Fluid Mechanics. Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey


 Milton Powell
 1 years ago
 Views:
Transcription
1 Fluid Mechanics
2 Fluid Mechanics Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey
3 Density Regardless of form (solid, liquid, gas) we can define how much mass is squeezed into a particular space density mass volume
4 Mass Density Wood Density mass volume ; m V 2 kg, 4000 cm 3 Lead: 11,300 kg/m 3 Wood: 500 kg/m 3 Lead 4000 cm kg Lead 177 cm 3 2 kg Same volume Same mass
5 Gases The primary difference between a liquid and a gas is the distance between the molecules In a gas, the molecules are so widely separated, that there is little interaction between the individual molecules
6 Boyle s Law
7 Boyle s Law Pressure depends on density of the gas Pressure is just the force per unit area exerted by the molecules as they collide with the walls of the container Remember: Pressure is measured in pascal units (Pa) 1Pa = 1 Newton / m 2 (force/area) At sea level, 1atm = kpa or 101,300 N per square meter Double the density, double the number of collisions with the wall and this doubles the pressure
8 Boyle s Law Density is mass divided by volume. Cut the volume in half and you double the density and thus the pressure.
9 Boyle s Law At a given temperature for a given quantity of gas, the product of the pressure and the volume is a constant P 1 V 1 P 2 V 2
10 Pressure A measure of the amount of force exerted on a surface area pressure force area
11 Pressure Pressure is the ratio of a force F to the area A over which it is applied: Force Pressure ; Area P F A A = 2 cm kg P F A 2 (1.5 kg)(9.8 m/s ) 2 x 10 m 4 2 P = 73,500 N/m 2
12 The Unit of Pressure (Pascal): A pressure of one pascal (1 Pa) is defined as a force of one newton (1 N) applied to an area of one square meter (1 m 2 ). Pascal: 2 1 Pa = 1 N/m In the previous example the pressure was 73,500 N/m 2. This should be expressed as: P = 73,500 Pa
13 Pressure / Density Example Schmedrick uses his 6 lb tofu recipe book to teach his little brother Poindexter about density and pressure. He sets the book on the table and calculates the pressure on the table, which depends on the book s orientation. The book s density is 6 lb / ( ) = lb / in 3. P = 6 lb / (9 3 ) = lb / in 2 P = 6 lb / (3 14 ) = lb / in 2 P = 6 lb / (9 14 ) = lb / in 2 9 Tofu Cookbook 14 3 Tofu Cookbook
14 Pressure in a Fluid The pressure is just the weight of all the fluid around the object Atmospheric pressure is just the weight of all the air above on an area on the surface of the earth In a swimming pool the pressure on your body surface is just the weight of the water above you (plus the air pressure above the water)
15 Fluid Pressure Fluid exerts forces in many directions. Try to submerse a rubber ball in water to see that an upward force acts on the float. Fluids exert pressure in all directions. F
16 Pressure in a Fluid So, the only thing that counts in fluid pressure is the gravitational force acting on the mass ABOVE you The deeper you go, the more weight above you and the more pressure Go to a mountaintop and the air pressure is lower Pressure in a fluid is the result of the forces exerted by molecules as they bounce off each other in all directions. Therefore, at a given depth in a liquid or gas, the pressure is the same and acts in every direction
17 Pressure in a Fluid Pressure acts perpendicular to the surface and increases at greater depth.
18 Pressure vs. Depth in Fluid Pressure = force/area mg P ; m V ; V Ah A Vg Ahg P A A Area mg h Pressure at any point in a fluid is directly proportional to the density of the fluid and to the depth in the fluid. Fluid Pressure: P = gh
19 Independence of Shape and Area. Water seeks its own level, indicating that fluid pressure is independent of area and shape of its container. At any depth h below the surface of the water in any column, the pressure P is the same. The shape and area are not factors.
20 *Properties of Fluid Pressure* The forces exerted by a fluid on the walls of its container are always perpendicular. The fluid pressure is directly proportional to the depth of the fluid and to its density. At any particular depth, the fluid pressure is the same in all directions. Fluid pressure is independent of the shape or area of its container.
21 Pressure in a Fluid
22 Barometers The height of the mercury column in a barometer directly measures air pressure. The weight of the column of mercury is balanced by the force exerted at the bottom due to the air pressure. Normal air pressure is 760mm or 760 torr Since mercury is 13.6 times heavier than water, a water barometer would have to be 13.6 times longer.
