Fluids, Pressure and buoyancy

 Ashley Oliver
 8 months ago
 Views:
Transcription
1 Fluids, Pressure and buoyancy Announcements: CAPA due Friday at 10pm. Comment on the hint in Problem 5. CAPA solutions from previous sets can be found by logging onto CAPA and selecting View Previous Set instead of Try Current Set Any special exam requests should contact Web page:
2 Fluids A gas is a bunch of molecules flying about, occasionally colliding with other molecules or the walls of a container. Because there is lots of space between molecules, a gas is compressible. In a liquid, molecules are close together but not strongly bonded together so they can slide around. A liquid is incompressible since the molecules are already very close together. Liquids and gases are both fluids. Fluids do not retain their shape. They also have the property of being able to flow.
3 Pressure You have encountered the concept of pressure. Pressure against eardrums in plane or underwater. Atmospheric pressure in weather reports Air pressure in car or bicycle tires Pressure forces water out of the holes The fluid exerts a force against the walls of the container. Force is related to the pressure. Define pressure: Pressure is a scalar The force is perpendicular to the area SI unit is pascal: 1 pascal = 1 Pa = 1 N/m 2
4 Pressure in a gas The gas molecules colliding with the walls exert a force on the walls. An object inside also feels the force of the collisions (equally from all directions so net force is 0). The more area a wall has, the more collisions it will endure and the larger a force it will feel. So the force on the wall should be proportional to area: where p is the pressure (which is how we defined pressure!) But it is not just the wall that feels the pressure. The object inside also feels the pressure even though the net force is 0. Atmospheric pressure (of air) at sea level is defined by a nonsi unit of atmosphere (atm). 1 atm = 101,300 Pa. In Boulder our air pressure is about 80% of that at sea level
5 Pressure in a liquid Consider a column of water with depth d and cross sectional area A inside a container open to the atmosphere. Atmospheric pressure p 0 pushes down with force of p 0 A. The weight of the column pushes down with force mg. For a liquid with density ρ, m=ρv=ρad. Because the liquid is in static equilibrium, the upward force from pressure, pa, must equal the downward forces so (hydrostatic pressure) When you descend in a liquid, the weight of the liquid above you causes the pressure to increase.
6 Clicker question 1 Set frequency to BA Three vessels are full of the same liquid and open to the same atmosphere. The pressure is measured in each at a distance of 3 m below the surface. What can we say about the pressures? A. only two are the same B. all three are different C. all three are the same 3 m
7 Clicker question 1 Set frequency to BA Three vessels are full of the same liquid and open to the same atmosphere. The pressure is measured in each at a distance of 3 m below the surface. What can we say about the pressures? A. only two are the same B. all three are different C. all three are the same 3 m The hydrostatic pressure is It only depends on the pressure on top and the amount of water in a column directly overhead so it is the same for all 3.
8 In the problem, the liquids had the same height because they were filled that way. If they were all connected (as shown), the liquid levels would have to be the same. Pressure in a liquid Assume the first container has a higher level. Then, since, pressure at A is greater than at B. Assume a gradual decrease from A to B. Then at any point between them, pressure from the left is greater than from the right resulting in a net force to the right (not equilibrium). Therefore, fluid will flow to the right until equilibrium is reached. A B
9 Some rules for pressure Anywhere in a connected, static, uniform density fluid, the pressure at a given height is the same. Pascal s law: A pressure change at one point in an incompressible fluid is transmitted undiminished to all points in the fluid + walls. A force F is applied to a piston of area A, increasing the pressure by F/A.
