Aerodynamic characteristics around the stalling angle of the discus using a PIV

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Aerodynamic characteristics around the stalling angle of the discus using a PIV"

Transcription

1 10TH INTERNATIONAL SYMPOSIUM ON PARTICLE IMAGE VELOCIMETRY PIV13 Delft, The Netherlands, July 1-3, 2013 Aerodynamic characteristics around the stalling angle of the discus using a PIV Kazuya Seo 1 1 Department of Education, Art and Science, Yamagata University, Yamagata, Japan ABSTRACT This paper describes the hysteresis in the aerodynamic properties of a discus near to its stalling angle. Wind tunnel tests were carried out with a full-size woman s discus. The experimental aerodynamic data D, L and M were obtained from wind tunnel tests as functions of the angle of attack. It was found that the drag, lift and pitching moment coefficients, C D and C M, increase with increasing the angle of attack up to a stalling angle of Beyond the stalling angle, and C M decrease suddenly and abruptly with increasing angle of attack. On the other hand, recovery from the stall does not occur at the same stalling angle of when the angle of attack decreases from the stall state; recovery actually occurs at 25. The dependence of and C M on the angle of attack is almost the same when the angle of attack is less than 24. Therefore, hysteresis occurs near the stalling angle. A laminar bubble region is observed in the upstream side of the discus at 28 during the process of increasing the angle of attack, and re-attachment occurs around the convex point of the discus. However, re-attachment does not occur at 26 during the process of decreasing the angle of attack. INTRODUCTION Discus throwing is a sport in which the thrower attempts to gain the longest flight distance. To determine the flight path of a discus [1] when it is thrown, it is essential to know what aerodynamic forces are acting on it. We have measured the aerodynamic forces acting on a women s discus [2]. It was found that the lift coefficient decreases suddenly and abruptly at the stalling angle. Therefore, we repeated the force measurements with fine intervals in terms of angle of attack in order to elucidate the features of stalling in detail. As a result, it was found that hysteresis occurs around the stalling angle. In this paper, the dependence of the aerodynamic coefficients on the angle of attack and the results of PIV measurements around the stalling angle will be shown. METHOD A full-size discus was employed to determine the aerodynamic forces acting on it in a low-speed wind tunnel with a 0.7 m 0.7 m rectangular nozzle. We used a commercially available discus (Super HM, Nishi athletics goods). Definitions of the characteristic parameters are shown in Figure 1. The wind speed, U, was set to 15, 20, 25 and 30 ms -1. Since the aerodynamic coefficients are independent of the spin rate on its axis of symmetry [2], it was set at ω=0 (non-spin) revolutions per second. The angle of attack, AoA, which is the angle between the discus planform and the direction of the flight path, was also varied, from 0 to 90. The measurement interval for AoA was 1 around the stalling angle and 5 for the remainder of the range. Data were acquired over a period of 8 sec. using a three-component strut-type balance (LMC NS; Nissho Electric Works Co., Ltd.) and were recorded on a personal computer using an A/D converter board with a sampling rate of 1000 Hz. Definitions of the aerodynamic forces are also shown in Figure 1. The drag and the lift are denoted by D and L, respectively, and the pitching moment is denoted by M. The nose-up rotation is defined as positive. The aerodynamic forces are converted into the drag coefficient C D, the lift coefficient and the pitching moment coefficient C M, as follows: L 0.5 U 2 D 0.5 U C D 2 A A (1) (2)

2 M 0.5 U C M 2 Ad (3) where is the density of air, A (= d 2 /4) is the cross sectional area of the discus planform and d is the diameter of the discus planform. The measuring points denoted by P 1, P 2 and P 3 for the pressure are shown in Figure 2. The measuring points are on the pressure side when AoA is positive, and they are on the suction side when AoA is negative. Figure 1 parameters. Definitions of the characteristic Figure 2 Measuring points for the pressure. The 2D-PIV measurements were carried out on the centerline of the discus. Micro-droplet particles with diameters of 1μm were generated by an aerosol generator (PivPart40, PivTec), and were introduced into the flow from the sirocco fan in the wind tunnel. A high repetition-rate pulsed ND:Yag laser (LDP-100MQG, Lee Laser) illuminated the microdroplet particles. A high-speed camera (Memrecam GX-8, Nac) was used to record tiff images at a sampling frequency of 1000Hz. The wind speed was set at 20ms -1. Figure 3(a) shows a picture taken before the run, while Figure 3(b) shows a picture taken during the run. (a) Before the run; Figure 3 (b) During the run Experimental set-up of PIV measurement. RESULTS and DISCUSSIONS The lift coefficient,, is shown in Figure 4 as a function of the angle of attack, AoA. The wind speed, U, is taken as a parameter. The closed triangles denote the data which is acquired in the process of increasing AoA from 0 to 35, while the open circles denote the data which is acquired in the process of decreasing AoA from 35 to 0. It can be seen that increases almost linearly with increasing AoA below 25. In the process of increasing from 0 to 35, decreases suddenly and abruptly at 30 (29 for U=15m/s). This decrease is caused by the effects of stalling. Though the stall might be a noise induced stall, which is very sensitive to small amounts of noise such as that caused by surface roughness or disturbance due to the introduced wind, the stalling angle is almost the same for all wind speeds. In the process of decreasing from 35 to 0, recovery from stalling occurs at 25 (24 for U=15m/s). Therefore, hysteresis occurs near the stalling angle.