23 Pascal s Principle Pressure applied to a fluid is transmitted throughout the fluid. Ex) squeezing tube of toothpaste Hydraulic machines work using Pascal s principle.
24 Pascal s Law Pascal s Law: An external pressure applied to an enclosed fluid is transmitted uniformly throughout the volume of the liquid. F in A in F out A out Pressure in = Pressure out F A in in F A out out
25 Hydraulic Press A force F 1 is applied to a hydraulic press. This increases the pressure throughout the oil, lifting the carpascal s principle. This would not work with air, since air is compressible. The pressure is the same throughout the oil. The volume of oil pushed down on the left is the same as the increase on the right. The distance pushed on the left is the trade off. h 2 h 1 F 1 A 2 F 2 A 1 oil
26 Example 3. The smaller and larger pistons of a hydraulic press have diameters of 4 cm and 12 cm. What input force is required to lift a 4000 N weight with the output piston? F F F A ; Fin A A A F in in out out in in out out D R ; Area R 2 (4000 N)( )(2 cm) 2 (6 cm) 2 2 F = 444 N F in A in F out A out R in = 2 cm; R out = 6 cm
27 Floating in Fluids We all know that dense objects sink in fluids of lower density. A rock sinks in air or water, and oil floats on top of water. Basements stay cool in the summer because cool air is denser than warm air. The USS Eisenhower is a ton nuclear powered aircraft carrier made of dense materials like steel, yet it floats. If you weigh yourself under water, the scale would say you are lighter than your true weight. All of these facts can be explained thanks one of the greatest scientists of all timethe Greek scientist, mathematician, and engineerarchimedes. USS Eisenhower Archimedes
28 Archimedes Principle An object that is completely or partially submerged in a fluid experiences an upward buoyant force equal to the weight of the fluid displaced. 2 lb 2 lb The buoyant force is due to the displaced fluid. The block material doesn t matter. If the buoyant force on an object is greater than the force of gravity acting on the object, the object will float. The apparent weight of an object in a liquid is gravitational force (weight) minus the buoyant force
29 Buoyancy Net upward force is called the buoyant force!!!
30 Displacement of Water The amount of water displaced is equal to the volume of the rock.
31 Flotation
32 Flotation A floating object displaces a weight of fluid equal to its own weight. An object floats if its density is less than the density of the fluid it is placed in.
33 Submarines & Blimps A sub is submerged in water, while a blimp is submerged in air. In each a buoyant force must balance the weight of the vessel. Blimps and hot air balloons must displace huge amounts of air because air isn t very dense. The weight of the air a blimp displaces is equal to the blimp s weight. Likewise, the weight of the water a sub displaces is equal to the sub s weight.
34 Buoyancy in a Gas An object surrounded by air is buoyed up by a force equal to the weight of the air displace. Exactly the same concept as buoyancy in water. Just substitute air for water in the statement If the buoyant force is greater than the weight of the object, it will rise in the air
35 Buoyancy in a Gas Since air gets less dense with altitude, the buoyant force decreases with altitude. So helium balloons don t rise forever!!!
36 Atmospheric Pressure Just the weight of the air above you Unlike water, the density of the air decreases with altitude since air is compressible and liquids are only very slightly compressible Air pressure at sea level is about 10 5 newtons/meter 2
37 Bernoulli s Principle When the speed of a fluid increases, the pressure exerted by the fluid decreases.
38 Bernoulli s Principle Uses: airplanes, hoseend sprayers Energy conservation requires that the pressure be lower in a fluid that is moving faster
39 Bernoulli s Principle
40 Air is not incompressible, but the Bernoulli principle can explain, in part, why an airplane flies. The upper surface of the wing has a smaller radius of curvature than the bottom surface. Air on top must travel farther, so it moves faster, and the pressure there is lower, creating lift. Also, because of the wing s upward tilt, air is pushed downward. So, the air pushes back on the wing in the direction of F.
41 Viscosity The resistance to flow by a fluid When a container of liquid is tilted to allow flow, the flowing particles will transfer energy to the particles that are stationary. Increasing temperature of a fluid will decrease viscosity
42 Viscosity Different kinds of fluids flow more easily than others. Oil, for example, flows more easily than molasses. This is because molasses has a higher viscosity, which is a measure of resistance to fluid flow. Inside a pipe or tube a very thin layer of fluid right near the walls of the tube are motionless because they get caught up in the microscopic ridges of the tube, or microwelds. Layers closer to the center move faster and the fluid sheers. The middle layer moves the fastest. v = 0 The more viscous a fluid is, the more the layers want to cling together, and the more it resists this shearing. The resistance is due the frictional forces between the layers as the slides past one another. Note, there is no friction occurring at the tube s surface since the fluid there is essentially still. The friction happens in the fluid and generates heat. The Bernoulli equation applies to fluids with negligible viscosity.
