Ultra-Low Copper Concentrations Determined by Rotating Disk Electrode Stripping Voltammetry

Size: px
Start display at page:

Download "Ultra-Low Copper Concentrations Determined by Rotating Disk Electrode Stripping Voltammetry"

Transcription

1 Ultra-Low Copper Concentrations Determined by Rotating Disk Electrode Stripping Voltammetry 1. Purpose Copper ion concentrations in the parts-per-billion (ppb) range will be determined using anodic stripping voltammetry at a rotating glassy carbon electrode. The concentration of copper in the unknown will be measured using the standard addition method. 2. Background/Theory 1 Among the many analytical methods, there are a select few that are capable of determining ultralow concentrations. Anodic stripping voltammetry is one such technique. Sub-ppb detection limits are possible because the analyte is collected and effectively pre-concentrated at the working electrode surface during what is called the deposition step prior to the stripping step that provides the analytical current (signal). In this experiment, you will use anodic stripping voltammetry for the determination of copper on thin mercury layer on a rotating glassy carbon electrode. While the experimental parameters vary depending upon the solution conditions, there are three important steps in the operation of the instrument: 1) deposition time, 2) quiet time, and 3) the stripping step that provides the current (analytical signal). During the deposition step, the potential applied to the electrode is held at a relatively negative value so as to reduce the copper ion in solution for a pre-determined time. During this time, a portion of the copper in solution amalgamates with the mercury electrode: Cu 2+ (aq) + 2e - Cu (in Hg) This makes the concentration of copper at the electrode much greater (typically 2 or 3 orders of magnitude) than the original concentration of copper in the solution (consequently, the deposition step is also sometimes called the pre-concentration or collection step). After the deposition step, the stirring is stopped and the system is allowed to reach equilibrium during the quiet time. During the stripping step, the applied potential is scanned in a positive direction and the copper in the mercury electrode is oxidized back to copper ions in solution; that is, the copper is "stripped" from the electrode and the current measured. Cu (in Hg) Cu 2+ (aq) + 2e - The magnitude of the current of the stripping peak is proportional to the concentration of the analyte in the mercury electrode. Since the concentration of the analyte in the electrode is related to its concentration in solution, the stripping peak current is therefore proportional to the solution concentration. The potential at which the stripping peak is observed is related to the redox potential of the above reaction. However, it also depends upon solution conditions and so varies somewhat with different users. 3. Safety 1

2 Mercury is a toxic heavy metal. While you should not be handling mercury metal directly, it is recommended that you wash your hands frequently and especially at the end of the laboratory. Wear your safety glasses at all times. For more general safety in the laboratory, please refer the appendix at the end of the procedure. 4. Experimental Method Special Note This laboratory involves the determination of copper at very low concentrations. As such, contamination of the unknown, especially once diluted, is of special concern. Copper, like some other cations, tends to stick to glass and only comes off over time. Thus, if a particular piece of glassware (e.g., a volumetric flask) was/is used to make a concentrated copper solution, that glassware could have excess copper still attached to it despite extensive rinsing. To minimize this possibility, the glassware used for making the unknown solutions should be filled with nanopure water for a week prior to its use (and then that water discarded before making the dilution). This step is unnecessary if you have used the glassware to make other solutions not containing copper. Conversely, you should transfer any diluted unknown from the volumetric flask to a plastic bottle (a special Teflon bottle is necessary for the most dilute unknown solution) as soon as possible to minimize Cu sticking to the glass and thus being lost from solution. See your instructor if you have questions. 4.1 Preparing the 250-ppm and 5-ppm copper standards: Calculate the approximate mass of copper needed to prepare 1-L of 250-ppm copper. Cut an approximately one-inch square piece of copper foil (picture and example on the tube) and weigh on the top-loader balance to determine if it is reasonable close to the desired mass. Tear a bit off, if needed. Then clean the copper foil with methanol and a Kimwipe before weighing the cleaned copper foil on your analytical balance and recording the mass in your notebook. Place the copper foil in a 250 ml beaker, add about 10 ml of 4 M nitric acid, and cover with a watch glass. Place the beaker on a hotplate, and heat until all the copper dissolves in the acid. Once the copper has dissolved, remove the beaker from the hot plate, and allow it to cool. When the solution is cool enough to handle, transfer the dissolved copper solution to a mlvolumetric flask. Dilute to the mark when the entire solution is room temperature. Label the solution "copper stock standard". This standard is too concentrated and must be quantitatively diluted down to about 5-ppm copper. Make the necessary dilution(s), labeling the final standard solution "copper working standard". Record the exact concentration of this working standard solution in your notebook, showing all relevant calculations. 4.2 Preparing and diluting the unknown Obtain a Teflon bottle and the unknown from the instructor. Quantitatively transfer the unknown to a 250-mL volumetric flask and label it "anodic unknown A". If you intend to store this solution for any length of time, transfer it to a plastic bottle. Subsequently, transfer a 10-mL aliquot of "A" to a 100-mL volumetric flask and dilute not with water, but instead with "anodic 2

3 stripping supporting electrolyte. Add this supporting electrolyte to the flask until just below the mark and then dilute to the mark with nanopure water. The unknown copper is now in the ppb range and must be stored in the Teflon bottle. Transfer to the clean Teflon bottle and label it "anodic unknown B". Note: your sharpie will not write on Teflon. Write your label on a piece of tape and attach to the bottle. You are now ready to begin the instrumental analysis portion of this laboratory. Take the following materials to the Epsilon electrochemistry system (Figure 1): 5-ppm standard copper solution Unknown Solution B 250-mL beaker (for rinsing) notebook clean 15-mL pipette and bulb 100-µL pipette wash bottle Kimwipes (if not already at the instrument station) 4.3 Calibration of a micro-pipette Before you use the micro-pipette, you should review and check/calibrate the micro-pipette. See Appendix A at the end of the procedure for more information on this. 4.4 Use of the Epsilon Rotating Disk Electrode Figure 1. The Epsilon Controller, RDE, and the computer Note: The analysis also involves the conditioning of the glassy carbon electrode. Before starting to use the instrument, ask the laboratory instructor if the electrode has been conditioned for the use. Start the nitrogen flow to the Epsilon system with the following sequence: 1. The green regulator handle (Figure 2) must be set fully counter-clockwise (shuts off the regulator) 2. Open the valve on top of the tank fully counter-clockwise (opens the tank to the regulator) 3. Slowly turn the green regulator handle clockwise until gas bubbles gently into your unknown solution. 3