3 The dependence on AoA of the pressure coefficient, C P, is shown in Figure 5. The pressure coefficient, C P, is defined as the pressure divided by the dynamic pressure. The measuring points for the pressure are shown in Figure 2. The measurements were carried out following a procedure from 0 to 90, from 90 to 0, from 0 to -60 and from -60 to 0. It can be seen that C P increases with increasing AoA in the range from 0 to 55 for P 1, from 0 to 65 for P 2 and from 0 to 80 for P 3. This is because there is an in-flow directly into the measuring point. When AoA decreases from 90 to 0, C P follows the same path with increasing AoA. On the other side, C P1 decreases with decreasing AoA in the range from 0 to -28. It changes suddenly with decreasing AoA from -15 to -20. On the way back from -60 to 0, C P1 recovers from the stall at -25. Therefore, hysteresis occurs on the suction side. It can be seen that C P2 also decreases with decreasing AoA in the range from 0 to -30. Since C P2 also changes suddenly with decreasing AoA from -27 to -28, the value of C P2 is approaching that of C P1. This implies that the region of the laminar separation bubble extends from the measuring point P 1 to P 2, because C P is almost constant in the laminar separation bubble region [3]. (a) U=15m/s; (b) U=20m/s; (c) U=25m/s; (d) U=30m/s Figure 4 The lift coefficient as a function of the angle of attack. Figure 5 C P CP1 CP2 CP The dependence on angle of attack of the pressure coefficient at U=20m/s. The aerodynamic coefficients, C D and C M at U=20m/s are shown as a function of the angle of attack in Figure 6. Error bars that indicate the standard deviations for velocity are also shown. The closed triangles denote the data which is acquired in the process of increasing AoA from 0 to 35, while the open circles denote the data which is acquired in the process of decreasing AoA from 35 to 0. Since the difference in path is negligibly small above 35, the averaged values acquired by the back support are denoted by the open squares. It was found that hysteresis occurs for and C M near the stalling angle. The error bars near the stalling angle become longer. Since the induced drag coefficient is proportional to the square of [4], C D also decreases just beyond the stalling angle in both processes.

4 C D (a) Lift coefficient; (b) Drag coefficient; C M (c) Pitching moment coefficient Figure 6 The aerodynamic coefficients as a function of the angle of attack at U=20m/s. (a) 15 ; (b) 28 ;

5 (c) 35 ; (d) 28 ; (e) 26 ; Figure 7 (f) 25 Velocity vectors on the suction side of the discus at U=20m/s. The results of 2D-PIV measurements at U=20m/s are shown in Figure 7. The angle of attack increases from Figure7 (a) to (c) in the process of increasing AoA. The angle of attack decreases from Figure7 (d) to (f) in the process of decreasing AoA. The flow direction is from the left to the right. The discus is located around the bottom in each picture. It can be seen that the flow almost runs along the surface of the discus at 15 (Figure 7 (a)) and 28 (Figure 7 (b)) in the process of increasing AoA, while boundary separation occurs at 35 (Figure 7 (c)). At 28 in the process of increasing AoA (Figure 7 (b)), a low velocity region can be seen around the downstream side of the leading edge. This region might correspond with the laminar separation bubble region. The velocity outside this low velocity region becomes higher. Re-attachment occurs around the convex point of the discus (There are two circles on either side of the discus. The edge of these circles is the convex point.). Since the regulations for discuses allow the diameters of these circles to be changed in the range between 50 and 57mm, there is a possibility of changing the position of re-attachment. Since the transition from the laminar flow to turbulent flow occurs far away from the discus surface at 35, it may happen that the turbulent flow wedge cannot reach the surface again. Thus, there is no reattachment. At 28 (Figure 7 (d)) and 26 (Figure 7 (e)) in the process of decreasing AoA, boundary separation also occurs as it does at 35. Even if the angle of attack in Figure 7 (d) is same value of 28 as Figure 7 (b), the velocity vectors are completely different. At 25 (Figure 7 (f)) in the process of decreasing AoA, recovery from the stall occurs. SUMMARY 1. Hysteresis occurs around the stalling angle for both the lift and the pitching coefficients. 2. Stalling occurs at 30 in the process of increasing the angle of attack, while recovery occurs at 25 in the decreasing process. 3. The flow runs almost along the surface of the discus up to 28 in the process of increasing the angle of attack. 4. A laminar bubble region is observed in the upstream side of the discus at 28 in the process of increasing the angle of attack. 5. Re-attachment occurs around the convex point at 28 in the process of increasing the angle of attack.

6 ACKNOWLEDGEMENTS This work is supported by a Grant-in-Aid for Scientific Research (A), Japan Society for the Promotion of Science. REFERENCES [1] Seo K., Shimoyama K., Ohta K., Ohgi Y. and Kimura Y. Optimization of the moment of inertia and the release conditions of a discus Procedia Engineering 34 (2012) pp [2] Seo K., Shimoyama K., Ohta K., Ohgi Y. and Kimura Y. Aerodynamic behavior of a discus Procedia Engineering 34 (2012) pp [3] Rinoie K. Laminar separation bubbles formed on airfoils Nagare 22 (2003) pp (in Japanese). [4] John D. Anderson. Fundamentals of Aerodynamics 3rd ed. New York: Mcgraw Hill (2010)

Characteristics of modern soccer balls

Characteristics of modern soccer balls Available online at www.sciencedirect.com Procedia Engineering 34 (01 ) 1 17 9 th Conference of the International Sports Engineering Association (ISEA) Characteristics of modern soccer balls Takeshi Asai

More information

Aerodynamic Performance of a Corrugated Dragonfly Airfoil Compared with Smooth Airfoils at Low Reynolds Numbers

Aerodynamic Performance of a Corrugated Dragonfly Airfoil Compared with Smooth Airfoils at Low Reynolds Numbers 4th AIAA Aerospace Sciences Meeting and Exhibit 8-11 January 27, Reno, Nevada AIAA 27-483 Aerodynamic Performance of a Corrugated Dragonfly Airfoil Compared with Smooth Airfoils at Low Reynolds Numbers

More information

STUDIES ON THE OPTIMUM PERFORMANCE OF TAPERED VORTEX FLAPS

STUDIES ON THE OPTIMUM PERFORMANCE OF TAPERED VORTEX FLAPS ICAS 2000 CONGRESS STUDIES ON THE OPTIMUM PERFORMANCE OF TAPERED VORTEX FLAPS Kenichi RINOIE Department of Aeronautics and Astronautics, University of Tokyo, Tokyo, 113-8656, JAPAN Keywords: vortex flap,

More information

Available online at ScienceDirect. The 2014 Conference of the International Sports Engineering Association

Available online at  ScienceDirect. The 2014 Conference of the International Sports Engineering Association Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 72 ( 2014 ) 435 440 The 2014 Conference of the International Sports Engineering Association Accuracy performance parameters

More information

DESIGN OF AN AERODYNAMIC MEASUREMENT SYSTEM FOR UNMANNED AERIAL VEHICLE AIRFOILS

DESIGN OF AN AERODYNAMIC MEASUREMENT SYSTEM FOR UNMANNED AERIAL VEHICLE AIRFOILS DESIGN OF AN AERODYNAMIC MEASUREMENT SYSTEM FOR UNMANNED AERIAL VEHICLE AIRFOILS L. Velázquez-Araque 1 and J. Nožička 1 1 Department of Fluid Dynamics and Power Engineering, Faculty of Mechanical Engineering