Science 8 Chapter 9 Section 1
Science 8 Chapter 9 Section 1 Forces and Buoyancy (pp. 334347) Forces Force: anything that causes a change in the motion of an object; a push or pull on an object balanced forces: the condition in which
More informationIn the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container.
In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position
More informationIn the liquid phase, molecules can flow freely from position. another. A liquid takes the shape of its container. 19.
In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position
More informationChapter 9 Fluids and Buoyant Force
Chapter 9 Fluids and Buoyant Force In Physics, liquids and gases are collectively called fluids. 3/0/018 8:56 AM 1 Fluids and Buoyant Force Formula for Mass Density density mass volume m V water 1000 kg
More informationNotes Chapter 3. Buoyancy
Notes Chapter 3 Buoyancy Pressure in a Fluid 3.2 Pressure and the Buoyant Forces Liquids and gases are fluids materials that can flow and have no definite shape. Objects in a fluid experience a buoyant
More informationFrom and
From http://www.schoolforchampions.com/science/fluidpressure.htm and http://www.schoolforchampions.com/science/fluidfloating.htm by Ron Kurtus, School for Champions Pressure in Fluids by Ron Kurtus
More informationL 13 Fluid Statics [2] More on fluids. How can a steel boat float. A ship can float in a cup of water! Today s weather
L 13 Fluid Statics [2] More on fluids. How can a steel boat float. A ship can float in a cup of water! Today s weather The deeper you go the higher the pressure P Top A hypothetical volume of water inside
More informationFluids. How do fluids exert pressure? What causes objects to float? What happens when pressure in a fluid changes? What affects the speed of a fluid?
CHAPTER 3 SECTION 3 States of Matter Fluids KEY IDEAS As you read this section, keep these questions in mind: How do fluids exert pressure? What causes objects to float? What happens when pressure in a
More information1. All fluids are: A. gases B. liquids C. gases or liquids D. nonmetallic E. transparent ans: C
Chapter 14: FLUIDS 1 All fluids are: A gases B liquids C gases or liquids D nonmetallic E transparent 2 Gases may be distinguished from other forms of matter by their: A lack of color B small atomic weights
More information1/4/18. Density. Density. Density
Density Density Important property of materials (solids, liquids, gases) Measure of compactness of how much mass an object occupies "lightness" or "heaviness" of materials of the same size Density Equation:
More informationFluid Mechanics  Hydrostatics. Sections 11 5 and 6
Fluid Mechanics  Hydrostatics Sections 11 5 and 6 A closed system If you take a liquid and place it in a system that is CLOSED like plumbing for example or a car s brake line, the PRESSURE is the same
More informationChapter 9. Forces and Fluids
Chapter 9 Forces and Fluids Key Terms hydraulic systems incompressible mass neutral buoyancy pascal pneumatic systems pressure unbalanced forces weight Archimedes principle average density balanced forces
More informationProperties of Fluids. How do ships float?
How do ships float? Despite their weight ships are able to float. This is because a greater force pushing up on the ship opposes the weight or force of the ship pushing down. How do ships float? This supporting
More informationLecture 20. Static fluids
Lecture 20 Static fluids Today s Topics: Density Pressure, Depth and Pressure Gauges Pascal s Principle Archimedes Principle Solids and Fluids Solids Maintain their shape. Generally don t flow Limited
More informationDensity and Buoyancy Notes
Density and Buoyancy Notes Measuring Mass and Volume 3.1 Density A balance can be used to measure the mass of an object. If the object is a liquid, pour it into a graduated cylinder to measure the volume.
More information2 Buoyant Force. TAKE A LOOK 2. Identify What produces buoyant force?
CHAPTER 3 2 Buoyant Force SECTION Forces in Fluids BEFORE YOU READ After you read this section, you should be able to answer these questions: What is buoyant force? What makes objects sink or float? How
More informationHW #10 posted, due Thursday, Dec 2, 11:59 p.m. (last HW that contributes to the final grade)
HW #10 posted, due Thursday, Dec 2, 11:59 p.m. (last HW that contributes to the final grade) Last Lecture Class: States/Phases of Matter, Deformation of Solids, Density, Pressure Today: Pressure vs. Depth,
More informationLecture Outline Chapter 15. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.
