) passing over our airplane wing. Do the air molecules blowing over the top wing have to travel farther than the air molecules blowing along the bottom of the wing? Answer: Yes. Air molecules travel farther over the long top of the wing, just as the ant has to walk farther. Since the air molecules on the top surface of the wing have to go farther in the same amount of time, they are moving faster than the air molecules on the lower wing surface. When the molecules move faster over a greater distance, they are more spread out (less dense). When molecules move, they put pressure on whatever they strike. The more molecules that strike the object, the more pressure or force there is on the object. Because there are more air molecules per inch along the bottom of the wing, the pressure of the molecules hitting the bottom of the wing is greater than the pressure from the less dense layer of molecules on the top surface of the wing. This pressure difference causes the wing to be pushed or lifted upward. Lower Pressure Lift Greater Pressure Weight of wing balanced by lift 2000 OMSI 5

6 What to do You will take turns testing your wings on the wing tester. Part A: Make a paper wing 1. Make a light fold at the dashed line so that the printed surface faces out. Do not crease heavily. Note: the fold divides the paper into two unequal parts a longer section and a shorter section. 2. Bring the corners of the paper together, causing the longer side to arch. Tape the edges of the paper together. The wing should have a gentle curve on the upper surface. 3. With the pencil, poke holes through the paper at the circles on both the upper and lower sides of the wing. Make a hole large enough for the yellow part of the pencil to pass through. Part B: Test the paper wing 1. Draw your paper wing. What do you predict will happen when you test your wing in the wind of the fan? 2. Line up the holes in the wing with the rods in the cardboard base. 3. Slide the wing all the way down the rods to the cardboard base. The wing should be curved on the top and flat on the bottom. You may choose to experiment with different positions. 4. Trial 1: Turn on the fan. Observe the wing for seconds. Record your observations. Turn off the fan. 5. Optional Trial 2: Turn on the fan. When the wing is halfway up the rods, hold a card in front of the wing to block the wind from the upper surface of the wing. If the lift is coming from lower pressure on top of the wing, blocking the wind will cause the wing to slide down to the base. Try to block the wind in different ways. Observe for seconds. Write down your observations OMSI 6

7 Turn off the fan. Stuff to talk about What may have caused unexpected results (e.g., misaligned holes, someone moved the fan). These are called sources of error and can affect your experimental results. If we repeated the experiment, how would we fix these problems or control the variables? In the 1700s a European scientist called Daniel Bernoulli developed an idea called the Bernoulli principle. The principle can explain why air moves through a prairie dog s burrow, why smoke goes up a chimney, and how airplanes can fly. We call this the Bernoulli effect. More stuff to do! A. Have students perform additional trials, placing the wing at different angles by making holes at other points in the wing. Encourage students to hypothesize, test, observe, make changes, retest, and draw conclusions. For example, students might put the rods through a different pair of holes on the upper surface of the wing, but in the same holes on the lower surface. This should adjust the angle of the wing. If the angle of the wing is too steep, the difference in air pressure above and below the wing will not be enough for lift. B. Have students repeat the experiment with different weights of paper. Try light construction paper, tracing paper, etc. C. Students may use the inquiry process to investigate different airfoil shapes, e.g., a box shape, a tube shape, a flat leading edge. What s happening? There are many aerodynamic factors that make airplanes fly. In particular, the shape of the wings helps create the force necessary to lift the airplane into the air. Airplane wings are specially designed to provide the upward force called lift. A cross-section of an airplane wing has a shape that is called an airfoil. The upper surface of an airplane wing is curved downward, and the lower surface is usually flat. As the wing moves through the air, the special shape of the wing changes the path of the air flowing around it, which affects the air pressure surrounding the wing. The air passing over the upper curvature of the wing moves faster than the air passing along the lower flat surface. The downward pressure of the faster-moving air above the wing is less than the upward 2000 OMSI 7

