Determination of Sodium using Atomic Emission

Size: px
Start display at page:

Download "Determination of Sodium using Atomic Emission"

Transcription

1 Determination of Sodium using Atomic Emission 1. Purpose The purpose of this procedure is to determine the concentration of sodium ion in parts per million in an unknown sample. 2. Background Atomic emission (AE) spectroscopy is a very well established technique in analytical chemistry, with applications in many fields of science. It has been used in the pharmaceutical industry to determine the amount of calcium in antacid tablets. Marine biologists have used AE to determine mercury levels in ocean sediment and fish tissue. In one specific example from the literature, environmental scientists at a wildlife research center used AE coupled to gas chromatography to determine phosphorous concentrations in duck gizzards. 2 Like all spectroscopic methods, AE use electromagnetic energy to determine the concentration and/or identity of some analyte(s). In atomic spectroscopy, the elements present in a sample are converted to gaseous atoms by an atomizer. In AE, the flame atomizer also serves to produce an electronically excited species of the analyte. These excited species emit radiation upon relaxation, producing the analytical signal at a specific wavelength. In this laboratory, sodium is the analyte of interest and an acetylene flame provides the energy for excitation. The sodium atoms are thermally excited and emit radiation with a wavelength of 589 nm. The intensity of the radiation is proportional to the concentration of the sample. This relationship allows an analyst to construct a calibration curve with standards of known concentration. Using least-squares analysis, the concentration of an unknown sample can be determined from a single emission intensity measurement. 3. Materials and Equipment 1 L volumetric flask funnel 500 ml volumetric flask sodium chloride 100 ml volumetric flask (6) 1 L plastic bottle Spatula 500 ml plastic bottle 10 ml graduated cylinder 100 ml plastic bottle (7) 100 ml graduated cylinder nanopure water Eppendorf micro-pipette (1000 µl) and disposable tips Varian SpectrAA 200 Flame Atomic Absorption Spectrophotometer 4. Safety / Special Handling Procedures Protective eyewear must be worn at all times. Acetylene is run into the AE from a gas cylinder. If you need help opening the main valve, please ask your instructor. Many internal parts of the AE are very hot. Ask your instructor for assistance if you need to open the cover of the AE. Notify the instructor if there is a problem with the instrument. For more general safety in the laboratory, please refer the appendix. AE Page 1

2 5. Experimental Method 5.1. Preparation the Stock Standard Calculate the amount of pure sodium chloride required to give one liter of approximately 100- ppm sodium. Weigh out the NaCl and record the actual, exact mass used. Quantitatively transfer the NaCl to a one liter volumetric flask using a funnel and a wash bottle. Transfer the solution to a plastic bottle and label it "Sodium Stock Standard" and calculate/record the exact concentration 5.2. Preparation the Unknown Obtain an unknown from the instructor and quantitatively transfer the unknown to a half-liter volumetric flask with a water bottle. Dilute to the mark with nanopure water, mix and transfer to a plastic bottle. Label it "Unknown Sodium" Preparation of the Working Standards Obtain a 1000 µl Eppendorf micro-pipette fitted with a proper size plastic disposable tip. If you need a review on the proper use of micro-pipettes, please let your instructor know or consult the Appendix A at the end of this procedure. Before start using the micro-pipette, you should verify and calibrate if the pipette is working properly (see Appendix A for more on this). Calculate the volume (in µl) of stock standard sodium necessary to give 100 ml of around 0.2 ppm Na as close as possible based upon your stock solution concentration. The aliquot size should be a nice round number. In other words, if your stock solution concentration is 127 ppm Na, then, you will likely be making ppm Na solution as opposed to ppm solution Transfer an aliquot of this volume to a 100 ml volumetric flask, dilute to the mark, mix and (if you need to reuse your volumetric flask) transfer to a small plastic bottle labeled "AE #1". This is the lowest concentration standard for your calibration curve Continue to prepare the standards as in step until 6 total solutions have been prepared. The concentration of each standard should increase by 0.2 ppm. For example, the concentration of Solution 2 should be about 0.4 ppm and the concentration of Solution 6 should be about 1.2 ppm. You should tabulate the concentrations and volumes used to make up your standard solutions; perform at least one sample calculation in your notebook Preparation of a "top standard" Sodium Solution Per step 5.3, the most concentrated standard solution is approximately 1.2 ppm Na +. Next, prepare a sodium solution which is more concentrated than the most concentrated solution in your set. This solution is not a true standard, but will be used to optimize the instrument response (photomultiplier tube signal). Therefore, its exact concentration does not need to be known and it does not need to be made as accurately as the standards. Prepare around 100 ml of approximately 5 ppm Na + from the concentrated stock solution. You may use a graduated cylinder and beaker for this solution preparation. Label this solution top standard. AE Page 2