Lecture Outline Chapter 15 Physics, 4 th Edition James S. Walker Chapter 15 Fluids Density Units of Chapter 15 Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy
More informationGrade 8 Science: Unit 2Fluids Chapter 9: Force, Pressure Area
Grade 8 Science: Unit 2Fluids Chapter 9: Force, Pressure Area Key Terms: hydraulic systems, incompressible, mass, neutral buoyancy, pascal, pneumatic systems, pressure, unbalanced forces, weight, Archimedes
More informationPressure is defined as force per unit area. Any fluid can exert a force
Physics Notes Chapter 9 Fluid Mechanics Fluids Fluids are materials that flow, which include both liquids and gases. Liquids have a definite volume but gases do not. In our analysis of fluids it is necessary
More informationUnit 1 Lesson 5 Fluids and Pressure. Copyright Houghton Mifflin Harcourt Publishing Company
Feel the Pressure! What are fluids? A fluid is any material that can flow and that takes the shape of its container. A fluid can flow because its particles easily move past each other. Liquids and gases,
More informationPHYS 101 Previous Exam Problems
PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep
More informationConceptual Physics Fundamentals
Conceptual Physics Fundamentals Chapter 7: FLUID MECHANICS This lecture will help you understand: Density Pressure Pressure in a Liquid Buoyancy in a Liquid Pressure in a Gas Atmospheric Pressure Pascal
More informationPHYS:1200 LECTURE 13 FLUIDS (2)
1 PHYS:1200 LECTURE 13 FLUIDS (2) Lecture 13 deals with the properties of fluids at rest or fluid statics. We will be discussing mostly liquids and will introduce two important principles of fluid statics:
More informationChapter 13 Fluids. Copyright 2009 Pearson Education, Inc.
Chapter 13 Fluids Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal s Principle Units of Chapter 13 Measurement of Pressure; Gauges and the
More informationLecture 19 Fluids: density, pressure, Pascal s principle and Buoyancy.
Lecture 19 Water tower Fluids: density, pressure, Pascal s principle and Buoyancy. Hydraulic press Pascal s vases Barometer What is a fluid? Fluids are substances that flow. substances that take the shape
More informationChapter 15 Fluid. Density
Density Chapter 15 Fluid Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy Applications of Archimedes Principle By Dr. Weining man 1 Units of Chapter 15 Fluid
More informationLecture 29 (Walker: ) Fluids II April 13, 2009
Physics 111 Lecture 29 (Walker: 15.34) Fluids II April 13, 2009 Lecture 29 1/32 Pressure in Fluids Pressure is the same in every direction in a fluid at a given depth; if it were not, the fluid would
More informationTake the challenge exam!
Take the challenge exam! Today is the last day to take it! Read the book Focus on new concepts Answer the questions at the end of each chapter Vocabulary test #1 deadline: Friday 25 Sept. First exam deadline:
More informationSection 3: Fluids. States of Matter Section 3. Preview Key Ideas Bellringer Pressure
Section 3: Fluids Preview Key Ideas Bellringer Pressure Buoyant Force Comparing Weight and Buoyant Force Pascal s Principle Math Skills Fluids in Motion Key Ideas How do fluids exert pressure? What force
More informationDensity and Specific Gravity
Fluids Phases of Matter Matter is anything that has mass and takes up space (volume). The three common phases of matter are solid, liquid, and gas. A solid has a definite shape and size. A liquid has a
More informationUnit 7. Pressure in fluids
 Unit 7. Pressure in fluids Index 1. Pressure...2 2. Fluids...2 3. Pressure in fluids...3 4. Pascal's principle...5 5. Archimedes principle...6 6. Atmospheric pressure...7 6.1. Torricelli and
More informationKey Terms Chapter 7. boiling boiling point change of state concentration condensation deposition evaporation flow rate fluid freezing point
Foldable Activity Using the instructions on page 267 in your textbook on how to make foldables, write a key term on each front tab, and the definition on the inside (see example that I made up). You will