4 Figure 2. Nitrogen regulator Figure 3. The back of RDE unit The power switch is located next to the power cord Press the on/off switch on the rear right hand side of the rotating disk electrode apparatus, if needed (See Figure 3). At this time, see your instructor about degassing your sample. Dissolved oxygen can slightly interfere with the eventual signal you will get for copper. The glass sample cup under the electrode sets on a round magnetic stirrer (Figures 4-5). Hold the cup in place and move the stirrer to the right (Figure 5) below before lowering the cup so it clears these three items: 1. Glassy carbon electrode (in center) 2. Reference electrode (on the left) 3. Platinum wire counter electrode (on the right) Figures 4 and 5. 4

5 The sample/electrodes assembly of RDE unit with the cup (Figure 4, left) and without the cup, the holder to the side (Figure 5 above). Holding a beaker underneath at an angle, rinse these three items with copious amounts of water from the wash bottle. Transfer a ml aliquot of unknown "B" to the cup, replace under the electrodes, and rotate the stirrer back to the left so it supports the cup. Go to the computer and start Epsilon application by double-clicking Epsilon icon near the upperleft corner of the desktop (Figure 6). Once the Epsilon software has started, go to "File" and select c:\epsilon EC\Data\466.dpsv0 from the menu. This will initialize the computer to start a new run. Figure 6. Windows desktop Figure 7. The screenshot of the Epsilon software At this point, you must ensure that the experimental parameters are correct. Go to the Experiment menu and click on Setup/Manual Settings. Verify that under the Cell Stand/Accessories heading that RDE-2 mode is checked. If not, select this mode, apply, and exit. Figure 8. Setup/Manual Settings Window Next, open the Change Parameters dialog box (or just hit the F6 key) also in the Experiment menu. Check with your instructor to confirm the experimental conditions. The deposition 5

6 potential (nominally -800 mv), initial potential (-300 mv) and the final potential (-25 mv) can change over the semester. Also confirm the step potential (2 mv) and deposition time (100 s). Ask your instructor to verify your settings (which may differ than those below) and record them in your notebook. Afterwards, click apply, then exit. Figure 9. Experimental Parameter Window Click the "Run" button on the Epsilon software to start the run. The electrode will rotate at 3000 RPM for about 60 seconds; during which time copper will be reduced to copper metal and dissolve (amalgamate) into the mercury film on the glassy carbon electrode. The electrode rotation will stop during the quiet time before beginning the stripping step of the experiment. During that time, you should see a curve with a negative (anodic) current displayed on the screen as the copper is oxidized and "stripped" from the drop into the solution. Eventually, the trace should form an inverted bell shaped curve and some data will display on the right of the screen. The peak current height (µa) is proportional to the concentration of Cu 2+ in solution and should be recorded in your notebook (to at least three and preferably four decimal places), along with the mv reading. While recording the data in your notebook, print a copy of your results by clicking the print icon. You are now ready to run a spiked sample. If you need a review of the proper use of micropipettes, ask your instructor. Obtain the 100-µL micropipette and insert a new plastic tip. This pipette should be set at 50-µL. Fill the pipette with your copper working standard solution. Remove the small black plug in the electrode holder, insert the tip through the hole, and transfer the aliquot to the sample in the cup. Replace the black plug, press the run button to start a new scan and wait for the run to finish. Record the new peak current (µa) and voltage (mv) values in your book while also printing a copy of your data. This completes the first trial. Remove the cup, dispose of the copper solution in your waste beaker. Use your wash bottle and 250-mL beaker to rinse everything before starting your second trial. Perform 3 or 4 trials. If you must do more than 4 trials (total of 8 runs), consult your laboratory instructor for help, as mercury layer will degrade after several trials. It is likely that the current for these trials will differ somewhat, but ideally the spiked sample current will always be larger than the unspiked sample current by the same approximate 6

7 percentage. You can track the ratio between the spiked and unspiked peak current values to track the reproducibility of your results. Once you are finished, turn off the RDE apparatus (leave the computer on), rinse the sample cup and electrodes with water and add about 10 ml of water to the cup before returning it to the stirrer so the electrodes soak. Turn off the nitrogen by: 1. Slowly turning the green regulator knob completely counter clockwise (shuts off). 2. Turning the tank valve fully clockwise (shuts off). For more accurate results, you must experimentally determine the exact volume delivered by the micropipette. Fill a small beaker with nanopure water and obtain a small empty vessel, such as the 50 ml Erlenmeyer flask. Tare the flask on your analytical balance and determine the mass of water delivered by the micropipette. Repeat this procedure for a total of three times. Use the density value of g/ml to determine the volume delivered by the pipette. Use this volume in your calculations. A sample table for your notebook is shown next. Micropipette Calibration For fixed volume use d = mg/µl Trial* Set volume (µl) Delivered mass (mg) Delivered volume (µl) Mean Stdev RSD (ppt) calculate* calculate calculate *use the mean volume in your calibration calculations for you unknown 5. Calculations and Reporting Requirements In all cases, the signal (µa) should be directly proportional to Cu concentration. There are two microampere readings for each trial. Set up the following equations for standard addition for each trial: before spike: µa=k[conc unk Cu] after spike : µa =k([conc unk Cu] + [conc Cu from spike] ) If we assume the trials were performed under identical conditions, then the k values are the same and the second equation can be solved in terms of the first. Note, however, that spiking the sample also dilutes the original unknown concentration and also your working standard. Calculate the copper concentration for each trial separately and report the average ppb of the unknown copper in Solution B to one decimal place. Also report the percent relative standard deviation for your trials. 6. Reminder/Clean-up 7

8 All volumetric flasks and pipettes used MUST be rinsed with generous amounts of nanopure water. Copper from more concentrated solutions will adsorb onto glass and can cause large positive errors at the ppb level if not copiously rinsed. It may be advisable to soak the glassware in water prior to measuring the dilute unknown. All copper solutions can be disposed in the sink. Return the Teflon bottle to your instructor immediately upon completion of the lab. 7. References 1. Online Instruction Manual for BAS Epsilon for Electrochemistry. See 8

