# A Different Approach to Teaching Engine-Out Glides

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 A ifferent Approach to Teaching Engine-Out Glides es Glatt, Ph., ATP/CFI-AI, AGI/IGI When student pilots begin to learn about emergency procedures, the concept of the engine-out glide is introduced. The CFI will usually discuss the procedures to be used when an engine failure has occurred. Typically the discussion goes like this: (1) When the engine fails, the first step is to establish the aircraft at the airspeed for best glide. () This best glide airspeed allows the aircraft to fly at it maximum / ratio, which allows the aircraft to glide the farthest horizontal distance for the least loss in altitude. (3) The best glide airspeed is given in the POH in the section entitled Emergency Procedures. (4) The airspeed that is shown is for the aircraft being loaded to gross weight. (5) A rule of thumb to obtain the best glide speed at any aircraft weight is to reduce the best glide airspeed at gross weight by one-half the percent reduction in gross weight. Thus, if the aircraft is loaded to 10% below gross weight, you should reduce the best glide speed at gross weight by 5%. After this discussion with the student, the lesson proceeds with a flight that involves reducing the power to idle and pitching the aircraft to obtain the desired glide airspeed for the weight of the aircraft. The student responds to the simulated engine-out procedure by watching the airspeed indicator and pitches the aircraft to establish the airspeed at the target best glide speed and then trims the aircraft to that speed. The question we as flight instructors should ask ourselves is Is this really the proper method of teaching engine-out simulations, or is there a better way? Fortunately, understanding basic aerodynamics tells us that there is a better way to teach this subject. Here, what I mean by basic aerodynamics is the knowledge that is provided in the FAA Handbook of Aeronautical Knowledge (FAA-H ), chapters 3, 4, and 10. When discussing gliding flight, I usually poll the audience with the following scenario: Two identical aircraft incur an engine failure at 9000 AG. The first weighs 400 lbs and the second weighs 000 lbs. The question I ask is Which aircraft can glide the farthest before it runs out of altitude? The majority of the answers come back with the lighter one being able to glide the farthest. The next popular answer is the heavier one and the remaining answers are either both are able to glide the same distance or I am not sure. The fact that the correct answer is they both can glide the same distance, indicates to me that the subject of basic aerodynamics is not properly 1

2 taught by flight instructors. In fact, in many cases, the flight instructor s answer will also be the lighter one. In order to shed some light for a different approach to teaching engine-out gliding, we will review the basic aerodynamics of a wings level glide, which will allow the reader to understand why the correct answer is they both glide the same distance. Aircraft performance is determined by the balance of forces along and perpendicular to the flight path of the aircraft. Figure 1 shows the aircraft established in a glide. The forces that act on the aircraft during the glide are lift, drag, and weight, with the thrust set to zero. Note that there may be some small amount of thrust at the propeller when the engine is idling, but for this discussion we will assume it is identically zero. Although CFI s are always discussing the concept of angle-of-attack, what is usually missing in the discussion is the concept of what is called flight path angle, which is the direction of the velocity vector of the aircraft in relationship to the local horizontal. Pitch Angle Figure 1: Forces on Aircraft in a Glide

3 Figure 1 also shows the angle-of attack ( ) and the flight path angle ( ). In addition, there is a simple relationship between the flight path angle, the angle-of-attack and the pitch angle of the aircraft. The pitch angle is the angle between the longitudinal axis of the aircraft and the horizontal plane, and is also shown in Figure 1. It is positive when the longitudinal axis is above the horizontal plane and negative below the horizontal plane. If we assume the average wing incidence angle (which is the angle between the chordline of the wing and the longitudinal axis of the aircraft) is zero, a simple relationship exists between the three angles. This relationship is shown below. Pitch Angle = Flight Path Angle + Angle-of-Attack (1) The positive sign in equation (1) is required in order to account for the fact that the flight path angle is negative (i.e. below the horizontal) and the angle-of attack is positive (i.e. the chordline is above the velocity vector). Although flight instructors usually emphasize the importance of angle-of-attack, what is interesting is that both the angle-of-attack and flight path angles are angles that are in general not able to be visualized by the pilot in flight. In fact, the only time the pilot can visualize the angle-of-attack in flight, is when the flight path angle is zero, i.e. when the aircraft is in level flight. In this case, the angleof-attack is equal to the pitch angle as can be seen by the above simple relationship. As an example, when we are performing slow flight at constant altitude, the pitch angle is essentially the angle-of-attack. Figure shows the same information as Figure 1, except we have decomposed the weight into two components, one along the flight path (W A ) and one perpendicular to the flight path (W P ). The drag force acts in a direction opposite to the velocity of the aircraft. The lift force acts perpendicular to the velocity vector and the weight acts downward. The components of weight along and perpendicular to the flight path can be obtained from simple trigonometric relationships for a right triangle, and are given in equation () below: W W A P WSin WCos () 3