10 Clicker question 2 Set frequency to BA Uma Thurman (mass of 60 kg) is standing on a piston, connected as shown to another piston on which a 6000 kg stretch Hummer is resting. How much bigger in area is the piston under the Hummer compared to the one under Uma? Try writing down two expressions for the pressure at the dotted line. A. same B. 10 times C. 100 times D times E times
11 Clicker question 2 Set frequency to BA Uma Thurman (mass of 60 kg) is standing on a piston, connected as shown to another piston on which a 6000 kg stretch Hummer is resting. How much bigger in area is the piston under the Hummer compared to the one under Uma? Try writing down two expressions for the pressure at the dotted line. A. same On the left side we have B. 10 times C. 100 times D times Right side: E times Both pressures at same height so must be the same. Setting equal: so so
12 Take a volume of water with density ρ f and area A extending from a depth of d 2 to d 1. Summing the forces of the free body diagram gives Buoyancy If we replace the fluid with an object, the only difference is mass. Note that A(d 1 d 2 ) is the volume V f of fluid displaced Upward force equals the weight of displaced fluid
13 Archimedes principle A body partially or fully immersed in a fluid feels an upward force equal to the weight of the displaced fluid. This force is called the buoyant force: As shown, it is due to the increase of pressure with depth in a fluid. If the object is fully immersed then the volume of the displaced fluid is equal to the volume of the object: Note that volume is related to mass and density: If an object is only partially submerged, the volume of the displaced fluid is less than the volume of the object:
14 Buoyancy example A 2 cm by 2 cm by 2 cm cube of iron (ρ=8 g/cm 3 ) is weighed with the iron outside, half in and fully in the water, as shown in the diagram. What is the measured weight in each case? Iron mass: Out of the water: In the water: ½ in the water: so so so so so
15 Solving buoyancy problems Try to figure out the weight of the displaced fluid (buoyant force!) If object is submerged, volumes of object and displaced fluid are equal If object is floating, can use the fraction of the object that is submerged to relate the two volumes (object & displaced fluid). With the displaced fluid volume, can use density and g to get weight. If the object is in equilibrium or you know the acceleration, use Newton s 2 nd law. If an object is floating (and no other forces are acting), buoyant force equals the weight of the object as well as the weight of the displaced fluid.
16 Clicker question 3 Set frequency to BA Two bricks are held under water in a bucket. One of the bricks is lower in the bucket than the other. Compared to the higher brick, the upward buoyant force on the lower brick is A. larger. B. smaller. C. the same.
17 Clicker question 3 Set frequency to BA Two bricks are held under water in a bucket. One of the bricks is lower in the bucket than the other. Compared to the higher brick, the upward buoyant force on the lower brick is A. larger. B. smaller. C. the same. The weight of the displaced water is the same for both so the buoyant force is the same. The pressures on the top and bottom of the lower brick are larger than the pressures on the top and bottom of the higher brick but the pressure differences are the same and this is the source of the buoyant force.
Pressure and buoyancy in fluids
Pressure and buoyancy in fluids FCQ s for lecture and tutorials will be next week. Buoyancy force today Fluid dynamics on Monday (alon with the loudest demonstration of the semester). Review on Wednesday
More informationChapter 13 Fluids. Copyright 2009 Pearson Education, Inc.
Chapter 13 Fluids Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal s Principle Units of Chapter 13 Measurement of Pressure; Gauges and the
More informationPHY131H1S  Class 23. Today: Fluids Pressure Pascal s Law Gauge Pressure Buoyancy, Archimedes Principle. A little preclass reading quiz
PHY131H1S  Class 23 Today: Fluids Pressure Pascal s Law Gauge Pressure Buoyancy, Archimedes Principle Archimedes (287212 BC) was asked to check the amount of silver alloy in the king s crown. The answer
More informationChapter 14 Fluids Mass Density Pressure Pressure in a Static Fluid Pascal's Principle Archimedes' Principle
Chapter 14 Fluids Mass Density Pressure Pressure in a Static Fluid Pascal's Principle Archimedes' Principle Fluids in Motion The Equation of Continuity DEFINITION OF MASS DENSITY The mass density ρ is
More informationPhysics 221, March 1. Key Concepts: Density and pressure Buoyancy Pumps and siphons Surface tension
Physics 221, March 1 Key Concepts: Density and pressure Buoyancy Pumps and siphons Surface tension Fluids: Liquids Incompressible Gases Compressible Definitions Particle density: Density: Pressure: ρ particle
More informationIn the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container.
In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position
More informationIn the liquid phase, molecules can flow freely from position. another. A liquid takes the shape of its container. 19.