9 Appendix A: Operation of Eppendorf Adjustable Pipettes A1. Volume Setting The volume is adjusted by pressing down the lateral catch and turning the control button at the same time. It is advisable to carry out volume setting from the higher down to the lower value (i.e. first go above the desired volume and then return to the lower value). A2. Pipette tips Typically the color of the control button will correspond to the color of the eppendorf tip or tip rack. For the best precision and accuracy, pre-wet all new tips by aspirating and dispensing liquid 2-3 times before pipetting. A3. Aspirating liquid Attach suitable pipette tip to the pipette firmly. Press down the control button to the first stop (measuring stroke). Immerse the pipette tip vertically ~3 mm into the liquid. Allow the control button to slide back slowly. Pull the tip out of the liquid slowly. To remove any remaining droplets, dab with non-fibrous cellulose material, ensuring that liquid does not come out of the tip. You can also dab on the side of the beaker containing the liquid you are pipetting. A4. Dispensing liquid Hold the tip at an angle against the inside wall of the tube/flask. Press down the control button slowly to the first stop (measuring stroke) and wait until the liquid stops flowing. Press down the control button to the second stop (blow-out) until the tip is completely empty. Hold down the control button and pull the tip out of the inner wall of the tube/flask. Allow the control button to slide back slowly. Tip is ejected by pressing the control button to the final stop. Do not lay down the pipette when a filled pipette tip is attached as this may result in liquid entering the pipette. A5. Verification of pipette You can verify that the pipette is performing accurately by dispensing nanopure water from a pre-wetted tip into a tared flask or tube onto an analytical balance. Typically, for this experiment, test at the volume that you need to use for the 100 μl pipette. You should do so BEFORE you start using the pipette. Convert the mass to volume by dividing by the density at room temperature. For example, the density of water is mg/μl at 20 C. This number is the volume actually delivered by the pipette. Determine the error relative to the set value. Repeat a few times to verify that the pipette is accurately delivering water. If not, consult your instructor. 9

10 Instrumental Analysis Laboratory Safety Rules A. Instructions: Carry out all manipulations in accordance with instructions and the safety rules and procedures given herein. B. Eye Protection: All students and staff working in the laboratory must wear safety glasses at all times. If a student needs to be reminded more than three times to wear goggles, she/he will be dismissed from lab for the remainder of the day, and will not be given an opportunity to make up the work. C. Apparel: The clothes you wear in lab are an important part of your safety equipment, and should offer protection from splashes/spills. Closed toed shoes (sneakers are fine), Full-length pants or a full-length skirt, and A shirt that completely covers your torso (i.e. at minimum, a t-shirt). In other words, you must NOT wear shorts to lab. You must NOT wear flip-flops, sandals, or crocs. You must NOT wear tank tops, halter tops, spaghetti-strap tops, or low cut jeans to lab. Exposed abdomens, hips, and backs are not safe in the lab. D. Gloves: Gloves are an important part of personal protection. Gloves will be available at all times in the laboratory. Your instructor will require their use when appropriate. E. Food: Food, drinks, and gum are not allowed in lab. None at all, not even water bottles. F. Sanitation Issues: Be sure to wash your hands before leaving lab, before you eat anything outside of lab, and before you answer your cell phone. G. Music: Individual headphones are not allowed. Your may choose to play music for the entire class. H. Cell Phones and Other Electronic Devices: Cellular phones and other electronic devices that you do not need to perform your laboratory work should be put away. I. Other: All students are explicitly prohibited from: 1. conducting any unauthorized experiments. 2. removing chemicals or apparatus from the laboratory for any reason. 3. working in the lab alone, or at other than regularly scheduled lab periods. 4. smoking in the laboratory or within 20 feet of any doorway. 5. impeding movement in aisles or through doorways with bags, skateboards, etc.

Determination of Sodium using Atomic Emission

Determination of Sodium using Atomic Emission Determination of Sodium using Atomic Emission 1. Purpose The purpose of this procedure is to determine the concentration of sodium ion in parts per million in an unknown sample. 2. Background Atomic emission

More information

Determination of Zn using Atomic Absorption with Multiple Standard Additions

Determination of Zn using Atomic Absorption with Multiple Standard Additions 1. Purpose Determination of Zn using Atomic Absorption with Multiple Standard Additions This procedure will determine the concentration of zinc at the parts-per-million level using flame atomic absorption

More information

Determination of Zn using Atomic Absorption with Multiple Standard Additions

Determination of Zn using Atomic Absorption with Multiple Standard Additions Determination of Zn using Atomic Absorption with Multiple Standard Additions 1. Purpose This procedure will determine the concentration of zinc at the parts-per-million level using flame atomic absorption

More information

VOLUMETRIC TECHNIQUES

VOLUMETRIC TECHNIQUES REVISED 10/14 CHEMISTRY 1101L VOLUMETRIC TECHNIQUES Volume measurements are important in many experimental procedures. Sometimes volume measurements must be exact; other times they can be approximate.

More information

UNCC Biotechnology and Bioinformatics Camp. Dr. Jennifer Weller Summer 2010

UNCC Biotechnology and Bioinformatics Camp. Dr. Jennifer Weller Summer 2010 UNCC Biotechnology and Bioinformatics Camp Dr. Jennifer Weller Summer 2010 Using Micropipettes Lab Intro Micropipettes How do you control volume in the microliter range? How do you verify that the volume

More information

Lab 1. Instrumentation Familiarity: Using Micropipetters and Serological Pipettes

Lab 1. Instrumentation Familiarity: Using Micropipetters and Serological Pipettes Instrumentation Familiarity: Using Micropipetters and Serological Pipettes Introduction: In molecular biology we sometimes need to measure volumes as small as one millionth of a liter (a liter is about

More information

Pipetting Small Volumes

Pipetting Small Volumes Pipetting Small Volumes Introduction Serological and micropipettes are used to accurately transfer small liquid volumes (micro-liter to milli-liter) accurately and precisely. Continuously adjustable Can

More information

Lab Skills Practice: Pipetting Small Volumes. B3 Summer Science Camp at Olympic High School 2016

Lab Skills Practice: Pipetting Small Volumes. B3 Summer Science Camp at Olympic High School 2016 Lab Skills Practice: Pipetting Small Volumes B3 Summer Science Camp at Olympic High School 2016 Pipetter types Serological and micropipettes are used to accurately transfer small liquid volumes (micro-liter