4 W A W P W Figure : Force on the Aircraft in a Glide Again, in a steady-state glide, the forces along and perpendicular to the flight path are in balance. Thus, one can write the following relationships for the force balance: Along the flight path: Perpendicular to the flight path: WSin (3) WCos (4) Combining these two relationships we find that 4

5 1 Tan (5) ( / ) This relationship is the most fundamental relationship for gliding flight. It gives us the flight path angle as a function of the lift to drag ratio, i.e., the /. In order to minimize the glide path angle, the aircraft needs to fly at a value of / which is the maximum the aircraft can attain. This is the reason the flight instructor tells his/her student that we need to fly at the maximum / to be able to glide the farthest. However, the above relationship does not provide any information on what the maximum / is for the aircraft. In order to obtain information on the / ratio, we need to delve a little further into basic aerodynamics. One can express the lift and drag on the aircraft in the form 1 C V (6) ( )S 1 C V ( )S (7) Where C = ift coefficient C = rag coefficient ρ = Air density V = True airspeed S = Wing area Therefore, C C (8) In general one can express the drag coefficient as the sum of the parasite drag (i.e., all 5

6 drag that is not due to the generation of lift), and the induced drag (i.e., drag that arises out of the generation of lift). This expression is usually given in terms of the lift coefficient. This equation is usually termed the drag polar and is of the form C C kc (9) 0 Where Here C 0 is the parasite drag coefficient, and kc is the induced drag coefficient. C 0 and k are constants for the particular aircraft one is flying. One can now express the / ratio as C C kc 0 (10) It can easily be shown that the maximum lift to drag ratio occurs when C 0 kc (11) The above expression shows that the maximum / occurs when the parasite drag is exactly equal to the induced drag. Since C and k are known constants for the aircraft, the / can be obtained. However, the / can also be obtained from the POH by viewing the Maximum Glide chart in the Emergency Procedures section. Figure 3 shows a Maximum Glide chart for a C-17. Note that this chart corresponds to a C- 17 at gross weight, 65KIAS, propeller windmilling, flaps up and zero wind. 0 V V V V H 6

7 The / ratio can be obtained by dividing the 18 nautical mile distance in feet by the height above the terrain at 18 nautical miles, which is 1000 feet. This ratio is determined to be If one substitutes the value of / of 9.09 into the glide path equation (5), the flight path angle is determined to be 6.3 degrees below the horizon. This glide path angle is independent of the aircraft altitude or weight of the aircraft. One can easily plot the / ratio versus the value of C, but it is more informative to plot the / as a function of the angle-of attack. The value of C of the aircraft is also given as a function of angle-of-attack, so that one can easily plot the / versus angle-of-attack. Typical plots of C versus angle-of-attack and / and C versus angle-of-attack are shown in Figure 4. This figure corresponds to a symmetrical airfoil, since the lift is zero at a zero angle-of-attack. Ref: Handbook of Aeronautical Knowledge (FAA-H A) Angle-of-Attack Figure 4: C, C, and / ratio as a function of angle-of-attack 7

8 It is clear that the maximum / occurs at a fixed angle-of-attack and is independent of both the aircraft weight and the altitude. In addition, the flight path angle is also independent of the aircraft weight and the altitude. In the case of a C-17, the flight path angle was shown to be 6.3 degrees below the horizontal. The maximum / for a C-17 occurs somewhere between 6 and 9 degrees angle-of-attack. Using the expression in equation (1), the pitch angle would be somewhere between 0 and 3 degrees above the horizon. Thus, basic aerodynamics tells us that the same pitch attitude should be flown, independent of the weight of the aircraft or the altitude. The exact pitch attitude can be determined either by a plot similar to Figure 4 for a C-17, or one can load the aircraft to gross weight, reduce the power to idle and trim the aircraft to 65KIAS. The pitch attitude for the best glide speed should be noted and that pitch attitude should be used for simulated emergencies, no matter what the weight of the aircraft. Note that in the case of an actual engine failure when the propeller is windmilling, the / of the aircraft will be slightly lower than that for the case of the engine at idle. In addition, the lower / will occur at a slightly higher angle-of-attack (since the parasite drag coefficient is somewhat higher). Thus, the pitch attitude will be slightly different with the propeller windmilling, as compared to the propeller idling case. Therefore, the standard 5-step briefing on emergency glide procedures will now have a sixth step which will state that the best glide speed for any weight or altitude is attained at a specific pitch attitude. In summary, we should teach student pilots to establish a given pitch attitude when simulating engine failures, rather than to chase the airspeed, which is going to be dependent of the weight of the aircraft. By establishing the proper pitch attitude at different aircraft weights, the student can observe the resultant airspeeds for the same pitch attitude and thus correlate that with the statement that the best glide speed is reduced by half the percent reduction in gross weight. We try to teach our students to maintain visual cues outside the aircraft and setting up a specific pitch attitude for engine-out emergency simulations allows the student to do just that, keep his head out of the cockpit. For those folks curious about some of the mathematics, I have provided some helpful information in Appendix I. Any questions or comments should be directed to es Glatt (818)