In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position
More informationVacuum P=0. h=76 cm A B C. Barometer
Recap: Pressure Pressure = Force per unit area (P = F /A; units: Pascals) Density of object = mass / volume (ρ = m /V; units: kg / m 3 ) Pascal s Law:Pressure is transmitted equally in all directions throughout
More informationPHYS 101 Previous Exam Problems
PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep
More informationDensity and Buoyancy Notes
Density and Buoyancy Notes Measuring Mass and Volume 3.1 Density A balance can be used to measure the mass of an object. If the object is a liquid, pour it into a graduated cylinder to measure the volume.
More informationChapter 10 Fluids. Which has a greater density? Ch 10: Problem 5. Ch 10: Problem Phases of Matter Density and Specific Gravity
Chapter 10 Fluids 101 Phases of Matter The three common phases of matter are solid, liquid, and gas. A solid has a definite shape and size. A liquid has a fixed volume but can be any shape. A gas can
More informationFluid Mechanics. Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey
Fluid Mechanics Fluid Mechanics Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey Density Regardless of form (solid, liquid, gas) we can define
More informationPhys101 Lectures Fluids I. Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle. Ref: 101,2,3,4,5,6,7.
Phys101 Lectures 2425 luids I Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle Ref: 101,2,3,4,5,6,7. Page 1 101 Phases of Matter The three common phases of matter are solid,
More informationLecture Outline Chapter 15. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.
Lecture Outline Chapter 15 Physics, 4 th Edition James S. Walker Chapter 15 Fluids Density Units of Chapter 15 Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy
More informationChapter 15 Fluid. Density
Density Chapter 15 Fluid Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy Applications of Archimedes Principle By Dr. Weining man 1 Units of Chapter 15 Fluid
More informationPressure is defined as force per unit area. Any fluid can exert a force
Physics Notes Chapter 9 Fluid Mechanics Fluids Fluids are materials that flow, which include both liquids and gases. Liquids have a definite volume but gases do not. In our analysis of fluids it is necessary
More informationChapter 14. Fluids. A fluid a substance that can flow (in contrast to a solid)
Chapter 4 luids A luid a substance that can low (in contrast to a solid) Air Water luids comort to the boundaries o any container in which we put them, and do not maintain a ixed shape density and pressure
More informationPage 1
Contents: 1. Thrust and Pressure 2. Pressure in Fluids 3. Buoyancy 4. Why objects sink or Float when placed on surface of water? 5. Archimedes Principle 6. Relative Density Learning Objectives: The students
More informationFluid Mechanics  Hydrostatics. AP Physics B
luid Mechanics  Hydrostatics AP Physics B States of Matter Before we begin to understand the nature of a luid we must understand the nature of all the states of matter: The 3 primary states of matter
More informationAdditional Information
Buoyancy Additional Information Any object, fully or partially immersed in a fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object. Archimedes of Syracuse Archimedes principle
More information1. All fluids are: A. gases B. liquids C. gases or liquids D. nonmetallic E. transparent ans: C
Chapter 14: FLUIDS 1 All fluids are: A gases B liquids C gases or liquids D nonmetallic E transparent 2 Gases may be distinguished from other forms of matter by their: A lack of color B small atomic weights
More informationFluids Pascal s Principle Measuring Pressure Buoyancy
Fluids Pascal s Principle Measuring Pressure Buoyancy Lana Sheridan De Anza College April 11, 2018 Last time shear modulus introduction to static fluids pressure bulk modulus pressure and depth Overview
More information. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid
IIT JEE Achiever 2014 Ist Year Physics2: Worksheet1 Date: 20140626 Hydrostatics 1. A liquid can easily change its shape but a solid cannot because (A) the density of a liquid is smaller than that of
More informationChapter 13 Fluids. Copyright 2009 Pearson Education, Inc.
Chapter 13 Fluids Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal s Principle Units of Chapter 13 Measurement of Pressure; Gauges and the
More informationChapter 15 Fluids. Copyright 2010 Pearson Education, Inc.