3 5.5. Analysis using the Varian SpectrAA 200 spectrometer Bring the following to the instrument room: 1. All 6 standard solutions 2. Unknown sodium solution ml beaker with nanopure water 4. Top standard 5. Notebook 6. Kim Wipes On the front of the instrument is a tray for the samples. There is a plastic capillary tube that comes out of the instrument onto this tray. Place the beaker of water on the left side and the top solution on the right. The space between the two will be for the various samples. Refer to Figure 1 for a picture of the instrument. Note that in this lab the Atomic Emission experiment uses the same apparatus and fuel mixture as the Atomic Absorption experiment (acetylene and air). Figure 1: Varian SpectrAA 200 Atomic Absorption Spectrophotometer Turn on the acetylene gas. The acetylene gas cylinder is located to the right of the instrument. Turn the main valve at the top of the cylinder counter-clockwise so that it is completely open. Do not touch any other knobs on the regulator! See Figure 2 for a picture of the cylinder and regulator. Ask your instructor for help if you have any questions Turn on the compressed air. The compressed air is from an in-house source and the valve is located on the left side of the (old) fume hood next to the gas chromatograph (GC) on the south side of the room. Open the valve by turning the handle 90 away from you. (Figure 3). AE Page 3

4 Figure 2: Acetylene gas cylinder and regulator Compressed air valve Turn on the computer, if it is not already running. Start Varian SpectrAA 100/200 application upon startup. See Figure 4 for a screenshot of the application. Figure 4: Figure 3: Varian SpectrAA application Turn on the instrument by flipping the switch on the lower left corner of the instrument (Figure 5). Once you have turned on the instrument, you will get a warning on the computer. Ignore the message and click "OK". Figure 5: Varian SpectrAA Power switch and the Ignite button Ignite the flame by the following procedure First, place the capillary tube into the beaker containing nanopure water. Switch the gas control knob (located front right of the instrument see Figure 6) from "OFF" to "AIR" setting. As the compressed air exits the burner head, it will make a hissing sound as soon as you switch the knob to air setting. AE Page 4

5 Instrumental Analysis Laboratory Safety Rules A. Instructions: Carry out all manipulations in accordance with instructions and the safety rules and procedures given herein. B. Eye Protection: All students and staff working in the laboratory must wear safety glasses at all times. If a student needs to be reminded more than three times to wear goggles, she/he will be dismissed from lab for the remainder of the day, and will not be given an opportunity to make up the work. C. Apparel: The clothes you wear in lab are an important part of your safety equipment, and should offer protection from splashes/spills. Closed toed shoes (sneakers are fine), Full-length pants or a full-length skirt, and A shirt that completely covers your torso (i.e. at minimum, a t-shirt). In other words, you must NOT wear shorts to lab. You must NOT wear flip-flops, sandals, or crocs. You must NOT wear tank tops, halter tops, spaghetti-strap tops, or low cut jeans to lab. Exposed abdomens, hips, and backs are not safe in the lab. D. Gloves: Gloves are an important part of personal protection. Gloves will be available at all times in the laboratory. Your instructor will require their use when appropriate. E. Food: Food, drinks, and gum are not allowed in lab. None at all, not even water bottles. F. Sanitation Issues: Be sure to wash your hands before leaving lab, before you eat anything outside of lab, and before you answer your cell phone. G. Music: Individual headphones are not allowed. Your may choose to play music for the entire class. H. Cell Phones and Other Electronic Devices: Cellular phones and other electronic devices that you do not need to perform your laboratory work should be put away. I. Other: All students are explicitly prohibited from: 1. conducting any unauthorized experiments. 2. removing chemicals or apparatus from the laboratory for any reason. 3. working in the lab alone, or at other than regularly scheduled lab periods. 4. smoking in the laboratory or within 20 feet of any doorway. 5. impeding movement in aisles or through doorways with bags, skateboards, etc.