9 Appendix I In regard to the use of trigonometric functions such as the Sine and Cosine of a particular angle, a simple scientific hand calculator can be used to evaluate these functions. However, I have provided the table below which provides this information. Note that a property of the Sines and Cosines is that sum of their squares are equal to 1. Table of Sines and Cosines On page 5, it is stated that the maximum / is attained at the angle-ofattack where the parasite drag and induced drag are equal. This conclusion is found by using elementary calculus when trying to locate the maximum of a function. However, it is easy to prove this fact by picking any two values of C 0 and k and plotting the / ratio versus the lift coefficient. This can be done using Microsoft Excel. When the maximum is located, you will observe that the parasite drag and the induced drag coefficients are equal. In the case of a C-17 with the propeller windimilling, the value of C is approximately 0.05, and the value of k 0 is approximately These values would produce a maximum / of

10 Checked Out From The SAFE Members Only Resource Center Society of Aviation and Flight Educators This material has been donated to the SAFE Resource Center for the personal use of SAFE Members. Questions, or Permission for any other intended use, should be directed to the author: es Glatt;

### Guidance Notes PRIVATE AND COMMERCIAL PILOT TRAINING

PRIVATE AND COMMERCIAL PILOT TRAINING September 2005 1 st Edition ACKNOWLEDGEMENT Transport Canada thanks the Federal Aviation Administration of the United States for their permission to use the chapter

### II.E. Airplane Flight Controls

References: FAA-H-8083-3; FAA-8083-3-25 Objectives Key Elements Elements Schedule Equipment IP s Actions SP s Actions Completion Standards The student should develop knowledge of the elements related to

### Beechcraft Duchess 76 Maneuver Notes

Beechcraft Duchess 76 Maneuver Notes I. Maneuver notes for Performance (AOA V), Slow Flight and Stalls (AOA VIII), Emergency Operations (AOA X), and Multiengine Operations (AOA XI) a. Maneuvers addressed:

### POWER-OFF 180 ACCURACY APPROACH AND LANDING

POWER-OFF 180 ACCURACY APPROACH AND LANDING OBJECTIVE To teach the commercial student the knowledge of the elements related to a power-off 180 accuracy approach and landing. COMPLETION STANDARDS 1. Considers

### HOW TO FLY AIRPLANES

HOW TO FLY AIRPLANES Complimentary Ebook Available from bob@safe-flight.net HOW TO FLY AIRPLANES BASIC AIRCRAFT CONTROL Robert Reser, Publisher bob@safe-flight.net Tempe, Arizona Copyright 2012-2016 by

### Aviation Merit Badge Knowledge Check

Aviation Merit Badge Knowledge Check Name: Troop: Location: Test Score: Total: Each question is worth 2.5 points. 70% is passing Dan Beard Council Aviation Knowledge Check 1 Question 1: The upward acting

### PERFORMANCE MANEUVERS

Ch 09.qxd 5/7/04 8:14 AM Page 9-1 PERFORMANCE MANEUVERS Performance maneuvers are used to develop a high degree of pilot skill. They aid the pilot in analyzing the forces acting on the airplane and in

### XII.A-D. Basic Attitude Instrument Flight

References: FAA-H-8083-3; FAA-8083-3-15 Objectives Key Elements Elements Schedule Equipment IP s Actions SP s Actions Completion Standards The student should develop knowledge of the elements related to

### PRE-TEST Module 2 The Principles of Flight Units /60 points

PRE-TEST Module 2 The Principles of Flight Units 1-2-3.../60 points 1 Answer the following questions. (20 p.) moving the plane (4) upward / forward. Opposed to that is 1. What are the names of the four

### Homework Exercise to prepare for Class #2.

Homework Exercise to prepare for Class #2. Answer these on notebook paper then correct or improve your answers (using another color) by referring to the answer sheet. 1. Identify the major components depicted

### file://c:\program Files\Microsoft Games\Microsoft Flight Simulator X\FSWeb\lessons\Stud...

Page 1 of 7 Lesson 2: Turns How Airplanes Turn Fly This Lesson Now by Rod Machado There are many misconceptions in aviation. For instance, there are pilots who think propwash is a highly specialized detergent.

### 1. GENERAL AERODYNAMICS

Chapter 1. GENERAL AERODYNAMICS Unless otherwise indicated, this handbook is based on a helicopter that has the following characteristics: 1 - An unsupercharged (normally aspirated) reciprocating engine.