Chapter 15 Fluids Density Units of Chapter 15 Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy Applications of Archimedes Principle Fluid Flow and Continuity
More informationDensity, Pressure Learning Outcomes
1 Density, Pressure Learning Outcomes Define density and pressure, and give their units. Solve problems about density and pressure. Discuss pressure in liquids and gases. State Boyle s Law. Demonstrate
More informationUnit 7. Pressure in fluids
 Unit 7. Pressure in fluids Index 1. Pressure...2 2. Fluids...2 3. Pressure in fluids...3 4. Pascal's principle...5 5. Archimedes principle...6 6. Atmospheric pressure...7 6.1. Torricelli and
More informationOldExam.QuestionsCh14 T072 T071
OldExam.QuestionsCh14 T072 Q23. Water is pumped out of a swimming pool at a speed of 5.0 m/s through a uniform hose of radius 1.0 cm. Find the mass of water pumped out of the pool in one minute. (Density
More informationMore About Solids, Liquids and Gases ASSIGNMENT
More About Solids, Liquids and Gases ASSIGNMENT 1. Fill in the blank spaces by choosing the correct words from the list given below: List : water, density, altitudes, lateral, intermolecular, force, cohesion,
More informationChapter 9. Forces and Fluids
Chapter 9 Forces and Fluids Key Terms hydraulic systems incompressible mass neutral buoyancy pascal pneumatic systems pressure unbalanced forces weight Archimedes principle average density balanced forces
More informationLECTURE 16: Buoyancy. Select LEARNING OBJECTIVES:
Lectures Page 1 Select LEARNING OBJECTIVES: LECTURE 16: Buoyancy Understand that the buoyant force is a result of a pressure gradient within a fluid. Demonstrate the ability to analyze a scenario involving
More informationChapter 9 Fluids CHAPTER CONTENTS
Flowing fluids, such as the water flowing in the photograph at Coors Falls in Colorado, can make interesting patterns In this chapter, we will investigate the basic physics behind such flow Photo credit:
More information2 Buoyant Force. TAKE A LOOK 2. Identify What produces buoyant force?
CHAPTER 3 2 Buoyant Force SECTION Forces in Fluids BEFORE YOU READ After you read this section, you should be able to answer these questions: What is buoyant force? What makes objects sink or float? How
More informationFluids: Floating & Flying. Student Leaning Objectives 2/16/2016. Distinguish between force and pressure. Recall factors that allow floating
Fluids: Floating & Flying (Chapter 3) Student Leaning Objectives Distinguish between force and pressure Recall factors that allow floating Differentiate between cohesion and adhesion Analyze Pascal s principle
More information3. A fluid is forced through a pipe of changing cross section as shown. In which section would the pressure of the fluid be a minimum?
AP Physics Multiple Choice Practice Fluid Mechanics 1. A cork has weight mg and density 5% of water s density. A string is tied around the cork and attached to the bottom of a waterfilled container. The
More informationAP Lab 11.3 Archimedes Principle
ame School Date AP Lab 11.3 Archimedes Principle Explore the Apparatus We ll use the Buoyancy Apparatus in this lab activity. Before starting this activity check to see if there is an introductory video
More informationConceptual Physics Matter Liquids Gases
Conceptual Physics Matter Liquids Gases Lana Sheridan De Anza College July 25, 2017 Last time atomic structure forms of matter solids density elasticity liquids & pressure Overview liquids pressure surface
More informationMatter is made up of particles which are in continual random motion Misconception: Only when a substance is in its liquid or gas state do its
Kinetic Theory of Matter Matter is made up of particles which are in continual random motion Misconception: Only when a substance is in its liquid or gas state do its particles move because in these two
More informationFLUID STATICS II: BUOYANCY 1
FLUID STATICS II: BUOYANCY 1 Learning Goals After completing this studio, you should be able to Determine the forces acting on an object immersed in a fluid and their origin, based on the physical properties
More informationKey Terms Chapter 7. boiling boiling point change of state concentration condensation deposition evaporation flow rate fluid freezing point