More informationClicker Question: Clicker Question: Clicker Question: Phases of Matter. Phases of Matter and Fluid Mechanics
Newton's Correction to Kepler's First Law The orbit of a planet around the Sun has the common center of mass (instead of the Sun) at one focus. A flaw in Copernicus s model for the solar system was A:
More informationVacuum P=0. h=76 cm A B C. Barometer
Recap: Pressure Pressure = Force per unit area (P = F /A; units: Pascals) Density of object = mass / volume (ρ = m /V; units: kg / m 3 ) Pascal s Law:Pressure is transmitted equally in all directions throughout
More informationUnit A: Mix and Flow of Matter
Unit A: Mix and Flow of Matter Science 8 1 Section 3.0 THE PROPERTIES OF GASES AND LIQUIDS CAN BE EXPLAINED BY THE PARTICLE MODEL OF MATTER. 2 1 Viscosity and the Effects of Temperature Topic 3.1 3 Viscosity
More informationFluids, Pressure and buoyancy
Fluids, Pressure and buoyancy Announcements: CAPA due Friday at 10pm. Comment on the hint in Problem 5. CAPA solutions from previous sets can be found by logging onto CAPA and selecting View Previous Set
More informationToday: Finish Chapter 13 (Liquids) Start Chapter 14 (Gases and Plasmas)
Today: Finish Chapter 13 (Liquids) Start Chapter 14 (Gases and Plasmas) Gases and plasmas: Preliminaries Will now apply concepts of fluid pressure, buoyancy, flotation of Ch.13, to the atmosphere. Main
More informationFluid Statics. AP Physics 2
Fluid Statics AP Physics 2 States of Matter Before we begin to understand the nature of a Fluid we must understand the nature of all the states of matter: The 3 primary states of matter  solid  Definite
More informationChapter 15 Fluids. Copyright 2010 Pearson Education, Inc.
Chapter 15 Fluids Density Units of Chapter 15 Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy Applications of Archimedes Principle Fluid Flow and Continuity
More informationPlease pick up your midterm if you haven t already. Today: Finish Chapter 13 (Liquids) from last time. Start Chapter 14 (Gases and Plasmas)
Please pick up your midterm if you haven t already Today: Finish Chapter 13 (Liquids) from last time Start Chapter 14 (Gases and Plasmas) Gases and plasmas: Preliminaries Will now apply concepts of fluid
More informationPHYSICS  CLUTCH CH 17: FLUID MECHANICS.
!! www.clutchprep.com INTRO TO DENSITY LIQUIDS and GASES are types of. So we use the term to refer generally to both Liquids AND Gases. The DENSITY of a material is a measure of how tight the molecules
More informationConceptual Physics Matter Liquids Gases
Conceptual Physics Matter Liquids Gases Lana Sheridan De Anza College July 25, 2017 Last time atomic structure forms of matter solids density elasticity liquids & pressure Overview liquids pressure surface
More informationChapter 10 Fluids. Which has a greater density? Ch 10: Problem 5. Ch 10: Problem Phases of Matter Density and Specific Gravity
Chapter 10 Fluids 101 Phases of Matter The three common phases of matter are solid, liquid, and gas. A solid has a definite shape and size. A liquid has a fixed volume but can be any shape. A gas can
More informationCHAPTER 9 Fluids. Units
CHAPTER 9 Fluids Units Fluids in Motion; Flow Rate and the Equation of Continuity Bernoulli s Equation Applications of Bernoulli s Principle Viscosity Flow in Tubes: Poiseuille s Equation, Blood Flow Surface
More informationChapter 9 Solids and Fluids
2/17/16 Chapter 9 Solids and Fluids Units of Chapter 9 Solids and Elastic Moduli Fluids: Pressure and Pascal s Buoyancy and Archimedes Fluid Dynamics and Bernoulli s Surface Tension, Viscosity, and Poiseuille
More informationName. Student I.D.. Section:. Use g = 10 m/s 2
Prince Sultan University Department of Mathematics & Physics SCI 101 General Sciences Second Exam Second Semester, Term 142 Wednesday 22/4/2015 Examination Time : 60 minutes Name. Student I.D.. Section:.