### OUTLINE SHEET BASIC THEORY. 2.1 DEFINE scalar, in a classroom, in accordance with Naval Aviation Fundamentals, NAVAVSCOLSCOM-SG-200

Sheet 1 of 7 OUTLINE SHEET 2-1-1 BASIC THEORY A. INTRODUCTION This lesson is a basic introduction to the theory of aerodynamics. It provides a knowledge base in aerodynamic mathematics, air properties,

### Pressure and Density Altitude

Pressure and Density Altitude Reference Sources Pilot s Handbook of Aeronautical Knowledge o Pages 9-1 to 9-4, Aircraft Performance o Pages 9-20 to 9-21, Density Altitude Charts Study Questions 1. Where

### Cessna 172S Skyhawk Standardization Manual

Cessna 172S Skyhawk Standardization Manual This manual is to be utilized in conjunction with the manufacturers approved POH/ AFM and the Airplane Flying Handbook (FAA-H-8083-3A). This manual should be

### Visualized Flight Maneuvers Handbook

Visualized Flight Maneuvers Handbook For High Wing Aircraft Third Edition For Instructors and Students Aviation Supplies & Academics, Inc. Newcastle, Washington Visualized Flight Maneuvers Handbook for

### Spins and how to keep the pointy end of the airplane going forward

Spins and how to keep the pointy end of the airplane going forward 8/14/07 Evan Reed, cfievan@yahoo.com Ed Williams Outline Spins and their general characteristics Accident statistics and scenarios Some

### PILOT S HANDBOOK of Aeronautical Knowledge AC61-23C

PILOT S HANDBOOK of Aeronautical Knowledge AC61-23C Revised 1997 Chapter 1 Excerpt Compliments of... www.alphatrainer.com Toll Free: (877) 542-1112 U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION

### NORMAL TAKEOFF PILOT TRAINING MANUAL KING AIR 200 SERIES OF AIRCRAFT

NORMAL TAKEOFF Climb-Out 1. Accelerate to 160 KIAS 2. Landing/Taxi lights: Out 3. Climb Checklist complete 1. 160 KIAS up to 10,000 ft 2. Decrease 2 KIAS per 1,000 ft above 10,000 ft to 130 KIAS at 25,000

### CIVIL AIR PATROL United States Air Force Auxiliary Cadet Program Directorate. Cessna 172 Maneuvers and Procedures

CIVIL AIR PATROL United States Air Force Auxiliary Cadet Program Directorate Cessna 172 Maneuvers and Procedures This study guide is designed for the National Flight Academy Ground School. The information

### THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL. By Mehrdad Ghods

THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL By Mehrdad Ghods Technical Communication for Engineers The University of British Columbia July 23, 2001 ABSTRACT Theory of Wings and Wind

### Four forces on an airplane

Four forces on an airplane By NASA.gov on 10.12.16 Word Count 824 Level MAX TOP: An airplane pictured on June 30, 2016. Courtesy of Pexels. BOTTOM: Four forces on an airplane. Courtesy of NASA. A force

### CAP-USAF FLIGHT MANEUVERS GUIDE

CAP-USAF FLIGHT MANEUVERS GUIDE February 2012 Flight Maneuvers Guide This guide describes and standardizes the instruction and performance of the various flight maneuvers described in Chapter 3 of AFI11-2CAP-USAF,

### Circuit Considerations

Circuit Training Circuit Considerations This briefing deals with those aspects of a normal circuit that were deferred during Circuit Introduction, to avoid student overload. Objectives To continue circuit

### Front Cover Picture Mark Rasmussen - Fotolia.com

Flight Maneuvers And Stick and Rudder Skills A complete learn to fly handbook by one of aviation s most knowledgeable and experienced flight instructors Front Cover Picture Mark Rasmussen - Fotolia.com

### Flying The. Traffic Pattern. Skill Level: Basic

Flying The Now that you ve mastered a number of basic and intermediate flying skills, it s time to put them all to the test in the exercise that combines them all Flying The Traffic Pattern. In this Flight

### Airplane controls. The three primary flight controls are the ailerons, elevator and rudder.

Airplane controls The three primary flight controls are the ailerons, elevator and rudder. Ailerons: The two ailerons, one at the outer trailing edge of each wing, are movable surfaces that control movement

### Maximum Rate Turns. Objective To carry out a balanced, maximum rate, level turn using full power.

Advanced Manoeuvres Maximum Rate Turns To achieve the maximum rate of turn, the greatest possible force toward the centre of the turn is required. This is achieved by inclining the lift vector as far as

### Flightlab Ground School 7. Longitudinal Dynamic Stability

Flightlab Ground School 7. Longitudinal Dynamic Copyright Flight Emergency & Advanced Maneuvers Training, Inc. dba Flightlab, 2009. All rights reserved. For Training Purposes Only Introduction to is the