More information

Available online at Procedia Engineering 200 (2010) (2009) In situ drag measurements of sports balls

Available online at  Procedia Engineering 200 (2010) (2009) In situ drag measurements of sports balls Available online at www.sciencedirect.com Procedia Engineering 200 (2010) (2009) 2437 2442 000 000 Procedia Engineering www.elsevier.com/locate/procedia 8 th Conference of the International Sports Engineering

More information

Power Performance of an Inversely Tapered Wind Rotor and its Air Flow Visualization Analysis Using Particle Image Velocimetry (PIV)

Power Performance of an Inversely Tapered Wind Rotor and its Air Flow Visualization Analysis Using Particle Image Velocimetry (PIV) American Journal of Physics and Applications 2015; 3(1): 6-14 Published online February 2, 2015 (http://www.sciencepublishinggroup.com/j/ajpa) doi: 10.11648/j.ajpa.20150301.12 ISSN: 2330-4286 (Print);

More information

Job Sheet 1 Blade Aerodynamics

Job Sheet 1 Blade Aerodynamics Job Sheet 1 Blade Aerodynamics The rotor is the most important part of a wind turbine. It is through the rotor that the energy of the wind is converted into mechanical energy, which turns the main shaft

More information

Effects of seam and surface texture on tennis balls aerodynamics

Effects of seam and surface texture on tennis balls aerodynamics Available online at www.sciencedirect.com Procedia Engineering 34 (2012 ) 140 145 9 th Conference of the International Sports Engineering Association (ISEA) Effects of seam and surface texture on tennis

More information

T he uniqueness of the shape and design of a ball to a particular sport has meant that there were very little

T he uniqueness of the shape and design of a ball to a particular sport has meant that there were very little OPEN SUBJECT AREAS: MECHANICAL ENGINEERING FLUID DYNAMICS Received 19 February 2014 Accepted 15 April 2014 Published 29 May 2014 Correspondence and requests for materials should be addressed to S.H. (sr7931@hotmail.

More information

Aerofoil Design for Man Powered Aircraft

Aerofoil Design for Man Powered Aircraft Man Powered Aircraft Group Aerofoil Design for Man Powered Aircraft By F. X. Wortmann Universitat Stuttgart From the Second Man Powered Aircraft Group Symposium Man Powered Flight The Way Ahead 7 th February

More information

Aerofoil Profile Analysis and Design Optimisation

Aerofoil Profile Analysis and Design Optimisation Journal of Aerospace Engineering and Technology Volume 3, Issue 2, ISSN: 2231-038X Aerofoil Profile Analysis and Design Optimisation Kondapalli Siva Prasad*, Vommi Krishna, B.B. Ashok Kumar Department

More information

High Swept-back Delta Wing Flow

High Swept-back Delta Wing Flow Advanced Materials Research Submitted: 2014-06-25 ISSN: 1662-8985, Vol. 1016, pp 377-382 Accepted: 2014-06-25 doi:10.4028/www.scientific.net/amr.1016.377 Online: 2014-08-28 2014 Trans Tech Publications,

More information

Wind Tunnel Tests of Wind Turbine Airfoils at High Reynolds Numbers

Wind Tunnel Tests of Wind Turbine Airfoils at High Reynolds Numbers Journal of Physics: Conference Series OPEN ACCESS Wind Tunnel Tests of Wind Turbine Airfoils at High Reynolds Numbers To cite this article: E Llorente et al 014 J. Phys.: Conf. Ser. 54 0101 View the article

More information

EFFECT OF CORNER CUTOFFS ON FLOW CHARACTERISTICS AROUND A SQUARE CYLINDER

EFFECT OF CORNER CUTOFFS ON FLOW CHARACTERISTICS AROUND A SQUARE CYLINDER EFFECT OF CORNER CUTOFFS ON FLOW CHARACTERISTICS AROUND A SQUARE CYLINDER Yoichi Yamagishi 1, Shigeo Kimura 1, Makoto Oki 2 and Chisa Hatayama 3 ABSTRACT It is known that for a square cylinder subjected

More information

THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL. By Mehrdad Ghods

THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL. By Mehrdad Ghods THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL By Mehrdad Ghods Technical Communication for Engineers The University of British Columbia July 23, 2001 ABSTRACT Theory of Wings and Wind

More information

Kick precision and spin rate in drop and torpedo punts

Kick precision and spin rate in drop and torpedo punts Available online at www.sciencedirect.com Procedia Engineering 60 ( 2013 ) 448 452 6 th Asia-Pacific Congress on Sports Technology (APCST) Kick precision and spin rate in drop and torpedo punts Franz Konstantin

More information

ScienceDirect. Relating baseball seam height to carry distance

ScienceDirect. Relating baseball seam height to carry distance Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 112 (2015 ) 406 411 7th Asia-Pacific Congress on Sports Technology, APCST 2015 Relating baseball seam height to carry distance

More information

An experimental study on a suction flow control method to reduce the unsteadiness of the wind loads acting on a circular cylinder

An experimental study on a suction flow control method to reduce the unsteadiness of the wind loads acting on a circular cylinder Exp Fluids (24) 55:77 DOI.7/s348-4-77-7 RESEARCH ARTICLE An experimental study on a suction flow control method to reduce the unsteadiness of the wind loads acting on a circular cylinder Wen-Li Chen Hui

More information

ScienceDirect. Rebounding strategies in basketball

ScienceDirect. Rebounding strategies in basketball Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 72 ( 2014 ) 823 828 The 2014 conference of the International Sports Engineering Association Rebounding strategies in basketball

More information

JOURNAL PUBLICATIONS

JOURNAL PUBLICATIONS 1 JOURNAL PUBLICATIONS 71. Lee, T., Mageed, A., Siddiqui, B. and Ko, L.S., (2016) Impact of ground proximity on aerodynamic properties of an unsteady NACA 0012 airfoil, submitted to Journal of Aerospace