6 Figure 6: Gas control Figure 7: capillary tube Next, slowly turn the acetylene flow knob (Figure 6) counter-clockwise. Simultaneously, press the ignite button (Figure 5) located next to the main power switch to ignite the flame on the burner. Once the flame has been ignited, adjust the acetylene flow so that it is sufficient to maintain the flame. The flame is visible through the window above the sample introduction port (Figure 7). It should appear green in color through the protective shield for the burner Once the flame has been lit, ensure that the capillary tube is still in the beaker containing nanopure water and that it contains sufficient water. This is the blank (Figure 7) Next, on the computer, click the "Worksheet" button on SpectrAA 100/200 application (Figure 8). Figure 8: Computer Screenshot Click "New From Template" button. You should see a window with the available template. Choose "sodium by AE" and click "OK" (Figures 9 and 10). AE Page 5

7 Figure 9: Load Worksheet "New From Template" Figure 10: Select "sodium by AE" Next, you will be prompted to name your worksheet. Enter the name of the file in the Name box. Record this name in your lab notebook. Enter your name in Analyst box and click "OK" (Figures 11 and 12). Figure 11 Figure 12: Identify your worksheet At this point, the computer should show the screen in Figure 13. Figure 13: Instrument control You are ready to begin the analysis. Click the "Read" button on the left side to start. You should see a dialog box named "Analysis Checklist". Verify that these settings are correct and document them in your notebook. Ask your instructor for help checking the slit width. Click "OK" to continue. Wait for a few seconds while the instrument makes the necessary adjustments. AE Page 6

8 Once the instrument is ready, it will prompt you to present your top standard sodium solution. Place the capillary in the top standard solution and click "OK". The instrument will take the reading of your top standard. Remember to wipe off the capillary with a Kim wipe between all readings When the instrument has performed the reading from the top standard, it will prompt you to remove the top standard. Replace the top standard with the blank. Once you have the blank in place, click "OK" to continue Next, the instrument will ask for sample #1. Remove the blank, place the capillary in sample #1 and click "OK". The instrument will acquire emission data from the sample solution for approximately 15 seconds. You can watch the progress at the top right of the program screen. Do not remove the capillary tubing until the data acquisition is complete. Once the reading is done for 15 seconds, place the capillary back in the beaker containing nanopure water After the instrument has taken the measurement for sample #1, on the computer move the cursor to the cell for sample #2 and put the capillary in sample #2. Click "Read" button and repeat the process for sample #2. It is important that the cursor be on the cell of the sample to be read. Otherwise, the data will not be recorded with the correct sample Continue the process in step for all of the standard solutions and the unknown (which should be sample #7). Set up a table and record the emission values in your notebook When all of the solutions have been read, click the "Stop" button to stop analysis. Ensure that all of the emission values are documented in your notebook. It is important that both your standards and samples are analyzed on the same day. The instrument response can change day to day. Running the samples and standards at the same time gives the most accurate results Print out the data by the following procedure. Exit the worksheet: Go to the "Exit" menu and select "Return to Main Index". In the Main Index, click "Report" button. Refer to Figure 8 for a screen shot of the Main Index. Figure 14: Select your worksheet Figure 15: Print your report AE Page 7

9 Select your report file (Figure 14). Click the "4. Report" tab. Click "Print Preview " button to preview the report (Figure 15). If the preview looks satisfactory, print your result by clicking the "Print " button on the right-hand side. When your data has printed, click the close button. Double-check that the data print-out and the values in your notebook agree Exit SpectrAA application (Figure 8) Shut off the acetylene gas: Turn the acetylene knob on the instrument clockwise. Close the main valve on the acetylene tank (Figure 2) Turn off the compressed air: Switch the gas control knob on the instrument to the off position (Figure 6). Turn off the in-house compressed air (Figure 3) Turn off the instrument power (Figure 5). AE Page 8