More information

Lab Equipment ANALYTICAL BALANCE

Lab Equipment ANALYTICAL BALANCE Lab Equipment ANALYTICAL BALANCE Analytical balances are used for very accurate, quantitative measurements of mass to the nearest 0.001 g. (Some read to 0.0001 g.) These are delicate instruments, subject

More information

MOLEBIO LAB #1: Microquantity Measurement

MOLEBIO LAB #1: Microquantity Measurement MOLEBIO LAB #1: Microquantity Measurement Introduction: This lab introduces micropipetting and sterile pipetting techniques used throughout this course. Mastery of these techniques is important for good

More information

Hands-On Experiment Density and Measurement

Hands-On Experiment Density and Measurement Hands-On Experiment Density and Measurement GOALS: 1. To measure liquid volume as accurately as possible with graduated cylinders. 2. To measure the volume of irregular shaped solid objects by liquid volume

More information

CHM250 Calibration and Measurement Lab. Balance Calibration

CHM250 Calibration and Measurement Lab. Balance Calibration CHM250 Calibration and Measurement Lab Green Profile Balance Calibration Introduction: Balances that are properly operated, calibrated and maintained are crucial for laboratory operations. The accuracy

More information

The Ideal Gas Constant

The Ideal Gas Constant Chem 2115 Experiment # 8 The Ideal Gas Constant OBJECTIVE: This experiment is designed to provide experience in gas handling methods and experimental insight into the relationships between pressure, volume,

More information

Laboratory #2 Pipetting Technique and Micropipette Calibration Skills=40 pts

Laboratory #2 Pipetting Technique and Micropipette Calibration Skills=40 pts Laboratory #2 Pipetting Technique and Micropipette Calibration Skills=40 pts Objectives: Upon completion of this unit, the student should be able to: 1. List and describe 3 categories of pipets. 2. List

More information

1. Determining Solution Concentration

1. Determining Solution Concentration In this exercise you will determine the concentration of salt solutions by measuring samples with known concentration and making a calibration curve. You will review units of concentration, and how to

More information

BASIC LABORATORY TECHNIQUES (Revised )

BASIC LABORATORY TECHNIQUES (Revised ) BASIC LABORATORY TECHNIQUES (Revised 1-6-13) A. WEIGHING The determination of the quantity of matter in a sample is most directly determined by measuring its mass. The process by which we determine the

More information

CH2250: Techniques in Laboratory Chemistry. Outline Measuring Mass Measuring Volume Significant figures. Mass Measurement

CH2250: Techniques in Laboratory Chemistry. Outline Measuring Mass Measuring Volume Significant figures. Mass Measurement CH2250: Techniques in Laboratory Chemistry Outline Measuring Mass Measuring Volume Significant figures Mass Measurement Mass Measurement Measure mass not weight Mass is measured with a balance (a scale

More information

Measuring Mass and Volume

Measuring Mass and Volume Measuring Mass and Volume Experiment 2 Expt 2 Measurement.wpd INTENT The purpose of this experiment is to introduce some fundamental aspects of the measurement making process as well as to introduce some

More information

Calibration of Volumetric Glassware

Calibration of Volumetric Glassware Calibration of Volumetric Glassware Introduction This set of laboratory experiments is designed to introduce you to some of the apparatus and operations you will be using during the remainder of this course,

More information

The use of the analytical balance, and the buret.

The use of the analytical balance, and the buret. 1211L Experiment 1. Density 2015 by H. Patterson Instructor Notes: Students make measurements individually then share data to make the graph. There are four volumetric measurements to be studied; 3.00

More information

BASIC LABORATORY TECHNIQUES (Revised )

BASIC LABORATORY TECHNIQUES (Revised ) BASIC LABORATORY TECHNIQUES (Revised 1-2-16) (See Appendix II: Summary for making Spreadsheets and Graphs with Excel and Appendix III parts C, C1 and C2: Significant figures, scientific notation and rounding)

More information

Chapter 2. Pipetting techniques. Guide to Pipetting

Chapter 2. Pipetting techniques. Guide to Pipetting Chapter 2 Pipetting techniques 16 Guide to Pipetting 2.1 Adjust the volume display CHAPTER 2 Reading and adjusting the volume The volume is shown on the volumeter Hold the body of the micropipette in one

More information

Adjust the Volume Display

Adjust the Volume Display PIPETTING TECHNIquES Chapter 2 PIPETTING TECHNIquES Adjust the Volume Display The volume is shown on the volumeter Reading and Adjusting the Volume Hold the body of the micropipette in one hand and use

More information

CHM Introductory Laboratory Experiment (r17sd) 1/13

CHM Introductory Laboratory Experiment (r17sd) 1/13 CHM 110 - Introductory Laboratory Experiment (r17sd) 1/13 Purpose This introductory exercise will familiarize you with a few of the measurements we make in the chemistry laboratory and the level of uncertainty

More information

INTRODUCTION TO THE SPECTROPHOTOMETER AND PIPETTING SKILLS

INTRODUCTION TO THE SPECTROPHOTOMETER AND PIPETTING SKILLS INTRODUCTION TO THE SPECTROPHOTOMETER AND PIPETTING SKILLS Section A: Intro to the spectrophotometer A commonly used instrument in the analysis of cellular extracts is the Spectrophotometer. Today you

More information

Aerobic Respiration. Evaluation copy

Aerobic Respiration. Evaluation copy Aerobic Respiration Computer 17 Aerobic cellular respiration is the process of converting the chemical energy of organic molecules into a form immediately usable by organisms. Glucose may be oxidized completely

More information

CHEM 321 Experiment 1

CHEM 321 Experiment 1 CHEM 321 Experiment 1 Basics Review and Calibration of Volumetric Glassware There are three types of containers used in lab to contain or deliver liquids: volumetric, ordinary and disposable glassware.

More information

CHM 100 / Introductory Laboratory Experiment (r10) 1/11

CHM 100 / Introductory Laboratory Experiment (r10) 1/11 CHM 100 / 110 - Introductory Laboratory Experiment (r10) 1/11 Purpose This introductory exercise will familiarize you with a few of the measurements we make in the chemistry laboratory and the level of

More information

Determination of the Gas-Law Constant (R) using CO2

Determination of the Gas-Law Constant (R) using CO2 Determination of the Gas-Law Constant (R) using CO2 EXPERIMENT 11 Prepared by Edward L. Brown and Miranda Raines, Lee University The student will become familiar with ideal gases and how their properties

More information

PRE LABORATORY ASSIGNMENT: Lab Section Score: /10 READ THE LAB TEXT BEFORE ATTEMPTING THESE PROBLEMS!