More information

DEVELOPMENT OF SAFE VERTICAL AXIS WIND TURBINE

DEVELOPMENT OF SAFE VERTICAL AXIS WIND TURBINE The Seventh Asia-Pacific Conference on Wind Engineering, November 8-12, 29, Taipei, Taiwan DEVELOPMENT OF SAFE VERTICAL AXIS WIND TURBINE FOR OVER SPEED ROTATION Minoru Noda 1, Fumiaki Nagao 2 and Akira

More information

Kinematic Differences between Set- and Jump-Shot Motions in Basketball

Kinematic Differences between Set- and Jump-Shot Motions in Basketball Proceedings Kinematic Differences between Set- and Jump-Shot Motions in Basketball Hiroki Okubo 1, * and Mont Hubbard 2 1 Department of Advanced Robotics, Chiba Institute of Technology, 2-17-1 Tsudanuma,

More information

Agood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the. Ball Trajectories

Agood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the. Ball Trajectories 42 Ball Trajectories Factors Influencing the Flight of the Ball Nathalie Tauziat, France By Rod Cross Introduction Agood tennis player knows instinctively how hard to hit a ball and at what angle to get

More information

ScienceDirect. Measurement of Wind Flow Behavior at the Leeward Side of Porous Fences Using Ultrasonic Anemometer Device

ScienceDirect. Measurement of Wind Flow Behavior at the Leeward Side of Porous Fences Using Ultrasonic Anemometer Device Available online at www.sciencedirect.com ScienceDirect Energy Procedia 85 (2016) 350 357 Sustainable Solutions for Energy and Environment, EENVIRO - YRC 2015, 18-20 November 2015, Bucharest, Romania Abstract

More information

FLOW CONSIDERATIONS IN INDUSTRIAL SILENCER DESIGN

FLOW CONSIDERATIONS IN INDUSTRIAL SILENCER DESIGN FLOW CONSIDERATIONS IN INDUSTRIAL SILENCER DESIGN George Feng, Kinetics Noise Control, Inc., 3570 Nashua Drive, Mississauga, Ontario Vadim Akishin, Kinetics Noise Control, Inc., 3570 Nashua Drive, Mississauga,

More information

Power efficiency and aerodynamic forces measurements on the Dettwiler-wind turbine

Power efficiency and aerodynamic forces measurements on the Dettwiler-wind turbine Institut für Fluiddynamik ETH Zentrum, ML H 33 CH-8092 Zürich P rof. Dr. Thomas Rösgen Sonneggstrasse 3 Telefon +41-44-632 2646 Fax +41-44-632 1147 roesgen@ifd.mavt.ethz.ch www.ifd.mavt.ethz.ch Power efficiency

More information

Available online at ScienceDirect. Procedia Engineering 105 (2015 )

Available online at  ScienceDirect. Procedia Engineering 105 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 105 (2015 ) 317 322 6th BSME International Conference on Thermal Engineering (ICTE 2014) Aerodynamic study of FIFA-approved

More information

Forces that govern a baseball s flight path

Forces that govern a baseball s flight path Forces that govern a baseball s flight path Andrew W. Nowicki Physics Department, The College of Wooster, Wooster, Ohio 44691 April 21, 1999 The three major forces that affect the baseball while in flight

More information

Determination of the wind pressure distribution on the facade of the triangularly shaped high-rise building structure

Determination of the wind pressure distribution on the facade of the triangularly shaped high-rise building structure Determination of the wind pressure distribution on the facade of the triangularly shaped high-rise building structure Norbert Jendzelovsky 1,*, Roland Antal 1 and Lenka Konecna 1 1 STU in Bratislava, Faculty

More information

LEADING-EDGE VORTEX FLAPS FOR SUPERSONIC TRANSPORT CONFIGURATION -EFFECTS OF FLAP CONFIGURATIONS AND ROUNDED LEADING-EDGES-

LEADING-EDGE VORTEX FLAPS FOR SUPERSONIC TRANSPORT CONFIGURATION -EFFECTS OF FLAP CONFIGURATIONS AND ROUNDED LEADING-EDGES- ICAS 2002 CONGRESS LEADING-EDGE VORTEX FLAPS FOR SUPERSONIC TRANSPORT CONFIGURATION -EFFECTS OF FLAP CONFIGURATIONS AND ROUNDED LEADING-EDGES- Kenichi RINOIE*, Dong Youn KWAK**, Katsuhiro MIYATA* and Masayoshi

More information

ScienceDirect. Aerodynamic body position of the brakeman of a 2-man bobsleigh

ScienceDirect. Aerodynamic body position of the brakeman of a 2-man bobsleigh Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 112 (2015 ) 424 429 7th Asia-Pacific Congress on Sports Technology, APCST 2015 Aerodynamic body position of the brakeman of

More information

PIV Analysis of a Delta Wing Flow with or without LEX(Leading Edge Extension)

PIV Analysis of a Delta Wing Flow with or without LEX(Leading Edge Extension) PIV Analysis of a Delta Wing Flow with or without LEX(Leading Edge Extension) by Young-Ho LEE (1) (Korea Maritime University), Myong-Hwan SOHN (2) (Korea Air Force Academy) Hyun LEE (3), Jung-Hwan KIM

More information

Increasing the power output of the Darrieus Vertical Axis Wind Turbine

Increasing the power output of the Darrieus Vertical Axis Wind Turbine 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36. Increasing the power output of the Darrieus Vertical Axis Wind Turbine R. Ramkissoon 1 and K. Manohar

More information

EXPERIMENTAL INVESTIGATION OF AN AIRFOIL WITH CO-FLOW JET FLOW CONTROL

EXPERIMENTAL INVESTIGATION OF AN AIRFOIL WITH CO-FLOW JET FLOW CONTROL EXPERIMENTAL INVESTIGATION OF AN AIRFOIL WITH CO-FLOW JET FLOW CONTROL By ADAM JOSEPH WELLS A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

More information

Experimental Investigation of the Aerodynamics of a Modeled Dragonfly Wing Section

Experimental Investigation of the Aerodynamics of a Modeled Dragonfly Wing Section Region I-MA Student Conference AIAA - 2005 April 8-9, 2005 / Charlottesville, Virginia Experimental Investigation of the Aerodynamics of a Modeled Dragonfly Wing Section Michelle Kwok * and Rajat Mittal