8 pressure of the air below the wing, so the wing is pushed up. This upward force resulting from a difference in air pressure is called lift. Daniel Bernoulli developed the physical principle that describes these phenomena in He discovered that increasing the velocity of a gas (or liquid) would lower its pressure. Thus, most airplane wings are designed to take advantage of air pressure differences. Lower Pressure Lift Greater Pressure Weight of wing balanced by lift How it all fits in MATH ZOOLOGY Mark off the rods in half-inches. Record the height to which each wing rises. Calculate the mean, mode, and median of the results of the class. Graph results. Mean: The sum of a list of numbers, divided by the total number of numbers in the list. Median: "Middle value" of a list. Mode: Most common (frequent) value. Other Options: Have each student group collect data on multiple trials of each experiment. Each group will then calculate mean, median, and mode for their trials. How do these numbers differ from group to group or from the wholeclass values? Discuss possible reasons for a wide range of numbers, such as the use of different bases or differing fan positions (different variables and sources of error ). Research and report on the structure of the wings of birds. How does the size and shape of the wing affect the bird s flying habits? For example, compare an eagle, albatross, chicken, robin, duck, penguin, and emu. What is the wing shape? What is the overall body size and shape? What is the wingspan? Do they flap or soar? How long can they soar? 2000 OMSI 8

9 PHYSICS HISTORY LANGUAGE ARTS ART Research and report on the discoveries of Daniel Bernoulli. Research and report on the Wright brothers first flight. Study the Greek myth of Daedalus and Icarus. Look at the scientific and artistic designs of Leonardo da Vinci, then create da Vinci-like designs. Design and color an airfoil. CULTURAL/ SOCIAL STUDIES Investigate aircraft from other nations. How do the designs differ? Can you tell which aircraft originate from the same design? Can you tell which aircraft were manufactured by the same company? Investigate the impact that rapid air travel has had on our society OMSI 9

10 Handout Wing Worksheet Upper Curved Surface Lower Flat Surface 2000 OMSI 10

11 Supplies Worksheet Instructions: Copy this worksheet and calculate the supplies you already have and what you still need. Then copy your completed worksheet to give to a teacher aid or a parent helper to gather the supplies designated in the right-hand Supplies Needed column. No. of students: No. of groups: Supplies Regular weight copy paper for wing Corrugated cardboard for trapezoid base 5 x 10 Ruler Bamboo skewers or knitting needles Clear tape Scissors, paper cutter, or x-acto knife Sharpened pencil Small electric fan Cardboard, cardstock, or heavy weight paper 4 x6 or larger Eraser ends Amount Needed 1-3/student 2/class 1/class 4/class small amount 1/class 1/student 1-2/class 2/class 4/class Supplies on Hand Supplies Needed Note: This activity is a preliminary draft of one of several classroom activities, which are being developed to complement OMSI s Engineer-It! exhibit. Comments and suggestions about this activity are welcome. Please send them to 2000 OMSI 11

### Lesson Plan: Bernoulli s Lift

Lesson Plan: Bernoulli s Lift Grade Level: 5-6 Subject Area: Time Required: Science Preparation: 30 minutes Activity: 3 40-minute classes National Standards Correlation: Science (grades 5-8) Physical Science

### Daniel and the Old Lion Hunter

Daniel and the Old Lion Hunter Theme When the speed of a moving fluid increases, pressure in the fluid decreases, and vice versa. Goal Daniel Bernoulli Swiss mathematician and scientist (1700 1782) Students

### Bernoulli s Principle at Work

Diagram of demonstration Denise Winkler and Kim Brown July 25, 2003 Bernoulli s Principle at Work *Airflow should be straight on the edge of the airfoil. pivot rod airflow counter weight support rod airfoil

### AEROSPACE MICRO-LESSON

AIAA Easily digestible Aerospace Principles revealed for K-12 Students and Educators. These lessons will be sent on a bi-weekly basis and allow grade-level focused learning. - AIAA STEM K-12 Committee.