More informationReview: Fluids. container into which it has been poured. changes gases are compressible. pressure changes
Forces in Fluids Review: Fluids o A fluid is a substance that is able to flow and assume the form of the container into which it has been poured o A compressible fluid is one that can change its volume
More informationStatic Fluids. **All simulations and videos required for this package can be found on my website, here:
DP Physics HL Static Fluids **All simulations and videos required for this package can be found on my website, here: http://ismackinsey.weebly.com/fluidshl.html Fluids are substances that can flow, so
More informationProperties of Fluids SPH4C
Properties of Fluids SPH4C Fluids Liquids and gases are both fluids: a fluid is any substance that flows and takes the shape of its container. Fluids Liquids and gases are both fluids: a fluid is any substance
More information1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that:
University Physics (Prof. David Flory) Chapt_15 Thursday, November 15, 2007 Page 1 Name: Date: 1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that: A) pressure is the same
More informationFluids always move from high pressure to low pressure. Air molecules pulled by gravity = atmospheric pressure
9.1 Fluids Under Pressure Fluids always move from high pressure to low pressure w Fluids under pressure and compressed gases are used for a variety of everyday tasks Air molecules pulled by gravity = atmospheric
More informationMatter is made up of particles which are in continual random motion Misconception: Only when a substance is in its liquid or gas state do its
Kinetic Theory of Matter Matter is made up of particles which are in continual random motion Misconception: Only when a substance is in its liquid or gas state do its particles move because in these two
More information1 Fluids and Pressure
CHAPTER 3 1 Fluids and Pressure SECTION Forces in Fluids BEFORE YOU READ After you read this section, you should be able to answer these questions: What are fluids? What is atmospheric pressure? What is
More information3. A fluid is forced through a pipe of changing cross section as shown. In which section would the pressure of the fluid be a minimum?
AP Physics Multiple Choice Practice Fluid Mechanics 1. A cork has weight mg and density 5% of water s density. A string is tied around the cork and attached to the bottom of a waterfilled container. The
More informationForce Pressure = Area
Topics Pressure Liquids Buoyancy Archimedes Principle Flotation Pascal;s Principle Surface Tension Capillarity Pressure Force Pressure = Area Which has the greatest pressure? Units: N/m 2  named the
More informationAP Physics B Ch 10 Fluids. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Name: Period: Date: AP Physics B Ch 10 Fluids 1) The three common phases of matter are A) solid, liquid, and vapor. B) solid, plasma, and gas. C) condensate, plasma, and gas. D) solid, liquid, and gas.
More informationChapter 13 Fluids. Copyright 2009 Pearson Education, Inc.
Chapter 13 Fluids Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal s Principle Units of Chapter 13 Measurement of Pressure; Gauges and the
More informationPHY131H1S  Class 23. Today: Fluids Pressure Pascal s Law Gauge Pressure Buoyancy, Archimedes Principle. A little preclass reading quiz
PHY131H1S  Class 23 Today: Fluids Pressure Pascal s Law Gauge Pressure Buoyancy, Archimedes Principle Archimedes (287212 BC) was asked to check the amount of silver alloy in the king s crown. The answer
More informationName Class Date. (pp ) Write the letter of the correct answer in the space provided.
Skills Worksheet Directed Reading A Section: Buoyancy and Density (pp. 412 419) 1. What is the upward force that fluids exert on all matter called? a. pascal force b. atmospheric pressure c. buoyant force
More information. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid
IIT JEE Achiever 2014 Ist Year Physics2: Worksheet1 Date: 20140626 Hydrostatics 1. A liquid can easily change its shape but a solid cannot because (A) the density of a liquid is smaller than that of
More informationPhysics 221, March 1. Key Concepts: Density and pressure Buoyancy Pumps and siphons Surface tension
Physics 221, March 1 Key Concepts: Density and pressure Buoyancy Pumps and siphons Surface tension Fluids: Liquids Incompressible Gases Compressible Definitions Particle density: Density: Pressure: ρ particle
More informationDensity. Chapters 1214: Phases of Matter. Example: Density. Conceptual Check. Springs 2/27/12. Mass Density vs. Weight Density
Chapters 1214: Phases of Matter Density Sequence of increasing molecule motion (and kinetic energy) Solid Liquid Gas The densities of most liquids and solids vary slightly with changes in temperature
More informationChapter 12. Properties of Gases
Properties of Gases Each state of matter has its own properties. Gases have unique properties because the distance between the particles of a gas is much greater than the distance between the particles
More informationConcept of Fluid. Density. Pressure: Pressure in a Fluid. Pascal s principle. Buoyancy. Archimede s Principle. Forces on submerged surfaces
FLUID MECHANICS The fluid essential to all life has a beauty of its own. It also helps support the weight of this swimmer. (credit: Terren, Wikimedia Commons) Concept of Fluid Density Pressure: Pressure
More informationChapter 14. Fluids. A fluid a substance that can flow (in contrast to a solid)
Chapter 4 luids A luid a substance that can low (in contrast to a solid) Air Water luids comort to the boundaries o any container in which we put them, and do not maintain a ixed shape density and pressure
More informationFluids: Floating & Flying. Student Leaning Objectives 2/16/2016. Distinguish between force and pressure. Recall factors that allow floating
Fluids: Floating & Flying (Chapter 3) Student Leaning Objectives Distinguish between force and pressure Recall factors that allow floating Differentiate between cohesion and adhesion Analyze Pascal s principle
More information20 Gases. Gas molecules are far apart and can move freely between collisions.