PRE LABORATORY ASSIGNMENT: Lab Section Score: /10 READ THE LAB TEXT BEFORE ATTEMPTING THESE PROBLEMS! EXPERIMENT # 6 Name: PRE LABORATORY ASSIGNMENT: Lab Section Score: /10 READ THE LAB TEXT BEFORE ATTEMPTING THESE PROBLEMS! 1. Calculate the height of a corresponding column of mercury (in mm) that is at

More information

Experiment 1 Basic Laboratory Operations

Experiment 1 Basic Laboratory Operations Experiment 1 Basic Laboratory Operations INTRODUCTION LECTURE OUTLINE This is the first experiment that most students perform in the laboratory. Oftentimes, the stone is cast in this first laboratory session.

More information

Pipettor. User Manual

Pipettor. User Manual Pipettor User Manual Product Code Description Single Chanel Pipettor Variable 550.002.055 Volume 0.5 to 10ul 550.002.060 2 to 20ul 550.002.065 10 to 100ul 550.002.070 20 to 200ul 550.002.075 100 to 100ul

More information

Transferpette -8/-12

Transferpette -8/-12 Transferpette -8/-12 Testing Instructions (SOP) May 2009 1. Introduction The standard DIN EN ISO 8655 describes both the design and the testing of the piston operated pipette Transferpette 8/ 12. The following

More information

Pipetting and Determining Protein Concentration

Pipetting and Determining Protein Concentration Pipetting and Determining Protein Concentration Background Information: When performing experiments in Cell Biology, it is often necessary to use very small volumes of reagents sometimes because the reagents

More information

Experiment #2. Density and Measurements

Experiment #2. Density and Measurements Experiment #2. Density and Measurements Goals 1. To measure and record length, volume and mass accurately with the correct number of significant figures 2. To use significant figures correctly in calculations.

More information

Boyle s Law VC 09. Experiment 9: Gas Laws. Abstract

Boyle s Law VC 09. Experiment 9: Gas Laws. Abstract Experiment 9: Gas Laws VC 09 Abstract In this laboratory activity, you will experimentally confirm Boyle s Law, determine absolute zero from Gay-Lussac's Law, and determine the molecular weight of acetone,

More information

ISE-730 Oxygen Electrode and DO2-100 Currentto-Voltage

ISE-730 Oxygen Electrode and DO2-100 Currentto-Voltage Technical Note ISE-730 and DO2-100 Overview In 1954, Dr. Leland Clark invented the first membrane-covered electrode designed to measure the concentration of oxygen in blood, or solution. This electrode

More information

MULTICHANNEL. Labnet International, Inc.

MULTICHANNEL. Labnet International, Inc. Labnet International, Inc. A B A1 A2 C F D H E 4A 4B 4C 4D G CONTENTS 1 - INTRODUCTION 2 - VOLUME SETTING 3 - METHOD OF PIPETTING 4 - RECOMMENDATIONS - RECALIBRATION 6 - CLEANING AND STERYLIZATION 7 -

More information

Laboratory Activity Measurement and Density. Average deviation = Sum of absolute values of all deviations Number of trials

Laboratory Activity Measurement and Density. Average deviation = Sum of absolute values of all deviations Number of trials Laboratory Activity Measurement and Density Background: Measurements of mass and volume are very common in the chemistry laboratory. The analytical balance is used to measure mass, and the graduated cylinder,

More information

Transferpette. Testing Instructions (SOP) 1. Introduction. May 2009

Transferpette. Testing Instructions (SOP) 1. Introduction. May 2009 Transferpette Testing Instructions (SOP) May 2009 1. Introduction The standards DIN EN ISO 8655 describe both the design and the testing of the piston operated pipette Transferpette. The following Testing

More information

RayPette Plus Autoclavable Pipette. User Manual

RayPette Plus Autoclavable Pipette. User Manual RayPette Plus Autoclavable Pipette User Manual CONTENTS 1. YOUR NEW PIPETTE... 1 1.1. Adjustable volume pipettes... 1 1.3 Fully autoclavable... 2 2. UNPACKING... 3 3. INSTALLING THE PIPETTE HOLDER... 4

More information

Purpose. Introduction

Purpose. Introduction Purpose The objective of this experiment is to determine the density of an unknown liquid and solid. The students will become familiar with the techniques for measuring mass and volume of several samples

More information

University of New Haven DEPARTMENT OF CHEMISTRY and CHEMICAL ENGINEERING

University of New Haven DEPARTMENT OF CHEMISTRY and CHEMICAL ENGINEERING University of New Haven DEPARTMENT OF CHEMISTRY and CHEMICAL ENGINEERING A. Instructions: Student: Read carefully the following laboratory rules, safety precaution, and regulations. Your laboratory conduct

More information

Natural Reaction Boosters C. V. Krishnan

Natural Reaction Boosters C. V. Krishnan SCIENCE EXPERIMENTS ON FILE Revised Edition 5.50-1 Natural Reaction Boosters C. V. Krishnan Topic Catalysts Time preparation, 1 2 hour to completion, 1 hour for each of six trials, 1 2 hour for analysis!

More information

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq)

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq) Gas Laws Introduction: Although we cannot see gases, we can observe their behavior and study their properties. For example, we can watch a balloon filled with helium gas floating in air and conclude that

More information

THE UNIVERSITY OF NEWCASTLE - DISCIPLINE OF MEDICAL BIOCHEMISTRY

THE UNIVERSITY OF NEWCASTLE - DISCIPLINE OF MEDICAL BIOCHEMISTRY THE UNIVERSITY OF NEWCASTLE - DISCIPLINE OF MEDICAL BIOCHEMISTRY Page: 1 of 9 1. Risk Assessment: This risk assessment has been prepared using the National Safety Council of Australia Risk Score Calculator

More information

1. If grams of the vapor of a volatile liquid can fill a 498 ml flask at o C and 775 mm Hg, what is the molecular mass of the gas?