### SCIENCE and TECHNOLOGY CYCLE 3 MCCAIG ELEMENTARY

NAME SCIENCE and TECHNOLOGY CYCLE 3 MCCAIG ELEMENTARY Air: - colourless, odourless and tasteless, Air and Flight--- Properties of Air - a gas made mainly of nitrogen (78%), oxygen (21%) and small amounts

### The Science of Golf. Test Lab Toolkit The Ball: Aerodynamics. Grades 6-8

The Science of Golf Test Lab Toolkit The Ball: Grades 6-8 Science Technology Engineering Mathematics Table of Contents Welcome to the Test Lab 02 Investigate: Bernoulli s Principle 03 Investigate: Wind

### TLC Technology Education Draft

TLC Technology Education Draft Title: Airplane Design, Construction, and Flight State Standards: C Explore current transportation technologies and their impacts on society and the environment. C Explore

### Activity Parts of an Aircraft

Activity 4.2.7 Parts of an Aircraft Introduction The science of aeronautics really began to evolve in the late 18th and early 19th centuries. Philosophers and early scientists began to look closely at

### A Table Top Wind Tunnel You Can Build

A Table Top Wind Tunnel You Can Build Basic principles of aerodynamics can be studied in the classroom with this simple, inexpensive wind tunnel. All you need to build it is some cardboard boxes, glue,

### Chapter Overview. Discovering Flight The Early Days of Flight. Chapter 1, Lesson 1

Discovering Flight Chapter Overview Discovering Flight The Early Days of Flight Lesson Overview How humans tried to fly in ancient times Key aviation devices created during ancient times Why machines do

FIRST GRADE ATMOSPHERE 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF FIRST GRADE WATER WEEK 1. PRE: Investigating the water cycle. LAB: Experiencing surface tension. POST: Discovering how

### Air: Weight and Pressure

Purpose To test whether air has weight, exerts pressure, and applies force. Process Skills Observe, measure, collect data, interpret data, identify and control variables, form a hypothesis, predict, draw

### firefly Class Pack Materials for 10 fireflies or Students Activity Guide Grades Time required Concepts Objectives 45 minutes to 1 hour

firefly Class Pack Activity Guide Materials for 10 fireflies or 10 30 Students Grades 3 12 Concepts Math Forces and Motion Earth Science Energy and Transformations Engineering, Art, and Design Using Basic

### Cadette. The Great Paper Clip Airlift. Breathe. STEM Kits

Sponsored By Cadette These activities are from the Leader Guide Book, How to Guide Cadettes Through Breathe. Additional activities were developed exclusively by Girl Scouts - Western Oklahoma to correlate

### ADAM S CUBE 6 PUZZLES IN 1

ADAM S CUBE 6 PUZZLES IN 1 TO PLAY: Choose a puzzle side to play Arrange ALL 5 puzzles pieces within the polygon frame You will earn 50 points for each puzzle side you complete ATTENTION: WHEN YOU ARE

### OIMB GK12 CURRICULUM. Beach Hopper Introduction and Jumping Experiment

OIMB GK12 CURRICULUM 2 nd grade 1 hour (or broken into two lessons) Beach Hopper Introduction and Jumping Experiment Oregon Science Content Standards: 2.1 Structure and Function: Living and non-living

### Wilbur in the damaged flyer after his unsuccessful trial on December 14, His hand still grips the wooden control lever.

The Society thanks you for the report on the success of the 1902 Glider. They are also following the progress of Samuel Langley s flying research. Langley had successfully flown a steam-powered aircraft

### Lesson Plan: Kite Meteorology

Lesson Plan: Kite Meteorology Grade Level: 3 Subject Areas: Time Required: National Standards Correlation: Summary: Objectives: Materials: Science and Math Preparation: 1 hour Activity: 1 hour every day

### How An Airplane Wing Creates Lift

2004 Transportation Education Academy Activity: How An Airplane Wing Creates Lift Standards being met for technological literacy: 1. Number 8 2. Number 9 3. Number 11 4. Number 18 Description: In this

### PRE-TEST Module 2 The Principles of Flight Units /60 points

PRE-TEST Module 2 The Principles of Flight Units 1-2-3.../60 points 1 Answer the following questions. (20 p.) moving the plane (4) upward / forward. Opposed to that is 1. What are the names of the four

### Investigating Factors That Affect Tsunami Inundation A Science Inquiry

Investigating Factors That Affect Tsunami Inundation A Science Inquiry Students build tsunami wave tanks to learn about the affect that both near-coast bathymetry (submarine topography) and coastal landforms