Foldable Activity Using the instructions on page 267 in your textbook on how to make foldables, write a key term on each front tab, and the definition on the inside (see example that I made up). You will
More informationACTIVITY 1: Buoyancy Problems. OBJECTIVE: Practice and Reinforce concepts related to Fluid Pressure, primarily Buoyancy
LESSON PLAN: SNAP, CRACKLE, POP: Submarine Buoyancy, Compression, and Rotational Equilibrium DEVELOPED BY: Bill Sanford, Nansemond Suffolk Academy 2012 NAVAL HISTORICAL FOUNDATION TEACHER FELLOWSHIP ACTIVITY
More informationLesson 12: Fluid statics, Continuity equation (Sections ) Chapter 9 Fluids
Lesson : luid statics, Continuity equation (Sections 9.9.7) Chapter 9 luids States of Matter  Solid, liquid, gas. luids (liquids and gases) do not hold their shapes. In many cases we can think of liquids
More informationBUOYANCY, FLOATATION AND STABILITY
BUOYANCY, FLOATATION AND STABILITY Archimedes Principle When a stationary body is completely submerged in a fluid, or floating so that it is only partially submerged, the resultant fluid force acting on
More informationToday: Finish Chapter 13 (Liquids) Start Chapter 14 (Gases and Plasmas)
Today: Finish Chapter 13 (Liquids) Start Chapter 14 (Gases and Plasmas) Gases and plasmas: Preliminaries Will now apply concepts of fluid pressure, buoyancy, flotation of Ch.13, to the atmosphere. Main
More informationSlide 5 / What is the difference between the pressure on the bottom of a pool and the pressure on the water surface? A ρgh B ρg/h C ρ/gh D gh/ρ
Slide 1 / 47 1 Two substances mercury with a density 13600 kg/m3 and alcohol with a density 800 kg/m3 are selected for an experiment. If the experiment requires equal masses of each liquid, what is the
More information3. Moments and Pressure
Leaving Cert Physics Long Questions 20172002 3. Moments and Pressure Remember to photocopy 4 pages onto 1 sheet by going A3 A4 and using back to back on the photocopier Contents Moments: ordinary level
More informationPRESSURE. 7. Fluids 2
DENSITY Fluids can flow, change shape, split into smaller portions and combine into a larger system One of the best ways to quantify a fluid is in terms of its density The density, ρ, of a material (or
More information12 fa. eel), Ara, Fl eat Mobi eu) r V14,:srholki CV 65 P 1 1). e2r 46. ve, lactogin. 1 V eil  (  t Teo. c 1 4 d 4. .'= tit/ (4 nit) 6 )
1). e2r 46 h eel), /pea lactogin Yd / In 1 V eil  (  Cw ve, P 1 Ara, Fl eat Mobi eu) r V14,:srholki 5e 0 (44,4 ci4) CV 65 So 0 t Teo.'= tit/ (4 nit) 6 ) ci Seco (df_ 1 c 1 4 d 4 540 C 12 fa 4)
More informationForces in Fluids. Pressure A force distributed over a given area. Equation for Pressure: Pressure = Force / Area. Units for Pressure: Pascal (Pa)
Pressure A force distributed over a given area Equation for Pressure: Pressure = Force / Area Force = Newton s Area = m 2 Units for Pressure: Pascal (Pa) Forces in Fluids Forces in Fluids A woman s high
More informationDec 6 3:08 PM. Density. Over the last two periods we discussed/observed the concept of density. What have we learned?
Over the last two periods we discussed/observed the concept of density. What have we learned? is a ratio of mass to volume describes how much matter is packed into a space is a property of both solids
More information1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that:
University Physics (Prof. David Flory) Chapt_15 Thursday, November 15, 2007 Page 1 Name: Date: 1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that: A) pressure is the same
More information10.4 Buoyancy is a force
Chapter 10.4 Learning Goals Define buoyancy. Explain the relationship between density and buoyancy. Discuss applications of Archimedes principle. 10.4 Buoyancy is a force Buoyancy is a measure of the upward
More informationAP B Fluids Practice Problems. Multiple Choice. Slide 2 / 43. Slide 1 / 43. Slide 4 / 43. Slide 3 / 43. Slide 6 / 43. Slide 5 / 43
Slide 1 / 43 Slide 2 / 43 P Fluids Practice Problems Multiple hoice Slide 3 / 43 1 Two substances mercury with a density 13600 kg/m 3 and alcohol with a density 0.8 kg/m 3 are selected for an experiment.