More information

A Comparison of Jabulani and Brazuca Non-Spin Aerodynamics

A Comparison of Jabulani and Brazuca Non-Spin Aerodynamics A Comparison of Jabulani and Brazuca Non-Spin Aerodynamics Proc JMechE Part P: J Sports Engineering and Technology ():1 13 The Author(s) 2 Reprints and permission: sagepub.co.uk/journalspermissions.nav

More information

THE CURVE OF THE CRICKET BALL SWING AND REVERSE SWING

THE CURVE OF THE CRICKET BALL SWING AND REVERSE SWING Parabola Volume 32, Issue 2 (1996) THE CURVE OF THE CRICKET BALL SWING AND REVERSE SWING Frank Reid 1 It is a well known fact in cricket that the new ball when bowled by a fast bowler will often swing

More information

Analysis of stroke technique using acceleration sensor IC in freestyle swimming

Analysis of stroke technique using acceleration sensor IC in freestyle swimming Analysis of stroke technique using acceleration sensor IC in freestyle swimming Y. Ohgi, M. Yasumura Faculty of Environmental Information, Keio Univ., Japan H. Ichikawa Doctoral Prog. of Health and Sport

More information

EXPERIMENTAL INVESTIGATION OF LIFT & DRAG PERFORMANCE OF NACA0012 WIND TURBINE AEROFOIL

EXPERIMENTAL INVESTIGATION OF LIFT & DRAG PERFORMANCE OF NACA0012 WIND TURBINE AEROFOIL EXPERIMENTAL INVESTIGATION OF LIFT & DRAG PERFORMANCE OF NACA0012 WIND TURBINE AEROFOIL Mr. Sandesh K. Rasal 1, Mr. Rohan R. Katwate 2 1 PG Student, 2 Assistant Professor, DYPSOEA Ambi Talegaon, Heat Power

More information

1. A tendency to roll or heel when turning (a known and typically constant disturbance) 2. Motion induced by surface waves of certain frequencies.

1. A tendency to roll or heel when turning (a known and typically constant disturbance) 2. Motion induced by surface waves of certain frequencies. Department of Mechanical Engineering Massachusetts Institute of Technology 2.14 Analysis and Design of Feedback Control Systems Fall 2004 October 21, 2004 Case Study on Ship Roll Control Problem Statement:

More information

Blade Design and Performance Analysis of Wind Turbine

Blade Design and Performance Analysis of Wind Turbine International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.5, No.2, pp 1054-1061, April-June 2013 ICGSEE-2013[14 th 16 th March 2013] International Conference on Global Scenario

More information

Basketball free-throw rebound motions

Basketball free-throw rebound motions Available online at www.sciencedirect.com Procedia Engineering 3 () 94 99 5 th Asia-Pacific Congress on Sports Technology (APCST) Basketball free-throw rebound motions Hiroki Okubo a*, Mont Hubbard b a

More information

II.E. Airplane Flight Controls

II.E. Airplane Flight Controls References: FAA-H-8083-3; FAA-8083-3-25 Objectives Key Elements Elements Schedule Equipment IP s Actions SP s Actions Completion Standards The student should develop knowledge of the elements related to

More information

Wind loads investigations of HAWT with wind tunnel tests and site measurements

Wind loads investigations of HAWT with wind tunnel tests and site measurements loads investigations of HAWT with wind tunnel tests and site measurements Shigeto HIRAI, Senior Researcher, Nagasaki R&D Center, Technical Headquarters, MITSUBISHI HEAVY INDSUTRIES, LTD, Fukahori, Nagasaki,

More information

Wind Energy Technology. What works & what doesn t

Wind Energy Technology. What works & what doesn t Wind Energy Technology What works & what doesn t Orientation Turbines can be categorized into two overarching classes based on the orientation of the rotor Vertical Axis Horizontal Axis Vertical Axis Turbines

More information

Aerodynamic Modification of CFR Formula SAE Race Car

Aerodynamic Modification of CFR Formula SAE Race Car Aerodynamic Modification of CFR Formula SAE Race Car Brandon M. Verhun, Trevor D. Haight, and Thomas A. Mahank Department of Mechanical Engineering Saginaw Valley State University University Center, MI

More information

Journal of Fluid Science and Technology

Journal of Fluid Science and Technology Bulletin of the JSME Vol.9, No.3, 2014 Journal of Fluid Science and Technology Investigation of wind turbine flow and wake Fawaz MASSOUH* and Ivan DOBREV* * DynFluid Lab., Arts et Metiers ParisTech 151

More information

STUDY OF THE INFLUENCE OF A GAP BETWEEN THE WING AND SLOTTED FLAP ON THE AERODYNAMIC CHARACTERISTICS OF ULTRA-LIGHT AIRCRAFT WING AIRFOIL

STUDY OF THE INFLUENCE OF A GAP BETWEEN THE WING AND SLOTTED FLAP ON THE AERODYNAMIC CHARACTERISTICS OF ULTRA-LIGHT AIRCRAFT WING AIRFOIL Review of the Air Force Academy No 3 (30) 2015 STUDY OF THE INFLUENCE OF A GAP BETWEEN THE WING AND SLOTTED FLAP ON THE AERODYNAMIC CHARACTERISTICS OF ULTRA-LIGHT AIRCRAFT WING AIRFOIL 1. INTRODUCTION

More information

AE3051 Experimental Fluid Dynamics PRESSURE MEASUREMENTS AND FLOW VISUALIZATION IN SUBSONIC WIND TUNNELS

AE3051 Experimental Fluid Dynamics PRESSURE MEASUREMENTS AND FLOW VISUALIZATION IN SUBSONIC WIND TUNNELS Objective AE3051 Experimental Fluid Dynamics PRESSURE MEASUREMENTS AND FLOW VISUALIZATION IN SUBSONIC WIND TUNNELS The primary objective of this experiment is to familiarize the student with the measurement

More information

OPTIMUM LOCATION OF PRESSURE MEASURMENTS AROUND A WING AS A DYNAMIC CONTROL INPUT IN SMOOTH AND TURBULENT CONDITIONS

OPTIMUM LOCATION OF PRESSURE MEASURMENTS AROUND A WING AS A DYNAMIC CONTROL INPUT IN SMOOTH AND TURBULENT CONDITIONS 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES OPTIMUM LOCATION OF PRESSURE MEASURMENTS AROUND A WING AS A DYNAMIC CONTROL INPUT IN SMOOTH AND TURBULENT CONDITIONS Matthew Marino*, Sridhar Ravi**,