### Unit Review air aerodynamics and flight

SLEs Properties of Air o has pressure o has mass o composition of air Recipe for air Login to Learn Alberta site Click on Grade 6 Click on science Click on The Thrill of Flight Topic 2 What is Air?, Lesson

### Standard 3.1 The student will plan and conduct investigations in which

Teacher Name: Tammy Heddings Date: April 04, 2009 Grade Level: 3-6 Subject: Science Time: 30 minutes Concept: Scientific Investigation Topic: Variables SOLs: Standard 3.1 The student will plan and conduct

Table of Contents Career Overview.................................................. 4 Basic Lesson Plans Hot-Air Balloons Activity 1 Your First Hot-Air Balloon.... 5 Activity 2 Surface Area and Volume...

### Lecture Outline Chapter 15. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 15 Physics, 4 th Edition James S. Walker Chapter 15 Fluids Density Units of Chapter 15 Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy

### SAFETY WARNING. WARNING.

EXPERIMENT MANUAL 1ST EDITION 2014 2014 THAMES & KOSMOS, LLC, PROVIDENCE, RI, USA THAMES & KOSMOS IS A REGISTERED TRADEMARK OF THAMES & KOSMOS, LLC. PROTECTED BY LAW. ALL RIGHTS RESERVED. WE RESERVE THE

### Rocket Activity Foam Rocket

Rocket Activity Foam Rocket Objective Students will learn about rocket stability and trajectory with rubber bandrpowered foam rockets. Description Students will construct rockets made from pipe insulating

### Helicopter C.E.R. Teacher Pages

Helicopter C.E.R. Teacher Pages 45 Minutes Objective Students will conduct an experiment to determine if wing length will affect the descent time of a paper helicopter. Students will analyze their data

### You will not be able to buy the correct kit from the GoldieBlox website or your council shop.

Fling Flyer Design Challenge 1 Overview In the Fling Flyer Design Challenge, Brownies learn about the forces that affect flight as they design, build, and test a Fling Flyer. Brownies learn how to design

### Exercises The Atmosphere (page 383) 20.2 Atmospheric Pressure (pages )

Exercises 20.1 The Atmosphere (page 383) 1. The energizes the molecules in Earth s atmosphere. 2. Why is gravity important to Earth s atmosphere? 3. What would happen to Earth s atmosphere without the

### 20 Gases. Gas molecules are far apart and can move freely between collisions.

Gas molecules are far apart and can move freely between collisions. Gases are similar to liquids in that they flow; hence both are called fluids. In a gas, the molecules are far apart, allowing them to

### #6 Lesson Emergency Rescue Vehicles Engineering Design Assessment

#6 Lesson Emergency Rescue Vehicles Engineering Design Assessment The engineering design process has its own built in assessment phase as the students create their inventions, test them and improve them.

### Gas molecules are far apart. collisions The Atmosphere

Gas molecules are far apart and can move freely between collisions. Gases are similar to liquids in that they flow; hence both are called fluids. In a gas, the molecules are far apart, allowing them to

### Lesson 6 Aerodynamics and flying

36 Lesson 6 Aerodynamics and flying Aerodynamics and flying 37 Suitable for: 11 14 years Curriculum and learning links: Forces, motion, Bernoulli s principle Learning objectives: State that aerodynamics

### Classroom Activities/Lesson Plan

Grade Band: High School Unit 19 Unit Target: Scientific Inquiry Unit Topic: High School Science Fair Lesson 11 Instructional Targets Reading Standards for Literature Range and Level of Text Complexity:

### Pressure and Density Altitude

Pressure and Density Altitude Reference Sources Pilot s Handbook of Aeronautical Knowledge o Pages 9-1 to 9-4, Aircraft Performance o Pages 9-20 to 9-21, Density Altitude Charts Study Questions 1. Where

### The Science of Golf. Test Lab Toolkit The Swing: Driving. Grades Education

The Science of Golf Test Lab Toolkit The Swing: Grades 9-12 Partners in Education Science Technology Engineering Mathematics Table of Contents Welcome to the Test Lab 02 Investigate: Centripetal Force