Gas molecules are far apart and can move freely between collisions. Gases are similar to liquids in that they flow; hence both are called fluids. In a gas, the molecules are far apart, allowing them to
More informationFluids. James H Dann, Ph.D. Say Thanks to the Authors Click (No sign in required)
Fluids James H Dann, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit
More informationAdditional Information
Buoyancy Additional Information Any object, fully or partially immersed in a fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object. Archimedes of Syracuse Archimedes principle
More informationGas molecules are far apart. collisions The Atmosphere
Gas molecules are far apart and can move freely between collisions. Gases are similar to liquids in that they flow; hence both are called fluids. In a gas, the molecules are far apart, allowing them to
More informationChapter 14 Fluids Mass Density Pressure Pressure in a Static Fluid Pascal's Principle Archimedes' Principle
Chapter 14 Fluids Mass Density Pressure Pressure in a Static Fluid Pascal's Principle Archimedes' Principle Fluids in Motion The Equation of Continuity DEFINITION OF MASS DENSITY The mass density ρ is
More informationPhys101 Lectures Fluids I. Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle. Ref: 101,2,3,4,5,6,7.
Phys101 Lectures 2122 Fluids I Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle Ref: 101,2,3,4,5,6,7. Page 1 101 Phases of Matter The three common phases of matter are solid,
More informationPage 1. Balance of Gravity Energy More compressed at sea level than at higher altitudes Moon has no atmosphere
Earth s Atmosphere Gases and Plasmas Balance of Gravity Energy More compressed at sea level than at higher altitudes Moon has no atmosphere Magdeburg Hemispheres Weight of Air mass of air that would occupy
More informationDec 6 3:08 PM. Density. Over the last two periods we discussed/observed the concept of density. What have we learned?
Over the last two periods we discussed/observed the concept of density. What have we learned? is a ratio of mass to volume describes how much matter is packed into a space is a property of both solids
More informationPressure and Depth. In a static, nonmoving fluid
Pressure and Depth In a static, nonmoving fluid Static Fluids Being on the surface of the earth, you can say that we dwell on the bottom of an ocean of air. The pressure we experience is primarily caused
More informationConcepTest PowerPoints
ConcepTest PowerPoints Chapter 10 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for
More informationGases and Pressure SECTION 11.1
SECTION 11.1 Gases and In the chapter States of Matter, you read about the kineticmolecular theory of matter. You were also introduced to how this theory explains some of the properties of ideal gases.
More informationL14 Fluids [3] Buoyancy why things float. Buoyant Force F B. Archimedes principle. Archimedes Principle
Buoyancy why things float L14 Fluids [3] Review fluid statics Pascal s Principle hy things float Fluids in Motion Fluid Dynamics Hydrodynamics Aerodynamics TITANIC The trick is to keep the water on the
More informationExample A: A 400N force is applied to a tabletop over a square area with sidelength L = 20cm.
Physics 17 Part H Fluids and Pressure UniDirectional Pressure The pressure that is applied over an area is the force applied, divided by the area. A 400N force is applied to a tabletop over a square
More informationSlide 5 / What is the difference between the pressure on the bottom of a pool and the pressure on the water surface? A ρgh B ρg/h C ρ/gh D gh/ρ
Slide 1 / 47 1 Two substances mercury with a density 13600 kg/m3 and alcohol with a density 800 kg/m3 are selected for an experiment. If the experiment requires equal masses of each liquid, what is the
More informationExercises The Atmosphere (page 383) 20.2 Atmospheric Pressure (pages )
Exercises 20.1 The Atmosphere (page 383) 1. The energizes the molecules in Earth s atmosphere. 2. Why is gravity important to Earth s atmosphere? 3. What would happen to Earth s atmosphere without the
More informationPRESSURE. 7. Fluids 2
DENSITY Fluids can flow, change shape, split into smaller portions and combine into a larger system One of the best ways to quantify a fluid is in terms of its density The density, ρ, of a material (or
More informationThis Week.