1. If grams of the vapor of a volatile liquid can fill a 498 ml flask at o C and 775 mm Hg, what is the molecular mass of the gas? MOLECULAR MASS OFA VOLATILE LIQUID A lab to study the ideal gas law Introduction The ideal gas law indicates that the observed properties of a gas sample are directly related to the number of moles of

More information

Density and Stress in Plastics Mary V. McCrary

Density and Stress in Plastics Mary V. McCrary SCIENCE EXPERIMENTS ON FILE Revised Edition 5.25-1 Density and Stress in Plastics Mary V. McCrary Topic Density and birefringence of plastics Time Part A: 30 to 45 minutes; Part B: 30 to 45 minutes! Safety

More information

EXPERIMENT 1 BASIC LABORATORY TECHNIQUES AND TREATMENT OF DATA MEASUREMENTS

EXPERIMENT 1 BASIC LABORATORY TECHNIQUES AND TREATMENT OF DATA MEASUREMENTS EXPERIMENT 1 BASIC LABORATORY TECHNIQUES AND TREATMENT OF DATA MEASUREMENTS Introduction In the following experiment you will be required to use a Bunsen burner, balance, a pipet, graduated cylinder, flask,

More information

How Fast Is Your Toy Car?

How Fast Is Your Toy Car? SCIENCE EXPERIMENTS ON FILE Revised Edition 6.15-1 How Fast Is Your Toy Car? Daniela Taylor Topic Motion, calculating speed Time 1 hour! Safety Please click on the safety icon to view the safety precautions.

More information

Improving Pipetting Techniques

Improving Pipetting Techniques Improving Pipetting Techniques for Better Accuracy and Performance 49 Basic pipetting techniques Pipette cycle Specifications - How to select the optimal volume range for your pipette Basic techniques

More information

The pipettes cover a volume range from 0.1µl to 10ml.

The pipettes cover a volume range from 0.1µl to 10ml. CONTENTS 1. YOUR NEW PIPETTE 1 1.1. Adjustable volume pipettes 1 1.2. Fixed volume pipettes 2 1.3 Fully autoclavable 3 2. UNPACKING 3 3. INSTALLING THE PIPETTE HOLDER 4 4. PIPETTE COMPONENTS 5 5. PIPETTE

More information

Technical Procedure for General Laboratory Equipment

Technical Procedure for General Laboratory Equipment Technical Procedure for General Laboratory Equipment 1.0 Purpose - This procedure specifies the required elements for the use of general laboratory equipment. 2.0 Scope - This procedure applies to all

More information

SOLUBILITY OF A SOLID IN WATER

SOLUBILITY OF A SOLID IN WATER 1516L Experiment 2 SOLUBILITY OF A SOLID IN WATER Objectives In this experiment you will determine the solubility of potassium nitrate (KNO 3 ) in water at various temperatures. You will prepare a plot

More information

Chapter Pipette service & maintenance. Pipette specifications according to ISO Repair in the lab or return for service?

Chapter Pipette service & maintenance. Pipette specifications according to ISO Repair in the lab or return for service? Pipette specifications according to ISO 8655 Chapter 5 5.1 The ISO 8655 standard gives the accuracy and precision limits as both absolute and relative values. Specifications will depend on the technique

More information

Real World Metric System

Real World Metric System Real World Metric System Learning Objectives 1. Identify the metric units of weight, length, volume and temperature. 2. Make measurements using the metric system. 3. Convert values between different metric

More information

Experiment 12: MOLAR VOLUME OF AN IDEAL GAS

Experiment 12: MOLAR VOLUME OF AN IDEAL GAS Experiment 1: MOLAR VOLUME OF AN IDEAL GAS Purpose: Determine the molar volume of a gas at standard temperature and pressure (STP, 0 C and pressure of 1 atm) Performance Goals: Collect and measure the

More information

Objective To identify a pure liquid substance using the physical properties of solubility, density, and boiling point.

Objective To identify a pure liquid substance using the physical properties of solubility, density, and boiling point. Chemistry 1020 Identification of an Unknown Liquid Objective To identify a pure liquid substance using the physical properties of solubility, density, and boiling point. Text reference solubility, density,

More information

Transferpette. Testing Instructions (SOP) 1. Introduction. October 1998

Transferpette. Testing Instructions (SOP) 1. Introduction. October 1998 Transferpette Testing Instructions (SOP) October 1998 1. Introduction The standards ISO DIS 8655 and DIN 12650 describe both the design and the testing of the piston operated pipette Transferpette. The

More information

Inquiry Module 1: Checking the calibration of a micropipette

Inquiry Module 1: Checking the calibration of a micropipette Inquiry Module 1: Checking the calibration of a micropipette 1. Introduction Larger volumes (1mL and more) are usually measured using pipets or measuring cylinders. Such cylinders and pipets are labelled

More information

PRODUCT SHEET. Order probe only as RXPROBE02

PRODUCT SHEET. Order probe only as RXPROBE02 SS69L DISSOLVED OXYGEN PROBE TRANSDUCER Order probe only as RXPROBE02 Order interface only as BSL-TCI16 SS69L Components The SS69L transducer measures dissolved oxygen. The SS69L includes a dissolved oxygen

More information

Analysis of Deuterium Enrichment by Fourier Transform Infrared Spectrometry (FTIR): Practice. Christine Slater PhD

Analysis of Deuterium Enrichment by Fourier Transform Infrared Spectrometry (FTIR): Practice. Christine Slater PhD Analysis of Deuterium Enrichment by Fourier Transform Infrared Spectrometry (FTIR): Practice Christine Slater PhD Nutrition Specialist C.Slater@iaea.org International Atomic Energy Agency Preparation of

More information

R: The Ideal Gas Constant Pre-Lab Assignment

R: The Ideal Gas Constant Pre-Lab Assignment R: The Ideal Gas Constant Pre-Lab Assignment Read the entire laboratory investigation and the relevant pages in your textbook, then answers the questions that follow in the space provided below. 1 Describe

More information

SOLUBILITY OF A SOLID IN WATER

SOLUBILITY OF A SOLID IN WATER 1516L Experiment 1 SOLUBILITY OF A SOLID IN WATER Objectives In this experiment you will determine the solubility of potassium nitrate (KNO 3 ) in water at various temperatures. You will prepare a plot

More information

Check-In, Lab Safety, Balance and Volumetric Glassware Use, Introduction to Statistics, and MSDS Familiarization