### Relevent SOL s. Materials and Resources:

Title: Bernoulli s Principle Lab Supplemented with Digital Video Designed by Burke Green and Megan Ward Purpose/Rationale: Bernoulli s Principle is useful in predicting several physical phenomena. It makes

### 2 Characteristics of Waves

CHAPTER 15 2 Characteristics of Waves SECTION Waves KEY IDEAS As you read this section, keep these questions in mind: What are some ways to measure and compare waves? How can you calculate the speed of

### Fluid Mechanics. Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey

Fluid Mechanics Fluid Mechanics Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey Density Regardless of form (solid, liquid, gas) we can define

### parts of an airplane Wing Design BOX Museum Aeronautics Research Mission Directorate in a Series National Aeronautics and Space Administration

National Aeronautics and Space Administration GRADES K-12 Wing Design Aeronautics Research Mission Directorate parts of an airplane Museum in a BOX Series www.nasa.gov MUSEUM IN A BOX (Photo courtesy of

### Using Darts to Simulate the Distribution of Electrons in a 1s Orbital

NAME: Using Darts to Simulate the Distribution of Electrons in a 1s Orbital Introduction: The quantum theory is based on the mathematical probability of finding an electron in a given three dimensional

### Bottle Rocket Launcher P4-2000

WWW.ARBORSCI.COM Bottle Rocket Launcher P4-2000 BACKGROUND: The Bottle Rocket Launcher allows for the exploration of launching rockets using commonly available materials such as plastic soda bottles and

### L 15 Fluids [4] The Venturi Meter. Bernoulli s principle WIND. Basic principles of fluid motion. Why does a roof blow off in high winds?

Basic principles of fluid motion L 15 Fluids [4] >Fluid flow and Bernoulli s s principle >Airplanes and curveballs >viscosity (real fluids) v 1 Continuity equation: v A = constant A 1 A 2 v 2 Bernoulli

### The Science of Golf. Test Lab Toolkit The Swing: Putting. Grades Education

The Science of Golf Test Lab Toolkit The Swing: Grades 9-12 Partners in Education Science Technology Engineering Mathematics Table of Contents Welcome to the Test Lab 02 Investigate: Gravity on the Green

### Gravity, Force and Work

Gravity, Force and Work Vocabulary: force something that pushes or pulls something else gravity a force that pulls everything toward the center of the earth friction a force that is created when something

### Bay Area Scientists in Schools Presentation Plan

Bay Area Scientists in Schools Presentation Plan Lesson Name Measuring Carbon Dioxide with Vernier Probes Presenter(s) Derek Vigil Currey, Ph.D student in Physics at UCB Grade Level 5th Standards Connection(s)

### Transcript BLOSSOMS Soaring In the Wind: The Science of Kite Flying

Transcript BLOSSOMS Soaring In the Wind: The Science of Kite Flying Greetings! Hello! I m. Have you ever flown a kite? It can fly really high and soars in the wind. Today, we will learn about the science

### In the liquid phase, molecules can flow freely from position. another. A liquid takes the shape of its container. 19.

In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position

### C) miles per hour. D) all of the above. 2) When you look at the speedometer in a moving car, you can see the car's

Practice Kinematics Questions (Answers are at the end ) 1) One possible unit of speed is. A) light years per century. B) kilometers per hour. C) miles per hour. D) all of the above.. 2) When you look at

### In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container.

In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position

### The Science of Golf. Test Lab Toolkit The Ball: Aerodynamics. Facilitator Guide Grades 9-12

The Science of Golf Test Lab Toolkit The Ball: Facilitator Guide Grades 9-12 Science Technology Engineering Mathematics Table of Contents Welcome to the Test Lab 02 How to Use the Toolkit 03 Investigate:

### Matter is made up of particles which are in continual random motion Misconception: Only when a substance is in its liquid or gas state do its

Kinetic Theory of Matter Matter is made up of particles which are in continual random motion Misconception: Only when a substance is in its liquid or gas state do its particles move because in these two