More information

Research and optimization of intake restrictor for Formula SAE car engine

Research and optimization of intake restrictor for Formula SAE car engine International Journal of Scientific and Research Publications, Volume 4, Issue 4, April 2014 1 Research and optimization of intake restrictor for Formula SAE car engine Pranav Anil Shinde Mechanical Engineering,

More information

Twist Distributions for Swept Wings, Part 2

Twist Distributions for Swept Wings, Part 2 On the Wing... #162 Twist Distributions for Swept Wings, Part 2 Having defined and provided examples of lift distributions in Part 1, we now move on to describing the stalling patterns of untwisted and

More information

ADVANCES IN AERODYNAMICS OF WIND TURBINE BLADES

ADVANCES IN AERODYNAMICS OF WIND TURBINE BLADES ADVANCES IN AERODYNAMICS OF WIND TURBINE BLADES Herning / October 3 / 2017 By Jesper Madsen Chief Engineer, Aerodynamics & Acoustics WIND ENERGY DENMARK Annual Event 2017 Agenda 1. Aerodynamic design and

More information

Preliminary Analysis of Drag Reduction for The Boeing

Preliminary Analysis of Drag Reduction for The Boeing Preliminary Analysis of Drag Reduction for The Boeing 747-400 By: Chuck Dixon, Chief Scientist, Vortex Control Technologies LLC 07. 31. 2012 Potential for Airflow Separation That Can Be Reduced By Vortex

More information

The effect of the number of blades on wind turbine wake - a comparison between 2-and 3-bladed rotors

The effect of the number of blades on wind turbine wake - a comparison between 2-and 3-bladed rotors Journal of Physics: Conference Series PAPER OPEN ACCESS The effect of the number of blades on wind turbine wake - a comparison between 2-and 3-bladed rotors To cite this article: Franz Mühle et al 2016

More information

THE DESIGN OF WING SECTIONS

THE DESIGN OF WING SECTIONS THE DESIGN OF WING SECTIONS Published in "Radio Control Model News" Issue Number 8 Winter 93 Aerofoil section design has advanced a great deal since great pioneers like Horatio Phillips experimented with

More information

Attitude Instrument Flying and Aerodynamics

Attitude Instrument Flying and Aerodynamics Attitude Instrument Flying and Aerodynamics 2.1 TURNS 1. An airplane requires a sideward force to make it turn. a. When the airplane is banked, lift (which acts perpendicular to the wingspan) acts not

More information

Applications of Bernoulli s principle. Principle states that areas with faster moving fluids will experience less pressure

Applications of Bernoulli s principle. Principle states that areas with faster moving fluids will experience less pressure Applications of Bernoulli s principle Principle states that areas with faster moving fluids will experience less pressure Artery o When blood flows through narrower regions of arteries, the speed increases

More information

Measurement of Coaxial Swirling Bubble Jet Flow by Interferometric Laser Imaging

Measurement of Coaxial Swirling Bubble Jet Flow by Interferometric Laser Imaging Measurement of Coaxial Swirling Bubble Jet Flow by Interferometric Laser Imaging Takuto Mitsuhashi 1,*, Kiyotaka Kobayashi 1, Tomohiro Takanashi 1, Koichi Hishida 1, Konstantinos Zarogoulidis 2 1: Department

More information

Javelin Throwing Technique and Biomechanics

Javelin Throwing Technique and Biomechanics Javelin Throwing Technique and Biomechanics Riku Valleala KIHU Research Institute for Olympic Sports Athletics Coaches Seminar, 6-8 Nowember 2015, Oslo Contents of this presentation Basics of biomechanics

More information

Aerodynamic investigation of Winglets on Wind Turbine Blades using CFD

Aerodynamic investigation of Winglets on Wind Turbine Blades using CFD Risø-R-1543(EN) Aerodynamic investigation of Winglets on Wind Turbine Blades using CFD Jeppe Johansen and Niels N. Sørensen Risø National Laboratory Roskilde Denmark February 26 Author: Jeppe Johansen

More information

Engineering Flettner Rotors to Increase Propulsion

Engineering Flettner Rotors to Increase Propulsion Engineering Flettner Rotors to Increase Propulsion Author: Chance D. Messer Mentor: Jeffery R. Wehr Date: April 11, 2016 Advanced STEM Research Laboratory, Odessa High School, 107 E 4 th Avenue, Odessa

More information

A Biomechanical Approach to Javelin. Blake Vajgrt. Concordia University. December 5 th, 2012

A Biomechanical Approach to Javelin. Blake Vajgrt. Concordia University. December 5 th, 2012 A Biomechanical Approach to Javelin Blake Vajgrt Concordia University December 5 th, 2012 The Biomechanical Approach to Javelin 2 The Biomechanical Approach to Javelin Javelin is one of the four throwing

More information

leading edge, where the flow is fully separated. Both for the means and peaks, smooth flow leads to the highest values. A good correlation between cav

leading edge, where the flow is fully separated. Both for the means and peaks, smooth flow leads to the highest values. A good correlation between cav The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7) Shanghai, China; September 2-6, 22 Towards a better understanding of pressure equalization Carine van Bentum a,

More information

Aerodynamic drag of modern soccer balls

Aerodynamic drag of modern soccer balls Asai and Seo SpringerPlus 2013, 2:171 a SpringerOpen Journal RESEARCH Open Access Aerodynamic drag of modern soccer balls Takeshi Asai 1* and Kazuya Seo 2 Abstract Soccer balls such as the Adidas Roteiro

More information

CFD SIMULATION STUDY OF AIR FLOW AROUND THE AIRFOIL USING THE MAGNUS EFFECT

CFD SIMULATION STUDY OF AIR FLOW AROUND THE AIRFOIL USING THE MAGNUS EFFECT Magnus effect, simulation, air flow Patryk SOKOŁOWSKI *, Jacek CZARNIGOWSKI **, Paweł MAGRYTA *** CFD SIMULATION STUDY OF AIR FLOW AROUND THE AIRFOIL USING THE MAGNUS EFFECT Abstract The article presents