Check-In, Lab Safety, Balance and Volumetric Glassware Use, Introduction to Statistics, and MSDS Familiarization Check-In, Lab Safety, Balance and Volumetric Glassware Use, Introduction to Statistics, and MSDS Familiarization Before coming to lab: Read Chapter 2 of your textbook before coming to lab. This chapter

More information

download instant at Experiment 2 A Submarine Adventure: Density Saves the Day

download instant at  Experiment 2 A Submarine Adventure: Density Saves the Day Experiment 2 A Submarine Adventure: Density Saves the Day Instructor Notes and Lab Preparation: Chemicals and Equipment: various metal shapes of copper, nickel, lead, aluminum, brass, iron and magnesium

More information

Standard Operating Procedure. Air Displacement Pipette Calibration

Standard Operating Procedure. Air Displacement Pipette Calibration University of Colorado at Denver October 28, 2003 - Revision 1.00 Page 1 of 7 1 Background: Standard Operating Procedure An accurate pipette is one of the most important tools in performing accurate analytical

More information

General Chemistry I Percent Yield of Hydrogen Gas From Magnesium and HCl

General Chemistry I Percent Yield of Hydrogen Gas From Magnesium and HCl Introduction For chemical reactions involving gases, gas volume measurements provide a convenient means of determining stoichiometric relationships. A gaseous product is collected in a long, thin graduated

More information

Behavior of the Simple Pendulum

Behavior of the Simple Pendulum 6.27-1 SCIENCE EXPERIMENTS ON FILE Revised Edition Behavior of the Simple Pendulum Carl C. Duzen Topic The behavior of the simple pendulum Time 15 minutes for preparation, 40 minutes to completion! Safety

More information

How to Measure R7.1. Reference. I. Linear dimensions

How to Measure R7.1. Reference. I. Linear dimensions How to Measure Written by Connie Russell I. Linear dimensions Measuring linear dimensions (the distance between two points) is usually associated with using a ruler or a tape measure. For measuring objects

More information

EXPERIMENT 1 TOOLS FOR LAB MEASUREMENT

EXPERIMENT 1 TOOLS FOR LAB MEASUREMENT EXPERIMENT 1 TOOLS FOR LAB MEASUREMENT INTRODUCTION A course in chemistry, one of the physical sciences, differs from a course in, say, literature or history. A main difference is that chemistry usually

More information

Gas Laws. Figure 1: Experimental Set-up with Leveling Bulb. GCC CHM 151LL: Gas Laws GCC, 2019 page 1 of 8

Gas Laws. Figure 1: Experimental Set-up with Leveling Bulb. GCC CHM 151LL: Gas Laws GCC, 2019 page 1 of 8 Gas Laws Introduction Although we cannot see gases, we can observe their behavior and study their properties. This lab will apply several concepts from Ideal Gas Laws. You will use your knowledge of chemical

More information

Experiment 1 Introduction to Some Laboratory Measurements

Experiment 1 Introduction to Some Laboratory Measurements Experiment 1 Introduction to Some Laboratory Measurements Introduction In this experiment you will familiarize yourself with the English & metric systems of measurement, weigh with a centigram balance,

More information

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq)

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq) Gas Laws Introduction: Although we cannot see gases, we can observe their behavior and study their properties. For example, we can watch a balloon filled with helium gas floating in air and conclude that

More information

NEULOG OXYGEN LOGGER SENSOR GUIDE

NEULOG OXYGEN LOGGER SENSOR GUIDE NeuLog oxygen logger sensor NUL-205 The oxygen sensor can be used for any science experiment or activity where oxygen levels, dissolved or gaseous, are required. Some fields of study include Chemistry,

More information

LABORATORY TECHNIQUES. Pouring Liquids

LABORATORY TECHNIQUES. Pouring Liquids LABORATORY TECHNIQUES Working in the chemistry laboratory you will be handling potentially dangerous substances and performing unfamiliar tasks. This section provides you with a guide to the safe laboratory

More information

D. De La Matter 2004 Swimming Pool Chemistry STUDENT ACTIVITIES:

D. De La Matter 2004 Swimming Pool Chemistry STUDENT ACTIVITIES: D. De La Matter 2004 Swimming Pool Chemistry STUDENT ACTIVITIES: Good News! Flinn Scientific Inc. has developed a classroom kit of experiments based on these activities. The Kit Catalog # is AP6599. Ordering

More information

CHM 2045L Physical Properties

CHM 2045L Physical Properties CHM 2045L Physical Properties Purpose: To observe and record some common physical properties. Background: Physical properties can tell us a lot about an unknown chemical. In this experiment you will look

More information

A N F G J I C D D L A B C D E F

A N F G J I C D D L A B C D E F A1 A2 B A N C D E F G J I C D L A B C D E F Model GM2 GM10 GM20 GM100 GM200 GM1000 GM5000 GM10000 Volume range [μl] 0.1-2 0.5-10 2-20 10-100 20-200 100-1000 1000-5000 1000-10000 CONTENTS 1 - INTRODUCTlON

More information

TEMPERATURE S RELATIONSHIP TO GAS & VAPOR PRESSURE

TEMPERATURE S RELATIONSHIP TO GAS & VAPOR PRESSURE TEMPERATURE S RELATIONSHIP TO GAS & VAPOR PRESSURE Adapted from "Chemistry with Computers" Vernier Software, Portland OR, 1997 ELECTRONIC LABORATORY NOTEBOOK (ELN) INSTRUCTIONS Read the directions and

More information

SCIENCE EXPERIMENTS ON FILE Revised Edition Tornado Model. Safety Please click on the safety icon to view safety precautions.