More informationConcepTest PowerPoints
ConcepTest PowerPoints Chapter 10 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for
More informationLab 11 Density and Buoyancy
b Lab 11 Density and uoyancy Physics 211 Lab What You Need To Know: Density Today s lab will introduce you to the concept of density. Density is a measurement of an object s mass per unit volume of space
More informationLiquids and Gases. O, 1 L = 2.2 lbs H 2. O = 1 kg H 2
Liquids and Gases The unit of volume is the meter cubed, m 3, which is a very large volume. Very often we use cm 3 = cc, or Litres = 10 3 cc Other everyday units are gallons, quarts, pints 1 qt = 2 lbs
More informationA microscopic view. Solid rigid body. Liquid. Fluid. Incompressible. Gas. Fluid. compressible
Hello! I m Chris Blake, your lecturer for the rest of semester We ll cover: fluid motion, thermal physics, electricity, revision MASH centre in AMDC 50309.3016.30 daily My consultation hours: Tues 10.3012.30
More informationGases and Pressure SECTION 11.1
SECTION 11.1 Gases and In the chapter States of Matter, you read about the kineticmolecular theory of matter. You were also introduced to how this theory explains some of the properties of ideal gases.
More informationApplication of Numerical Methods in Calculating the Depth of Submerged Ball in a RO Water System
Research Article IJCRR Section: General Science Sci. Journal Impact Factor 4.016 ICV: 71.54 Application of Numerical Methods in Calculating the Depth of Submerged Ball in a RO Water System T. N. Kavitha
More informationPHYS 1020 LAB 8: Buoyancy and Archimedes Principle. PreLab
PHYS 1020 LAB 8: Buoyancy and Archimedes Principle Note: Print and complete the separate prelab assignment BEFORE the lab. Hand it in at the start of the lab. PreLab While at home, put one ice cube (made
More informationUnit A: Mix and Flow of Matter
Unit A: Mix and Flow of Matter Science 8 1 Section 3.0 THE PROPERTIES OF GASES AND LIQUIDS CAN BE EXPLAINED BY THE PARTICLE MODEL OF MATTER. 2 1 Viscosity and the Effects of Temperature Topic 3.1 3 Viscosity
More informationChapter Five: Density and Buoyancy
Chapter Five: Density and Buoyancy 5.1 Density 5.2 Buoyancy 5.3 Heat Affects Density and Buoyancy 5.1 Mass and Weight Mass is the amount of matter in an object. Weight is a measure of the pulling force
More informationTo connect the words of Archimedes Principle to the actual behavior of submerged objects.
Archimedes Principle PURPOSE To connect the words of Archimedes Principle to the actual behavior of submerged objects. To examine the cause of buoyancy; that is, the variation of pressure with depth in
More informationFluids Chapter 13 & 14 Liquids & Gases
Fluids Chapter 13 & 14 Liquids & Gases Liquids like solids are difficult to compress. Both liquids and gases can flow, so both are called fluids. The pressure you feel is due to the weight of water (or
More informationChapter 3 PRESSURE AND FLUID STATICS
Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGrawHill, 2010 Chapter 3 PRESSURE AND FLUID STATICS Lecture slides by Hasan Hacışevki Copyright The McGrawHill
More informationIrrigation &Hydraulics Department lb / ft to kg/lit.
CAIRO UNIVERSITY FLUID MECHANICS Faculty of Engineering nd Year CIVIL ENG. Irrigation &Hydraulics Department 010011 1. FLUID PROPERTIES 1. Identify the dimensions and units for the following engineering
More informationARCHIMEDES PRINCIPLE AND THE COMPUTATION OF BUOYANT FORCES. Alexis RodriguezCarlson
ARCHIMEDES PRINCIPLE AND THE COMPUTATION OF BUOYANT FORCES Alexis RodriguezCarlson September 20, 2006 Purpose: The purpose of this experiment is to show that the buoyant force acting on an object submerged
More informationPressure Measurement
Pressure Measurement Manometers Sensors, Transducers Ashish J. Modi Lecturer, Dept. of Mech.Engg., Shri S.V.M. inst. Of Technology, Bharuch Pressure Pressure is a force per unit area exerted by a fluid
More informationCard 1 Chapter 17. Card 2. Chapter 17
Card 1 Card 2 Liquid A  1.4 g/ml; Liquid B .82 g/ml; Liquid C  1.0 g/ml; one liquid you know. What is it? Also how will they stack? Where will a 1.6 g/ml object end up? Find the density of a 5 milliliter,
More informationChapter 3: Atmospheric pressure and temperature
Chapter 3: Atmospheric pressure and temperature 3.1 Distribution of pressure with altitude The barometric law Atmospheric pressure declines with altitude, a fact familiar to everyone who has flown in an
More informationSlide 1 / What is the density of an aluminum block with a mass of 4050 kg and volume of 1.5 m 3?