### Principles of glider flight

Principles of glider flight [ Lecture 2: Control and stability ] Richard Lancaster Email: Richard@RJPLancaster.net Twitter: @RJPLancaster ASK-21 illustrations Copyright 1983 Alexander Schleicher GmbH &

### Flight Profiles are designed as a guideline. Power settings are recommended and subject to change based

MANEUVERS AND PROCEDURES Flight Profiles are designed as a guideline. Power settings are recommended and subject to change based upon actual conditions (i.e. aircraft weight, pressure altitude, icing conditions,

### PRIMARY FLIGHT CONTROLS. AILERONS Ailerons control roll about the longitudinal axis. The ailerons are attached to the outboard trailing edge of

Aircraft flight control systems are classified as primary and secondary. The primary control systems consist of those that are required to safely control an airplane during flight. These include the ailerons,

### VII.E. Normal and Crosswind Approach and Landing

References: FAA-H-8083-3; POH/AFM Objectives Key Elements Elements Schedule Equipment IP s Actions SP s Actions Completion Standards The student should be able to perform a normal approach and landing

### Part 66 Cat. B1 / B2 Module 8 BASIC AERODYNAMICS. Vilnius Issue 1. Effective date FOR TRAINING PURPOSES ONLY Page 1 of 74

Part 66 Cat. B1 / B2 Module 8 BASIC AERODYNAMICS Vilnius-2017 Issue 1. Effective date 2017-07-28 FOR TRAINING PURPOSES ONLY Page 1 of 74 Table of Contents Part-66 Module 8. Basic Aerodynamics (Cat. B1

### VII.H. Go-Around/Rejected Landing

VII.H. Go-Around/Rejected Landing References: FAA-H-8083-3; POH/AFM Objectives Key Elements Elements Schedule Equipment IP s Actions SP s Actions Completion Standards The student should develop knowledge

### Building Good Habits for a Better Future Aileron-Rudder Mixing Explained

Building Good Habits for a Better Future Aileron-Rudder Mixing Explained By Dave Scott. Instructor, 1st U.S. R/C Flight School Illustrations by Dave Scott Adverse Yaw Introduction The following article

### Surviving Off-Field Landings: Emergency Landing Pattern. By Wally Moran

Surviving Off-Field Landings: Emergency Landing Pattern By Wally Moran About Wally Moran Wally Moran is a retired airline captain and spent much of his career as a training instructor and check airman

### Pentagon & Boeing 757 Ground Effect

Page 1 of 9 Pentagon & Boeing 757 Ground Effect In the aftermath of 9/11, I have heard many claims that a 757 could not possible have hit the Pentagon because the plane cannot fly so low to the ground

### Jet Propulsion. Lecture-17. Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati

Lecture-17 Prepared under QIP-CD Cell Project Jet Propulsion Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Lift: is used to support the weight of

### Attitude Instrument Flying and Aerodynamics

Attitude Instrument Flying and Aerodynamics 2.1 TURNS 1. An airplane requires a sideward force to make it turn. a. When the airplane is banked, lift (which acts perpendicular to the wingspan) acts not

### Principles of glider flight

Principles of glider flight [ Lecture 1: Lift, drag & glide performance ] Richard Lancaster Email: Richard@RJPLancaster.net Twitter: @RJPLancaster ASK-21 illustrations Copyright 1983 Alexander Schleicher

### Aerobatic Trimming Chart

Aerobatic Trimming Chart From RCU - Chip Hyde addresses his view of Engine/Motor thrust. I run almost no right thrust in my planes and use the thottle to rudd mix at 2% left rudd. to throttle at idle.

Advisory Circular (AC) Stall, Compliance File No. 5009-6-525 AC No. 525-020 RDIMS No. 528401-V3 Issue No. 01 Issuing Branch Aircraft Certification Effective Date 2004-12-01 1.0 INTRODUCTION... 2 1.1 Purpose...

### Principles of Sailing

Principles of Sailing This is a PowerPoint set of charts presented by Demetri Telionis on March 21, 2015 at the Yacht Club of Hilton Head Island. The aim of this presentation was to help the audience understand

### Uncontrolled copy not subject to amendment. Principles of Flight

Uncontrolled copy not subject to amendment Principles of Flight Principles of Flight Learning Outcome 1: Know the principles of lift, weight, thrust and drag and how a balance of forces affects an aeroplane

### Figure 1. Curtis 1911 model D type IV pusher

This material can be found in more detail in Understanding Flight 1 st and 2 nd editions by David Anderson and Scott Eberhardt, McGraw-Hill, 2001, and 2009 A Physical Description of Flight; Revisited David