### Students measure the change in pressure by varying the volume of trapped air in a syringe while:

How Does a Trapped Gas Behave? Teacher Information Objective Students investigate the effect of changes in the volume of a confined gas on pressure at constant temperature. Using the pressure sensor, students

### 2 Buoyant Force. TAKE A LOOK 2. Identify What produces buoyant force?

CHAPTER 3 2 Buoyant Force SECTION Forces in Fluids BEFORE YOU READ After you read this section, you should be able to answer these questions: What is buoyant force? What makes objects sink or float? How

### Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes:

Name: Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes: Block: In chemistry, the relationships between gas physical properties are described as gas laws. Some of these properties are pressure, volume,

### Gases and Pressure SECTION 11.1

SECTION 11.1 Gases and In the chapter States of Matter, you read about the kineticmolecular theory of matter. You were also introduced to how this theory explains some of the properties of ideal gases.

### Lesson: Sponge Bob and Party Blowers: How Much Air Can You Exhale?

Lesson: Sponge Bob and Party Blowers: How Much Air Can You Exhale? Teacher: Unit Theme/Course: Date: Timing: Kaylan Duthie Human Respiration 7 th Grade Life Science November 15 th and 16 th 2 Days Rationale/Goal:

### LAB 5 Pressure and Fluids

Cabrillo College Physics 10L Full Name LAB 5 Pressure and Fluids Read Hewitt Chapters 11 and 14 What to learn and explore Physicists have found that if they visualize (or model) a gas as a collection of

### What Causes Weather Patterns?

What Causes Weather Patterns? INVESTlGATlON: Water on the Move If you ve ever been soaked in a rainstorm or even surprised by a thundershower in the desert, you know that water is a big part of the weather.

### Rocket Activity Using Dependent and Independent Variables. Constructing the Rocket and Launch System Compressor (LSC)

Rocket Activity Using Dependent and Independent Variables This rocket activity is intended to be used with early middle school students. It can be used to illustrate a number of related principles in science

### Chapter 1, Lesson 5: Air, It s Really There

Chapter 1, Lesson 5: Air, It s Really There Key Concepts In a gas, the particles (atoms and molecules) have weak attractions for one another. They are able to move freely past each other with little interaction

### Moving Air: 1.B.II Sailboats

Moving Air: 1.B.II Sailboats Grade Level 1 Sessions Seasonality Instructional Mode(s) Team Size MA Frameworks WPS Benchmarks Key Words Session I: Introduction to Sailboats and Pictographs 60 minutes Session

### Applications of Bernoulli s principle. Principle states that areas with faster moving fluids will experience less pressure

Applications of Bernoulli s principle Principle states that areas with faster moving fluids will experience less pressure Artery o When blood flows through narrower regions of arteries, the speed increases

### Sounds from Vibrating Air

Let Us Entertain You Activity 3 Sounds from Vibrating Air GOALS In this activity you will: Identify resonance in different kinds of tubes. Observe how resonance pitch changes with length of tube. Observe

### ENGINEERing challenge workshop for science museums in the field of aeronautic engineering

ENGINEERing challenge workshop for science museums in the field of aeronautic engineering 1 Index Workshop ID card...3 Specific unit objectives...4 Resources...4 The workshop...5 Introduction...5 The main

### II.E. Airplane Flight Controls

References: FAA-H-8083-3; FAA-8083-3-25 Objectives Key Elements Elements Schedule Equipment IP s Actions SP s Actions Completion Standards The student should develop knowledge of the elements related to

### CARTESIAN DIVER (1 Hour)

(1 Hour) Addresses NGSS Level of Difficulty: 2 Grade Range: K-2 OVERVIEW In this activity, students will build a Cartesian diver and discover how compression and changes in density cause the diver to mysteriously

### WHAT IS GLIDER? A light engineless aircraft designed to glide after being towed aloft or launched from a catapult.

GLIDER BASICS WHAT IS GLIDER? A light engineless aircraft designed to glide after being towed aloft or launched from a catapult. 2 PARTS OF GLIDER A glider can be divided into three main parts: a)fuselage