Slide 1 / 68 1 What is the density of an aluminum block with a mass of 4050 kg and volume of 1.5 m 3? Slide 2 / 68 2 What is the mass of a rectangular shaped ice block with dimensions of 0.04m x 0.05m
More informationChapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works.
Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. A Gas Uniformly fills any container. Easily compressed. Mixes completely
More informationFCCIV HIDRCANA: Channel Hydraulics Flow Mechanics Review Fluid Statics
FCCIV HIDRCANA: Channel Hydraulics Flow Mechanics Review Fluid Statics Civil Engineering Program, San Ignacio de Loyola University Objective Calculate the forces exerted by a fluid at rest on plane or
More information1Pressure 2 21Volume 2 2. or Temperature 2. where the subscript 1 signifies the initial conditions and the subscript 2 signifies the final conditions.
104 Gases The ideal gas law expresses the relationship between the pressure, volume, and temperature of a gas. In the exercises in this chapter, the mass of the gas remains constant. You will be examining
More informationmass of container full of air = g mass of container with extra air = g volume of air released = cm 3
1992 Q32 The air pressure inside the passenger cabin of an airliner is 9 x 10 4 Pa when the airliner is at its cruising height. The pressure of the outside atmosphere at this height is 4 x 10 4 Pa. Calculate
More informationUnit A2: List of Subjects
ES312 Energy Transfer Fundamentals Unit A: Fundamental Concepts ROAD MAP... A1: Introduction to Thermodynamics A2: Engineering Properties Unit A2: List of Subjects Basic Properties and Temperature Pressure
More informationHydrostatics Physics Lab XI
Hydrostatics Physics Lab XI Objective Students will discover the basic principles of buoyancy in a fluid. Students will also quantitatively demonstrate the variance of pressure with immersion depth in
More informationMultiple Choice. AP B Fluids Practice Problems. Mar 22 4:15 PM. Mar 22 4:15 PM. Mar 22 4:02 PM
P Fluids Practice Problems Mar 22 4:15 PM Multiple hoice Mar 22 4:15 PM 1 Two substances mercury with a density 13600 kg/m 3 and alcohol with a density 0.8 g/cm 3 are selected for an experiment. If the
More informationDENSITY AND BUOYANCY
DENSITY AND BUOYANCY DENSITY  RECAP What is DENSITY? The amount of MASS contained in a given VOLUME Density describes how closely packed together the particles are in a substance Density Experiment SINK
More informationINSTRUCTIONAL GOAL: Explain and perform calculations regarding the buoyant force on a
Snap, Crackle, Pop! Submarine Buoyancy, Compression, and Rotational Equilibrium Bill Sanford, Physics Teacher, Nansemond Suffolk Academy, Suffolk 2012 Naval Historical Foundation STEMH Teacher Fellowship
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.06 Fluid Dynamics
MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.06 Fluid Dynamics Practice Problems for Quiz 1, Spring Term 2013 Problem 1: Membrane Testing Membranes are thin, filmlike porous
More informationWe live on the only planet in the
LIQUIDS Objectives Describe what determines the pressure of a liquid at any point. (19.1) Explain what causes a buoyant force on an immersed or submerged object. (19.2) Relate the buoyant force on an immersed
More information20 Gases. Gas molecules are far apart and can move freely between collisions.