More information

DYNAMIC STALL AND CAVITATION OF STABILISER FINS AND THEIR INFLUENCE ON THE SHIP BEHAVIOUR

DYNAMIC STALL AND CAVITATION OF STABILISER FINS AND THEIR INFLUENCE ON THE SHIP BEHAVIOUR DYNAMIC STALL AND CAVITATION OF STABILISER FINS AND THEIR INFLUENCE ON THE SHIP BEHAVIOUR Guilhem Gaillarde, Maritime Research Institute Netherlands (MARIN), the Netherlands SUMMARY The lifting characteristics

More information

Bending a soccer ball with math

Bending a soccer ball with math Bending a soccer ball with math Tim Chartier, Davidson College Aerodynamics in sports has been studied ever since Newton commented on the deviation of a tennis ball in his paper New theory of light and

More information

Experimental study for flow characteristics and performance evaluation of butterfly valves

Experimental study for flow characteristics and performance evaluation of butterfly valves IOP Conference Series: Earth and Environmental Science Experimental study for flow characteristics and performance evaluation of butterfly valves To cite this article: C K Kim et al 2010 IOP Conf. Ser.:

More information

Wind Tunnel Measurements on Details of Laminar Wings

Wind Tunnel Measurements on Details of Laminar Wings Wind Tunnel Measurements on Details of Laminar Wings Jürgen Frey Juergen.Frey@tu-dresden.de Technische Universität Dresden Institut für Luft- und Raumfahrttechnik Arbeitsgruppe Experimentelle Aerodynamik

More information

Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped Fuselage

Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped Fuselage International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-213 1 Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped

More information

Lift for a Finite Wing. all real wings are finite in span (airfoils are considered as infinite in the span)

Lift for a Finite Wing. all real wings are finite in span (airfoils are considered as infinite in the span) Lift for a Finite Wing all real wings are finite in span (airfoils are considered as infinite in the span) The lift coefficient differs from that of an airfoil because there are strong vortices produced

More information

The immersion of horizontal stabilizers within the prop wash of pusher gyros The hypothesis of Don Shoebridge

The immersion of horizontal stabilizers within the prop wash of pusher gyros The hypothesis of Don Shoebridge Introduction The immersion of horizontal stabilizers within the prop wash of pusher gyros The hypothesis of Don Shoebridge Lets get the obvious stuff out of the way first. I m sure everyone will agree

More information

AN ISOLATED SMALL WIND TURBINE EMULATOR

AN ISOLATED SMALL WIND TURBINE EMULATOR AN ISOLATED SMALL WIND TURBINE EMULATOR Md. Arifujjaman Graduate Student Seminar: Master of Engineering Faculty of Engineering and Applied Science Memorial University of Newfoundland St. John s, NL, Canada

More information

Paper Liquid PIV measurements around a single gas slug rising through stagnant liquid in vertical pipes

Paper Liquid PIV measurements around a single gas slug rising through stagnant liquid in vertical pipes Paper 38.3 Liquid PIV measurements around a single gas slug rising through stagnant liquid in vertical pipes S. Nogueira o *, I. Dias +, A. M. F. R. Pinto*, M. L. Riethmuller o o von Karman Institute for

More information

Wind action on small sky observatory ScopeDome

Wind action on small sky observatory ScopeDome Wind action on small sky observatory ScopeDome A.Flaga a, G. Bosak a, Ł. Flaga b, G. Kimbar a, M. Florek a a Wind Engineering Laboratory, Cracow University of Technology, Cracow, Poland, LIWPK@windlab.pl

More information

The influence of Reynolds number on the aerodynamic characteristics of various wing geometries was investigated through

The influence of Reynolds number on the aerodynamic characteristics of various wing geometries was investigated through Characteristics of boundary-layer transition and Reynolds-number sensitivity of three-dimensional wings of varying complexity operating in ground effect ABSTRACT Luke S Roberts 1 Email: l.roberts@cranfield.ac.uk

More information

PREDICTION THE EFFECT OF TIP SPEED RATIO ON WIND TURBINE GENERATOR OUTPUT PARAMETER

PREDICTION THE EFFECT OF TIP SPEED RATIO ON WIND TURBINE GENERATOR OUTPUT PARAMETER Int. J. Mech. Eng. & Rob. Res. 2012 Hari Pal Dhariwal et al., 2012 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 1, No. 3, October 2012 2012 IJMERR. All Rights Reserved PREDICTION THE EFFECT OF TIP

More information

New Technologies applied to the design and optimization of tunnel ventilation systems

New Technologies applied to the design and optimization of tunnel ventilation systems New Technologies applied to the design and optimization of tunnel ventilation systems Ing. Justo Suárez Area Manager - ZITRON Dot. Ing. Massimiliano Bringiotti Managing Director - GEOTUNNEL Ing. Ana Belén

More information

Wind Tunnel Measurements on Details of Laminar Wings

Wind Tunnel Measurements on Details of Laminar Wings Wind Tunnel Measurements on Details of Laminar Wings Jürgen Frey, Technische Universität Dresden Institut für Luft- und Raumfahrttechnik, Arbeitsgruppe Experimentelle Aerodynamik Abstract Flow visualization

More information

AERODYNAMIC CHARACTERISTICS OF AIRFOIL WITH SINGLE SLOTTED FLAP FOR LIGHT AIRPLANE WING

AERODYNAMIC CHARACTERISTICS OF AIRFOIL WITH SINGLE SLOTTED FLAP FOR LIGHT AIRPLANE WING HENRI COANDA AIR FORCE ACADEMY ROMANIA INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER AFASES 2015 Brasov, 28-30 May 2015 GENERAL M.R. STEFANIK ARMED FORCES ACADEMY SLOVAK REPUBLIC AERODYNAMIC CHARACTERISTICS

More information

Racecar Rear Wing Setup Optimization via 2D CFD Simulations

Racecar Rear Wing Setup Optimization via 2D CFD Simulations Racecar Rear Wing Setup Optimization via 2D CFD Simulations Simulating Systems Ground Transportation Motorsport Graduate Engineer Test & Development Lotus Cars STAR Global Conference 2014 Vienna Austria

More information

Numerical Analysis of Wings for UAV based on High-Lift Airfoils

Numerical Analysis of Wings for UAV based on High-Lift Airfoils Numerical Analysis of Wings for UAV based on High-Lift Airfoils Sachin Srivastava Department of Aeronautical Engineering Malla Reddy College of Engineering & Technology, Hyderabad, Telangana, India Swetha

More information

Study on Bi-Plane Airfoils

Study on Bi-Plane Airfoils Study on Bi-Plane Airfoils Experiment 5: Final Design Project MECHANICAL AEROSPACE ENGINEERING 108 WINDTUNNEL LAB Professor Gamero-Castaño cc: Rayomand Gundevia Date: 12/09/13 Jin Mok 49832571 1 Abstract...