### See if you can determine what the following magnified photos are. Number your paper to 5.

Challenge 7 See if you can determine what the following magnified photos are. Number your paper to 5. The Answers: EXPERIMENTAL DESIGN Science answers questions with experiments DEFINE THE PROBLEM Begin

### Roy G. Biv Charles W. McLaughlin

SCIENCE EXPERIMENTS ON FILE Revised Edition 6.25-1 Roy G. Biv Charles W. McLaughlin Topic Relationship between wavelength and frequency of light Time 1 hour! Safety Please click on the safety icon to view

### Walk - Run Activity --An S and P Wave Travel Time Simulation ( S minus P Earthquake Location Method)

Walk - Run Activity --An S and P Wave Travel Time Simulation ( S minus P Earthquake Location Method) L. W. Braile and S. J. Braile (June, 2000) braile@purdue.edu http://web.ics.purdue.edu/~braile Walk

### Satellites, Weather and Climate Activity: Air & water lab Created by: Mike Burris, Champlain Valley Union High School, VT

Satellites, Weather and Climate Activity: Air & water lab Created by: Mike Burris, Champlain Valley Union High School, VT Grade Level: 9-10 Social Studies Curriculum Topic Standards: Subject Keywords:

### KaZoon. Kite Kit. User Guide. Cautionary and Warning Statements

KaZoon Kite Kit User Guide Cautionary and Warning Statements 56799 V0717 This kit is designed and intended for educational purposes only. Use only under the direct supervision of an adult who has read

### Additional Reading General, Organic and Biological Chemistry, by Timberlake, chapter 8.

Gas Laws EXPERIMENTAL TASK Determine the mathematical relationship between the volume of a gas sample and its absolute temperature, using experimental data; and to determine the mathematical relationship

### ROCKETS! SKILLS/OBJECTIVES. o To learn about pressure o To learn about the trial and error process MATERIALS. Baloon rocket:

ROCKETS! SKILLS/OBJECTIVES o To learn about pressure o To learn about the trial and error process MATERIALS Baloon rocket: String Straws Balloons Tape Clothes pin Alka seltzer rocket: Film canister with

### OIMB GK12 CURRICULUM

2 nd Grade 45 minutes SAND DUNES Oregon Science Content Standards: 2.1 Structure and Function: Living and non-living things vary throughout the natural world. 2.2 Interaction and Change: Living and non-living

### Detailed study 3.4 Topic Test Investigations: Flight

Name: Billanook College Detailed study 3.4 Topic Test Investigations: Flight Ivanhoe Girls Grammar School Questions 1 and 2 relate to the information shown in the diagram in Figure 1. z Question 1 y Figure

### Movement and Position

Movement and Position Syllabus points: 1.2 plot and interpret distance-time graphs 1.3 know and use the relationship between average speed, distance moved and 1.4 describe experiments to investigate the

### Principles of Flight. Chapter 4. From the Library at Introduction. Structure of the Atmosphere

From the Library at www.uavgroundschool.com Chapter 4 Principles of Flight Introduction This chapter examines the fundamental physical laws governing the forces acting on an aircraft in flight, and what

### BASIC AIRCRAFT STRUCTURES

Slide 1 BASIC AIRCRAFT STRUCTURES The basic aircraft structure serves multiple purposes. Such as aircraft aerodynamics; which indicates how smooth the aircraft flies thru the air (The Skelton of the aircraft

Table of Contents Career Overview.................................................. 4 Basic Lesson Plans Activity 1 Design a Straw Rocket I...................................... 5 Activity 2 Design a Straw

### Shiel e d Kite t By B y Sam & Ca C rir King Ore r g e o g n o Kite t m e aker e rs s Retr t e r a e t t2013

Shield Kite By Sam & Cari King Oregon Kitemaker s Retreat 2013 SAIL ASSEMBLY Your pre-cut sail pieces include half-inch seam allowances. This provides enough material to complete a 1/4 inch double rolled

### WINDY CITY TOWER. DESIGN CHALLENGE Make a paper tower that can withstand as much wind as possible, without sliding or toppling over.