Gas molecules are far apart and can move freely between collisions. Gases are similar to liquids in that they flow; hence both are called fluids. In a gas, the molecules are far apart, allowing them to
More informationGas molecules are far apart. collisions The Atmosphere
Gas molecules are far apart and can move freely between collisions. Gases are similar to liquids in that they flow; hence both are called fluids. In a gas, the molecules are far apart, allowing them to
More informationChapter 13. Gases. Copyright Cengage Learning. All rights reserved 1
Chapter 13 Gases Copyright Cengage Learning. All rights reserved 1 Section 13.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Copyright Cengage
More informationEXPERIMENT (2) BUOYANCY & FLOTATION (METACENTRIC HEIGHT)
EXPERIMENT (2) BUOYANCY & FLOTATION (METACENTRIC HEIGHT) 1 By: Eng. Motasem M. Abushaban. Eng. Fedaa M. Fayyad. ARCHIMEDES PRINCIPLE Archimedes Principle states that the buoyant force has a magnitude equal
More informationExercises The Atmosphere (page 383) 20.2 Atmospheric Pressure (pages )
Exercises 20.1 The Atmosphere (page 383) 1. The energizes the molecules in Earth s atmosphere. 2. Why is gravity important to Earth s atmosphere? 3. What would happen to Earth s atmosphere without the
More informationStates of Matter Review
States of Matter Review May 13 8:16 PM Physical States of Matter (Phases) Solid Liquid Melting Gas Condensation Freezing Evaporation Deposition Sublimation Sep 13 6:04 PM 1 May 13 8:11 PM Gases Chapter
More informationLecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.
Lecture Presentation Chapter 10 John D. Bookstaver St. Charles Community College Cottleville, MO Characteristics of Unlike liquids and solids, gases Expand to fill their containers. Are highly compressible.
More informationSection 5.1 Pressure. Why study gases? An understanding of real world phenomena. An understanding of how science works.
Chapter 5 Gases Section 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Copyright Cengage Learning. All rights reserved 2 Section 5.1 Pressure
More informationExperiment P18: Buoyant Force (Force Sensor)
PASCO scientific Physics Lab Manual: P181 Experiment P18: (Force Sensor) Concept Time SW Interface Macintosh file Windows file Newton's Laws 45 m 300/500/700 P18 P18_BUOY.SWS EQUIPMENT NEEDED CONSUMABLES
More informationU S F O S B u o y a n c y And Hydrodynamic M a s s
1 U S F O S B u o y a n c y And Hydrodynamic M a s s 2 CONTENTS: 1 INTRODUCTION... 3 2 ACCURACY LEVELS... 3 2.1 LEVEL0... 3 2.2 LEVEL1... 3 2.3 PANEL MODEL... 3 3 EX 1. SINGLE PIPE. NON FLOODED... 4
More informationSINK vs. FLOAT THE CASE OF THE CARTESIAN DIVER
SINK vs. FLOAT THE CASE OF THE CARTESIAN DIVER INTRODUCTION: This lesson provides practice making observations and formulating hypotheses. It also provides opportunities to explore the concepts of buoyancy,
More informationBuoyancy and the Density of Liquids (approx. 2 h) (11/24/15)
Buoyancy and the Density of Liquids (approx. 2 h) (11/24/15) Introduction Which weighs more, a pound of lead or a pound of feathers? If your answer to this question is "a pound of lead", then you are confusing
More informationPhysics, Chapter 8: Hydrostatics (Fluids at Rest)
University of Nebraska  Lincoln DigitalCommons@University of Nebraska  Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1958 Physics, Chapter 8: Hydrostatics (Fluids at Rest)
More informationCommercial Diving 9 month program at Holland College
Chapter 9: p.332 2 careers possibilities come up in this chapter Commercial Diving 9 month program at Holland College Reading the intro on p 332 will tell you other one Density and Volume story...yes,
More informationShark Biology Buoyancy by Bill Andrake
Shark Biology Buoyancy by Bill Andrake Science Lesson: Buoyancy  Based on Webisode 45  Shark Biology Grade Level: 68 Time: Four (4550 minute) class periods Introduction Jonathan narrates an educational
More informationDensity and Buoyancy
Density and Buoyancy A fluid exerts an upward force on an object that is placed in the fluid. LESSON 1 Density The density of a material is a measure of how much matter is packed into a unit volume of
More information