This Week http://wimp.com/slinkyanswer/ Liquids and Gases Pressure How do they lift your car for service? Atmospheric pressure We re submerged! How can you drink a Coke? Archimedes! Eureka!!! Balloons
More informationPage 1
Contents: 1. Thrust and Pressure 2. Pressure in Fluids 3. Buoyancy 4. Why objects sink or Float when placed on surface of water? 5. Archimedes Principle 6. Relative Density Learning Objectives: The students
More informationForces in Fluids. Pressure A force distributed over a given area. Equation for Pressure: Pressure = Force / Area. Units for Pressure: Pascal (Pa)
Pressure A force distributed over a given area Equation for Pressure: Pressure = Force / Area Force = Newton s Area = m 2 Units for Pressure: Pascal (Pa) Forces in Fluids Forces in Fluids A woman s high
More informationLiquids and Gases. 2/26/2012 Physics 214 Fall
Liquids and Gases The unit of volume is the meter cubed, m 3, which is a very large volume. Very often we use cm 3 = cc. Other everyday units are gallons, quarts, pints As we know liquids and gases act
More information17.2 and 17.3 Classifying Matter Liquids. Liquids
17.2 and 17.3 Classifying Matter Liquids Read p.295301 in book Liquids Liquids have an indefinite shape, but a definite volume. the same shape as their container. particles that are close together, but
More informationChapter 9 Fluids CHAPTER CONTENTS
Flowing fluids, such as the water flowing in the photograph at Coors Falls in Colorado, can make interesting patterns In this chapter, we will investigate the basic physics behind such flow Photo credit:
More informationLesson 12: Fluid statics, Continuity equation (Sections ) Chapter 9 Fluids
Lesson : luid statics, Continuity equation (Sections 9.9.7) Chapter 9 luids States of Matter  Solid, liquid, gas. luids (liquids and gases) do not hold their shapes. In many cases we can think of liquids
More informationFluid Mechanics  Hydrostatics. AP Physics B
luid Mechanics  Hydrostatics AP Physics B States of Matter Before we begin to understand the nature of a luid we must understand the nature of all the states of matter: The 3 primary states of matter
More informationAP B Fluids Practice Problems. Multiple Choice. Slide 2 / 43. Slide 1 / 43. Slide 4 / 43. Slide 3 / 43. Slide 6 / 43. Slide 5 / 43
Slide 1 / 43 Slide 2 / 43 P Fluids Practice Problems Multiple hoice Slide 3 / 43 1 Two substances mercury with a density 13600 kg/m 3 and alcohol with a density 0.8 kg/m 3 are selected for an experiment.
More informationQuiz name: Chapter 13 Test Review  Fluids
Name: Quiz name: Chapter 13 Test Review  Fluids Date: 1. All fluids are A gases B liquids C gasses or liquids D nonmetallic E transparent 2. 1 Pa is A 1 N/m B 1 m/n C 1 kg/(m s) D 1 kg/(m s 2 ) E 1 N/m
More informationPhys101 Lectures Fluids I. Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle. Ref: 101,2,3,4,5,6,7.
Phys101 Lectures 2425 luids I Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle Ref: 101,2,3,4,5,6,7. Page 1 101 Phases of Matter The three common phases of matter are solid,
More information8 th week Lectures Feb. 26. March
Liquids and Gases Pressure, Pascal s principle How do they lift your car for service? Atmospheric pressure We re submerged! How can you drink a Coke? Archimedes! Balloons of all sizes Bubbles of all sizes
More information3 1 PRESSURE. This is illustrated in Fig. 3 3.
P = 3 psi 66 FLUID MECHANICS 150 pounds A feet = 50 in P = 6 psi P = s W 150 lbf n = = 50 in = 3 psi A feet FIGURE 3 1 The normal stress (or pressure ) on the feet of a chubby person is much greater than
More informationACTIVITY 1: Buoyancy Problems. OBJECTIVE: Practice and Reinforce concepts related to Fluid Pressure, primarily Buoyancy
LESSON PLAN: SNAP, CRACKLE, POP: Submarine Buoyancy, Compression, and Rotational Equilibrium DEVELOPED BY: Bill Sanford, Nansemond Suffolk Academy 2012 NAVAL HISTORICAL FOUNDATION TEACHER FELLOWSHIP ACTIVITY
More information