Grades 6 8, 9 12 20 40 minutes WINDY CITY TOWER DESIGN CHALLENGE Make a paper tower that can withstand as much wind as possible, without sliding or toppling over. MATERIALS Supplies and Equipment: 2" diameter

### Materials: Balloon demo (optional): - balloon, string, drinking straw, flour (optional)

Lesson Plan for Water Rockets Demonstration Concepts: Momentum, aerodynamics, propulsion Applicable Classes: EPSS 9, ASTR 3 Educational (for undergraduates) and Instructional (for TAs) videos available

### You can use a variety of materials for this kite, such as Tyvek, ripstop nylon, Orcon, paper, or mylar or mylar-like plastic gift wrap films.

Woody's " Woodtick " Fighter Kite This kite is easy to make and easy to fly. It's performance will allow you to learn all fighter kite flying skills, plus put an ear to ear grin on your face. What more

March Madness Basketball Tournament Math Project COMMON Core Aligned Decimals, Fractions, Percents, Probability, Rates, Algebra, Word Problems, and more! To Use: -Print out all the worksheets. -Introduce

### The table below shows how the thinking distance and braking distance vary with speed. Thinking distance in m

Q1.The stopping distance of a car is the sum of the thinking distance and the braking distance. The table below shows how the thinking distance and braking distance vary with speed. Speed in m / s Thinking

### Wanting to fly like the birds has always been man s great dream. The story of Icarus and Daedalus, an ancient Greek legend, shows this.

Workshop Metal wings Wanting to fly like the birds has always been man s great dream. The story of Icarus and Daedalus, an ancient Greek legend, shows this. After a long history of attempts to achieve

Great Science Adventures What is a class one lever? Lesson 12 Tool Concepts: Class one levers consist of a rod, fulcrum, load arm, and effort arm. The fulcrum divides the lever into two sides. One side

### Make Bruce's High Performance 'F3' Fighter Kite In Less Than 2 Hours For Under \$3

Make Bruce's High Performance 'F3' Fighter Kite In Less Than 2 Hours For Under \$3 This article was inspired from a chapter in NORTH AMERICAN FIGHTER KITES, my 400+ page fighter kite book on CD ROM. If

### Objective: To launch a soda bottle rocket, achieve maximum time of flight, and safely land a payload (tennis ball).

Bottle Rocket Project 2016-17 Objective: To launch a soda bottle rocket, achieve maximum time of flight, and safely land a payload (tennis ball). Materials: 2 liter plastic soda bottle (carbonated beverage

### Student Exploration: Ripple Tank

Name: Date: Student Exploration: Ripple Tank Vocabulary: constructive interference, crest, destructive interference, diffraction, Huygens Principle, interference, law of superposition, node, refraction,

### SIXTH GRADE OCEANS 1 WEEK LESSON PLANS AND ACTIVITIES

SIXTH GRADE OCEANS 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF SIXTH GRADE WATER WEEK 1. PRE: Evaluating components of the water cycle. LAB: Experimenting with porosity and permeability.

### Levers. Simple Machines: Lever 1

Levers In the last lesson, we spent a lot of time on this strange concept called work. Work happens when something moves a distance against a force. Swell...who cares?! Well, believe it or not, this is

### LAUNCH IT. DESIGN CHALLENGE Design and build an air-powered rocket that can hit a target at least 5 feet away.

Grades 3 5, 6 8 10 60 minutes LAUNCH IT DESIGN CHALLENGE Design and build an air-powered rocket that can hit a target at least 5 feet away. MATERIALS Supplies and Equipment: Several pairs of scissors Balloon

### Homework Exercise to prepare for Class #2.

Homework Exercise to prepare for Class #2. Answer these on notebook paper then correct or improve your answers (using another color) by referring to the answer sheet. 1. Identify the major components depicted

### INTRODUCTION TO LESSON CLUSTER 4

INTRODUCTION TO LESSON CLUSTER 4 COMPRESSING AND EXPANDING AIR A. Lesson Cluster Goals and Lesson Objectives Goals Students should be able to explain the expansion and compression of gases (e.g., air)