### Principles of Flight. Chapter 4. From the Library at Introduction. Structure of the Atmosphere

From the Library at www.uavgroundschool.com Chapter 4 Principles of Flight Introduction This chapter examines the fundamental physical laws governing the forces acting on an aircraft in flight, and what

### Basics of Speed to Fly for Paragliding Pilots

Page 1 of 10 San Francisco and Northern California's Premier Paragliding School Up is GOOD!!! Basics of Speed to Fly for Paragliding Pilots The expression Speed to Fly represents the adjustments to a Paraglider's

### SULAYMANIYAH INTERNATIONAL AIRPORT MATS

KURDISTAN REGIONAL GOVERNMENT SULAYMANIYAH INTERNATIONAL AIRPORT MATS APPENDIX " O " SPEED CONTROL GUIDANCE ( First Edition ) April 2012 Prepared By Fakhir.F. Mohammed Civil Aviation Consultant APPENDIX

### Aerodynamically Efficient Wind Turbine Blade S Arunvinthan 1, Niladri Shekhar Das 2, E Giriprasad 3 (Avionics, AISST- Amity University, India)

International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 3 Issue 4ǁ April 2014ǁ PP.49-54 Aerodynamically Efficient Wind Turbine Blade S Arunvinthan

### How to survive an engine failure in a single engine aircraft

How to survive an engine failure in a single engine aircraft Don't Go In Pointed End First There you are 110 kts, 3,000 ft., enjoying being in the air and out of contact with all the folks on the ground;

### Job Sheet 1 Blade Aerodynamics

Job Sheet 1 Blade Aerodynamics The rotor is the most important part of a wind turbine. It is through the rotor that the energy of the wind is converted into mechanical energy, which turns the main shaft

### G - LOAD Longitudinal Static Stability

GYROPLANE ASTM STANDARDS PART 5 G - LOAD Longitudinal Static Stability By Greg Gremminger Greg Gremminger has served as the Chairman of the ASTM Light Sport Aircraft Gyroplane subcommittee developing the

### Aerofoil Profile Analysis and Design Optimisation

Journal of Aerospace Engineering and Technology Volume 3, Issue 2, ISSN: 2231-038X Aerofoil Profile Analysis and Design Optimisation Kondapalli Siva Prasad*, Vommi Krishna, B.B. Ashok Kumar Department

### TECHNICAL ARTICLE STUNT KITE AERODYNAMICS

TECHNICAL ARTICLE STUNT KITE AERODYNAMICS Written March 16, 1998 Updated January 26, 2010 By DOUGLAS K. STOUT "DESIGNING FOR THE FUTURE" 50 OLD STAGE COACH ROAD ANDOVER, NEW JERSEY 07821 (973) 786-7849

### WHAT IS GLIDER? A light engineless aircraft designed to glide after being towed aloft or launched from a catapult.

GLIDER BASICS WHAT IS GLIDER? A light engineless aircraft designed to glide after being towed aloft or launched from a catapult. 2 PARTS OF GLIDER A glider can be divided into three main parts: a)fuselage

INTRODUCTION The following maneuver guide is designed to provide a technique for completing each VFR maneuver required by the FAA s Practical Test Standards for the Private Practical Test. By performing

### WING PROFILE WITH VARIABLE FLAP

WING PROFILE WITH VARIABLE FLAP March 2009 INTRODUCTION Flaps are something that can be found on a majority of aeroplanes. That they fill an important purpose in affecting the aircraft s performance is

### Flight Controls. Chapter 5. Introduction

Chapter 5 Flight Controls Introduction This chapter focuses on the flight control systems a pilot uses to control the forces of flight, and the aircraft s direction and attitude. It should be noted that

### Flight Control Systems Introduction

Flight Control Systems Introduction Dr Slide 1 Flight Control System A Flight Control System (FCS) consists of the flight control surfaces, the respective cockpit controls, connecting linkage, and necessary

### Activity Parts of an Aircraft

Activity 4.2.7 Parts of an Aircraft Introduction The science of aeronautics really began to evolve in the late 18th and early 19th centuries. Philosophers and early scientists began to look closely at

### Compiled by Matt Zagoren

The information provided in this document is to be used during simulated flight only and is not intended to be used in real life. Attention VA's - you may post this file on your site for download. Please

### Phys 101 College Physics I ` Student Name: Additional Exercises on Chapter 3

Phys 0 College Physics I ` Student Name: Additional Exercises on Chapter ) A displacement vector is.0 m in length and is directed 60.0 east of north. What are the components of this vector? Choice Northward

### Parametric Ball Toss TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System

Math Objectives Students will be able to use parametric equations to represent the height of a ball as a function of time as well as the path of a ball that has been thrown straight up. Students will be

### HIGH ALTITUDE AERODYNAMICS

HIGH ALTITUDE AERODYNAMICS CRITICAL ASPECTS OF MACH FLIGHT In recent years, a number of corporate jet airplanes have been involved in catastrophic loss of control during high-altitude/high-speed flight.