SCIENCE EXPERIMENTS ON FILE Revised Edition Tornado Model. Safety Please click on the safety icon to view safety precautions. SCIENCE EXPERIMENTS ON FILE Revised Edition 2.16-1 Tornado Model Topic Wind Time 1 hour! Safety Please click on the safety icon to view safety precautions. Materials empty duplicator paper box knife or

More information

EXPERIMENT 2. Laboratory Procedures INTRODUCTION

EXPERIMENT 2. Laboratory Procedures INTRODUCTION EXPERIMENT 2 Laboratory Procedures INTRODUCTION Begin each experiment by taking the necessary safety precautions. All materials that will not be used in the lab should be placed out of the laboratory working

More information

QAM-I-117 Volumetric Equipment Calibration Verification

QAM-I-117 Volumetric Equipment Calibration Verification 1. Applicability and Purpose This procedure applies to all adjustable and fixed volume pipetters and any labware used to deliver measured volumes of liquid by laboratory analysts at the Texas Institute

More information

Eric Sheagley, Lab Supervisor Fall, 2015

Eric Sheagley, Lab Supervisor Fall, 2015 CH 107, Intro to Chemistry Lab Portland State University Eric Sheagley, Lab Supervisor Fall, 2015 Description: CH 107 is the laboratory associated with the CH 104 Intro to Chemistry lecture. Concurrent

More information

Using a micropipette to transfer exact liquid measurements in scientific experiments By: Nicole Hume

Using a micropipette to transfer exact liquid measurements in scientific experiments By: Nicole Hume Using a micropipette to transfer exact liquid measurements in scientific experiments By: Nicole Hume Introduction A micropipette is a scientific tool used to transfer small, exact volumes of liquid between

More information

Salt Lowers the Freezing Point of Water

Salt Lowers the Freezing Point of Water Salt Lowers the Freezing Point of Water Topic Sodium chloride (NaCl), salt, lowers the freezing point of water. Introduction Salt is added to ice in ice cream freezers because salt lowers the freezing

More information

Read over Techniques #2, 4, 5, 6, and 9 in the Demonstrations of Nine Practical Lab Techniques booklet.

Read over Techniques #2, 4, 5, 6, and 9 in the Demonstrations of Nine Practical Lab Techniques booklet. Practical Assessment 1 includes: Technique #2 - Use of a Pipette Technique #4 Weighing Technique #5 Use of a Bottle-Top Dispenser Technique #6 Gravity Filtration Technique # 9 Rotary Evaporator Student

More information

CHM 317H1S Winter Section P Procedures and Tables

CHM 317H1S Winter Section P Procedures and Tables CHM 317H1S Winter 2018 Section P Procedures and Tables Procedures Page 1 Standard Operating Procedures Throughout the laboratory portion of this course, you will be required to perform a number of operations

More information

[USING THE VITROBOT April 9, Using the Vitrobot

[USING THE VITROBOT April 9, Using the Vitrobot Using the Vitrobot The Vitrobot Mk 3 (aka Mark III, Mark 3, etc.) can control both the local temperature and the local humidity during the process of plunge-freezing a grid for cryoem. It does require

More information

Gas Laws: Boyle s and Amonton s Laws MCTC Chemistry v.9.17

Gas Laws: Boyle s and Amonton s Laws MCTC Chemistry v.9.17 Gas Laws: Boyle s and Amonton s Laws MCTC Chemistry v.9.17 Objective: The purpose of this experiment is confirm Boyle's and Amontons' Laws in the laboratory. Prelab Questions: Read through this lab handout

More information

Measuring Carbon Dioxide in Breath

Measuring Carbon Dioxide in Breath Measuring Carbon Dioxide in Breath OBJECTIVES 1. Measure the partial pressure of carbon dioxide in your breath 2. Estimate the volume of air you exhale per day 3. Estimate the volume and mass of CO2 you

More information

Experiment 8 GAS LAWS

Experiment 8 GAS LAWS Experiment 8 GAS LAWS FV 6/25/2017 MATERIALS: Amontons Law apparatus, Boyle s Law apparatus, Avogadro s Corollary apparatus, four beakers (2 L), warm-water bath, ice, barometer, digital thermometer, air

More information

Any laboratory is equipped with specific tools, equipment,

Any laboratory is equipped with specific tools, equipment, Use of Laboratory Equipment and Supplies 3 When you have completed this exercise, you will be able to: 1. Use a balance. 2. Use pipettes and graduated cylinders to measure the volume of liquids. 3. Use

More information

Bante810 Benchtop Dissolved Oxygen Meter Instruction Manual

Bante810 Benchtop Dissolved Oxygen Meter Instruction Manual Bante810 Benchtop Dissolved Oxygen Meter Instruction Manual BANTE INSTRUMENTS CO., LTD Bante810 Benchtop Dissolved Oxygen Meter 1 Introduction Thank you for selecting the Bante810 benchtop dissolved oxygen

More information

ali-q TM Gravimetric Verification Procedure

ali-q TM Gravimetric Verification Procedure ali-q TM Gravimetric Verification Procedure Introduction This document describes the recommended procedure for verifying performance of the ali-q aliquoting pipet controller using the industry standard-

More information

Roy G. Biv Charles W. McLaughlin

Roy G. Biv Charles W. McLaughlin SCIENCE EXPERIMENTS ON FILE Revised Edition 6.25-1 Roy G. Biv Charles W. McLaughlin Topic Relationship between wavelength and frequency of light Time 1 hour! Safety Please click on the safety icon to view

More information

Research Question How does the concentration of catalase affect the speed of the decomposition reaction of Hydrogen Peroxide into oxygen and water?

Research Question How does the concentration of catalase affect the speed of the decomposition reaction of Hydrogen Peroxide into oxygen and water? Research Question How does the concentration of catalase affect the speed of the decomposition reaction of Hydrogen Peroxide into oxygen and water? Aim To observe the effect of increasing enzyme (catalase)

More information

Lab: Safety Due: Lab # 0

Lab: Safety Due: Lab # 0 Name: Lab Section: Lab: Safety Due: Lab # 0 Purpose Science is a hands-on laboratory class. You will be doing many laboratory activities which require the use of hazardous chemicals. Safety in the science

More information

Tips for Proper Pipette handling and Maintenance. D. Muruganand, Ph.D ILQA - Bangalore, Feb 2014

Tips for Proper Pipette handling and Maintenance. D. Muruganand, Ph.D ILQA - Bangalore, Feb 2014 Tips for Proper Pipette handling and Maintenance D. Muruganand, Ph.D ILQA - Bangalore, Feb 2014 Liquid handling tools Manual pipettes Electronic pipette and dispenser Automated systems Principles of Pipetting

More information

SOP: Buck Scientific BLC-20P HPLC Operation

SOP: Buck Scientific BLC-20P HPLC Operation Page 1 of 11 Approvals Preparer: John Buford Reviewer: Tim Kull Reviewer: Dr. Margaret Bryans Date: 16OCT13 Date: 30OCT13 Date: 31OCT13 1. Purpose 1.1. Basic operation of the Buck Scientific BLC-20P isocratic

More information