More information

The DAN-AERO MW Experiments Final report

The DAN-AERO MW Experiments Final report Downloaded from orbit.dtu.dk on: Dec 11, 2017 The DAN-AERO MW Experiments Final report Aagaard Madsen, Helge; Bak, Christian; Schmidt Paulsen, Uwe; Gaunaa, Mac; Fuglsang, Peter; Romblad, Jonas; Olesen,

More information

Optimization of a Golf Driver

Optimization of a Golf Driver Optimization of a Golf Driver By: Max Dreager Cole Snider Anthony Boyd Frank Rivera Final Report MAE 494: Design Optimization Due: May 10 Abstract In this study, the relationship between a golf ball and

More information

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight;

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight; QUESTION 1 A ball is thrown horizontally from a cliff with a speed of 10 ms -1 shown in the diagram at right. Neglecting the effect of air resistance and taking gravitational acceleration to be g +9.8ms

More information

THE BRIDGE COLLAPSED IN NOVEMBER 1940 AFTER 4 MONTHS OF ITS OPENING TO TRAFFIC!

THE BRIDGE COLLAPSED IN NOVEMBER 1940 AFTER 4 MONTHS OF ITS OPENING TO TRAFFIC! OUTLINE TACOMA NARROWS BRIDGE FLOW REGIME PAST A CYLINDER VORTEX SHEDDING MODES OF VORTEX SHEDDING PARALLEL & OBLIQUE FLOW PAST A SPHERE AND A CUBE SUMMARY TACOMA NARROWS BRIDGE, USA THE BRIDGE COLLAPSED

More information

Cavitation Bubbles in a Starting Submerged Water Jet

Cavitation Bubbles in a Starting Submerged Water Jet CAV21:sessionA7.5 1 Cavitation Bubbles in a Starting Submerged Water Jet K.Nakano, M.Hayakawa, S.Fujikawa and T.Yano Graduate School of Engineering, Hokkaido University, Sapporo, Japan Abstract The behavior

More information

Flow control on a high thickness airfoil by a trapped vortex cavity.

Flow control on a high thickness airfoil by a trapped vortex cavity. Flow control on a high thickness airfoil by a trapped vortex cavity. Fabrizio De Gregorio 1, Giuseppe Fraioli 2 1: LMSA/IWTU laboratory, Centro Italiano Ricerche Aerospaziali (CIRA), Capua, Italy, f.degregorio@cira.it

More information

JAR-23 Normal, Utility, Aerobatic, and Commuter Category Aeroplanes \ Issued 11 March 1994 \ Section 1- Requirements \ Subpart C - Structure \ General

JAR-23 Normal, Utility, Aerobatic, and Commuter Category Aeroplanes \ Issued 11 March 1994 \ Section 1- Requirements \ Subpart C - Structure \ General JAR 23.301 Loads \ JAR 23.301 Loads (a) Strength requirements are specified in terms of limit loads (the maximum loads to be expected in service) and ultimate loads (limit loads multiplied by prescribed

More information

Low-Speed Natural-Laminar-Flow Airfoils: Case Study in Inverse Airfoil Design

Low-Speed Natural-Laminar-Flow Airfoils: Case Study in Inverse Airfoil Design JOURNAL OF AIRCRAFT Vol. 38, No. 1, January February 2001 Low-Speed Natural-Laminar-Flow Airfoils: Case Study in Inverse Airfoil Design Ashok Gopalarathnam and Michael S. Selig University of Illinois at

More information

Abstract The aim of this work is two-sided. Firstly, experimental results obtained for numerous sets of airfoil measurements (mainly intended for wind

Abstract The aim of this work is two-sided. Firstly, experimental results obtained for numerous sets of airfoil measurements (mainly intended for wind Wind Turbine Airfoil Catalogue Risfi R 8(EN) Franck Bertagnolio, Niels Sfirensen, Jeppe Johansen and Peter Fuglsang Risfi National Laboratory, Roskilde, Denmark August Abstract The aim of this work is

More information

A numerical Euler-Lagrange method for bubble tower CO2 dissolution modeling

A numerical Euler-Lagrange method for bubble tower CO2 dissolution modeling A numerical Euler-Lagrange method for bubble tower CO2 dissolution modeling Author: Daniel Legendre & Prof. Ron Zevenhoven Åbo Akademi University Thermal and Flow Engineering Laboratory Turku, Finland

More information

Available online at Procedia Engineering 200 (2010) (2009)

Available online at  Procedia Engineering 200 (2010) (2009) Available online at www.sciencedirect.com Procedia Engineering 200 (2010) (2009) 000 000 2413 2418 Procedia Engineering www.elsevier.com/locate/procedia 8 th Conference of the International Sports Engineering

More information

Spins and how to keep the pointy end of the airplane going forward

Spins and how to keep the pointy end of the airplane going forward Spins and how to keep the pointy end of the airplane going forward 8/14/07 Evan Reed, cfievan@yahoo.com Ed Williams Outline Spins and their general characteristics Accident statistics and scenarios Some

More information

Low Reynolds Number Airfoil Design Lecture Notes

Low Reynolds Number Airfoil Design Lecture Notes Low Reynolds Number Airfoil Design Lecture Notes Michael S. Selig Department of Aerospace Engineering University of Illinois at Urbana Champaign Urbana, Illinois 6181 USA VKI Lecture Series Sponsored by

More information

Development of thermal image velocimetry techniques to measure the water surface velocity

Development of thermal image velocimetry techniques to measure the water surface velocity IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Development of thermal image velocimetry techniques to measure the water surface velocity To cite this article: A Saket et al 2016

More information

Effect of Nozzle Twisted Lance on Jet Behavior and Spitting Rate in Top Blown Process

Effect of Nozzle Twisted Lance on Jet Behavior and Spitting Rate in Top Blown Process , pp. 1410 1414 Effect of Nozzle Twisted Lance on Jet Behavior and Spitting Rate in Top Blown Process Yoshihiko HIGUCHI and Yukari TAGO Corporate Research & Development Laboratories, Sumitomo Metal Industries,

More information