### AE Stability and Control of Aerospace Vehicles

AE 430 - Stability and Control of Aerospace Vehicles Introduction 1 Welcome to AE 430 - Stability and Control of Aerospace Vehicles Pier Marzocca Pier CAMP 234, MAE Department MW 10:00-12:30, CAMP 234

### G-BCKU Aerobatic Sequences

G-BCKU Aerobatic Sequences Flight Manual Edition No. 1 REIMSjCESSNA FRA l50l November 1971 AEROBATIC MANEUVERS AEROBATIC-CONSIDERATIONS The FRAl50L is certificated in the Aerobatic Category for the maneuvers

### Agood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the. Ball Trajectories

42 Ball Trajectories Factors Influencing the Flight of the Ball Nathalie Tauziat, France By Rod Cross Introduction Agood tennis player knows instinctively how hard to hit a ball and at what angle to get

### Descent Planning with a Mechanical E6-B Flight Computer

Descent Planning with a Mechanical E6-B Flight Computer Most pilots are familiar with an E6-B mechanical flight computer as it is considered to be an integral part of a new pilot s training for use with

### AE2610 Introduction to Experimental Methods in Aerospace AERODYNAMIC FORCES ON A WING IN A SUBSONIC WIND TUNNEL

AE2610 Introduction to Experimental Methods in Aerospace AERODYNAMIC FORCES ON A WING IN A SUBSONIC WIND TUNNEL Objectives The primary objective of this experiment is to familiarize the student with measurement

### Takeoffs & Landings Refresher. By Wally Moran

Takeoffs & Landings Refresher By Wally Moran About Wally Moran Wally Moran is a retired airline captain and spent much of his career as a training instructor and check airman on aircraft including the

### Discuss: 1. Instrument Flight Checklist

INST 1 Prerequisites: 1. OFT: Tac 1 2. CBT: Basic Instrument Flight, IFR Navigation I & II Lessons P2 501, P2 502, & P2 503. Discuss: 1. Instrument Flight Checklist NATOPS 13.1.3 Instrument Flight Checklist

### Learning Objectives 081 Principles of Flight

Learning Objectives 081 Principles of Flight Conventions for questions in subject 081. 1. The following standard conventions are used for certain mathematical symbols: * multiplication. > = greater than

### Taildragger Technique

Taildragger Technique Rudder Usage There is no mystery involved in the takeoff of a conventional gear aeroplane. There are, however, certain elements of flight that may require the acquisition of new and

### TERMS AND DEFINITIONS

Ch 05.qxd 5/7/04 7:02 AM Page 5-1 GENERAL This chapter discusses takeoffs and departure climbs in tricycle landing gear (nosewheel-type) airplanes under normal conditions, and under conditions which require

### S0300-A6-MAN-010 CHAPTER 2 STABILITY

CHAPTER 2 STABILITY 2-1 INTRODUCTION This chapter discusses the stability of intact ships and how basic stability calculations are made. Definitions of the state of equilibrium and the quality of stability

### Flying Wings. By Henry Cole

Flying Wings By Henry Cole FLYING WINGS REPRESENT THE THEORETICAL ULTIMATE IN AIRCRAFT DESIGN. USE THESE IDEAS, AVAILABLE AFTER A YEAR, OF RESEARCH, TO DEVELOP PRACTICAL MODELS. The rubber version of this

### Applications of trigonometry

Applications of trigonometry This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

### Stalls and Spins. Tom Johnson CFIG

Stalls and Spins Tom Johnson CFIG Do we need all of this? Lift The force created by moving the wing through the air. Angle of Attack: The angle between the relative wind and the wing chord line. Stalls

### Big News! Dick Kline Inventor of the KF AirFoil Contacts rcfoamfighters.

Big News! Dick Kline Inventor of the KF AirFoil Contacts rcfoamfighters. (Copy of Email from Dick Kline to rcfoamfighters on 3/28/09) --------------------------------------------------------------------------------

### Study on Bi-Plane Airfoils

Study on Bi-Plane Airfoils Experiment 5: Final Design Project MECHANICAL AEROSPACE ENGINEERING 108 WINDTUNNEL LAB Professor Gamero-Castaño cc: Rayomand Gundevia Date: 12/09/13 Jin Mok 49832571 1 Abstract...

### Pilot Training Manual & Logbook

Canberra Model Aircraft Club Canberra A.C.T Pilot Training Manual & Logbook Issue Date: November 2009 www.cmac.org.au Contents Learning to Fly Radio Controlled Aircraft... 3 Introduction... 3 Student Pilot

### ME 239: Rocket Propulsion. Forces Acting on a Vehicle in an Atmosphere (Follows Section 4.2) J. M. Meyers, PhD

ME 239: Rocket Propulsion Forces Acting on a Vehicle in an Atmosphere (Follows Section 4.2) J. M. Meyers, PhD 1 Commonly acting forces on a vehicle flying in a planetary atmosphere: Thrust Aerodynamic

### DESIGN OF AN AERODYNAMIC MEASUREMENT SYSTEM FOR UNMANNED AERIAL VEHICLE AIRFOILS

DESIGN OF AN AERODYNAMIC MEASUREMENT SYSTEM FOR UNMANNED AERIAL VEHICLE AIRFOILS L. Velázquez-Araque 1 and J. Nožička 1 1 Department of Fluid Dynamics and Power Engineering, Faculty of Mechanical Engineering

### IMPACT OF FUSELAGE CROSS SECTION ON THE STABILITY OF A GENERIC FIGHTER

IMPACT OF FUSELAGE CROSS SECTION ON THE STABILITY OF A GENERIC FIGHTER Robert M. Hall NASA Langley Research Center Hampton, Virginia ABSTRACT Many traditional data bases, which involved smooth-sided forebodies,

### Longitudinal Stability of the Lancair 320/360 with Original and MKII Horizontal Stabilizers

Longitudinal Stability of the Lancair 320/360 with Original and MKII Horizontal C. Zavatson 4-23-2014, Rev B 1 Contents 2 Introduction... 4 2.1 Stability... 4 3 Objective and Test Approach... 5 4 Test

### Introduction to Wind Energy Systems

Introduction to Wind Energy Systems Hermann-Josef Wagner Institute for Energy Systems and Energy Economy Ruhr-University Bochum, Germany lee@lee.rub.de Summer School of Physical Societies, Varenna 01.08.2012

### Chapter 5 Wing design - selection of wing parameters - 3 Lecture 21 Topics

Chapter 5 Wing design - selection of wing parameters - 3 Lecture 21 Topics 5.3.2 Choice of sweep ( ) 5.3.3 Choice of taper ratio ( λ ) 5.3.4 Choice of twist ( ε ) 5.3.5 Wing incidence(i w ) 5.3.6 Choice

### 1. A tendency to roll or heel when turning (a known and typically constant disturbance) 2. Motion induced by surface waves of certain frequencies.

Department of Mechanical Engineering Massachusetts Institute of Technology 2.14 Analysis and Design of Feedback Control Systems Fall 2004 October 21, 2004 Case Study on Ship Roll Control Problem Statement:

### THERMALLING TECHNIQUES. Preface

DRAFT THERMALLING TECHNIQUES Preface The following thermalling techniques document is provided to assist Instructors, Coaches and Students as a training aid in the development of good soaring skills. Instructors

### CHAPTER 5 WING DESIGN

HAPTER 5 WING DESIGN Mohammad Sadraey Daniel Webster ollege Table of ontents hapter 5... 1 Wing Design... 1 5.1. Introduction... 1 5.. Number of Wings... 4 5.3. Wing Vertical Location... 5 5.3.1. High

### DUTCH ROLLS - - COORDINATION ROLLS

Here's another example of WARBIRD NOTES #41 14 Jun 2000 (37) terminology being used in error. I d DUTCH ROLLS - and - COORDINATION ROLLS never thought this would need discussion, however several computer

### Breaking the Sound Barrier: The Aerodynamic Breakthroughs that Made It Possible

Breaking the Sound Barrier: The Aerodynamic Breakthroughs that Made It Possible John D. Anderson Jr. Professor Emeritus Department of Aerospace Engineering University of Maryland & Curator for Aerodynamics

### THE DESIGN OF WING SECTIONS

THE DESIGN OF WING SECTIONS Published in "Radio Control Model News" Issue Number 8 Winter 93 Aerofoil section design has advanced a great deal since great pioneers like Horatio Phillips experimented with

### THEORY OF GLIDER FLIGHT

THEORY OF GLIDER FLIGHT In 1988 the Soaring Society rewrote the Joy Of Soaring originally written by Carle Conway. I was asked to assist in the rewriting. The following revision is part of what I recommended.

### Engine Failure after Takeoff

Circuit Training Engine Failure after Takeoff Although engine failure in modern aeroplanes is quite rare, the takeoff phase incorporates all the worst aspects of this type of emergency. The aeroplane is

### AIRCRAFT STRUCTURAL DESIGN & ANALYSIS K. RAMAJEYATHILAGAM

AIRCRAFT STRUCTURAL DESIGN & ANALYSIS K. RAMAJEYATHILAGAM To invent an airplane is nothing To build one is something But to fly is everything Lilienthal DAY 1 WHAT IS AN AIRCRAFT? An aircraft is a vehicle,