10 Data Analysis / Calculations 5.6. Enter your data into the least squares program on the computer in the balance room or the Chemistry Computer Lab. If you need help with this program, ask your instructor. (You can also make your own Excel table and graph, if you prefer.) Enter the X value data as the concentration of the linear standards and the Y data as corresponding emission values. Enter the emission value of the unknown and record the concentration value in your notebook. Print out this data and turn it in with your notebook pages. Remember to write your name and date on any printouts. All graphs should have the x and y axes properly labeled and should have a title. You may write or type these into your graph. 6. Reporting Requirements Report the concentration (in ppm) of sodium in the 500 ml unknown solution to three decimal places. 7. Waste Disposal Discard all solutions down the drain. 8. References 1. Skoog, Fundamentals of Analytical Chemistry, 8 th Edition, Chapter 28 (atomic spectroscopy) and Chapter 8 section C (calibration curves). 2. Johnston, J.J. et. al. Environ. Sci. Technol., 2000, 34, p AE Page 9

11 Appendix A: Operation of Eppendorf Adjustable Pipettes A1. Volume Setting The volume is adjusted by pressing down the lateral catch and turning the control button at the same time. It is advisable to carry out volume setting from the higher down to the lower value (i.e. first go above the desired volume and then return to the lower value). A2. Pipette tips Typically the color of the control button will correspond to the color of the eppendorf tip or tip rack. For the best precision and accuracy, pre-wet all new tips by aspirating and dispensing liquid 2-3 times before pipetting. A3. Aspirating liquid! Attach suitable pipette tip to the pipette firmly.! Press down the control button to the first stop (measuring stroke).! Immerse the pipette tip vertically ~3 mm into the liquid.! Allow the control button to slide back slowly.! Pull the tip out of the liquid slowly.! To remove any remaining droplets, dab with non-fibrous cellulose material, ensuring that liquid does not come out of the tip. You can also dab on the side of the beaker containing the liquid you are pipetting. A4. Dispensing liquid! Hold the tip at an angle against the inside wall of the tube/flask.! Press down the control button slowly to the first stop (measuring stroke) and wait until the liquid stops flowing.! Press down the control button to the second stop (blow-out) until the tip is completely empty.! Hold down the control button and pull the tip out of the inner wall of the tube/flask.! Allow the control button to slide back slowly.! Tip is ejected by pressing the control button to the final stop. Do not lay down the pipette when a filled pipette tip is attached as this may result in liquid entering the pipette. A5. Verification of pipette You can verify that the pipette is performing accurately by dispensing nanopure water from a pre-wetted tip into a tared flask or tube onto an analytical balance. Typically, for this experiment, test at 500 µl for the 1000 µl pipette. You should do so BEFORE you start using the pipette. Convert the mass to volume by dividing by the density at room temperature. For example, the density of water is mg/µl at 20 C. This number is the volume actually delivered by the pipette. Determine the error relative to the set value. Repeat a few times to verify that the pipette is accurately delivering water. If not, consult your instructor. AE Page 10

Determination of Zn using Atomic Absorption with Multiple Standard Additions

Determination of Zn using Atomic Absorption with Multiple Standard Additions 1. Purpose Determination of Zn using Atomic Absorption with Multiple Standard Additions This procedure will determine the concentration of zinc at the parts-per-million level using flame atomic absorption

More information

Determination of Zn using Atomic Absorption with Multiple Standard Additions

Determination of Zn using Atomic Absorption with Multiple Standard Additions Determination of Zn using Atomic Absorption with Multiple Standard Additions 1. Purpose This procedure will determine the concentration of zinc at the parts-per-million level using flame atomic absorption

More information

Ultra-Low Copper Concentrations Determined by Rotating Disk Electrode Stripping Voltammetry

Ultra-Low Copper Concentrations Determined by Rotating Disk Electrode Stripping Voltammetry Ultra-Low Copper Concentrations Determined by Rotating Disk Electrode Stripping Voltammetry 1. Purpose Copper ion concentrations in the parts-per-billion (ppb) range will be determined using anodic stripping

More information

The use of the analytical balance, and the buret.

The use of the analytical balance, and the buret. 1211L Experiment 1. Density 2015 by H. Patterson Instructor Notes: Students make measurements individually then share data to make the graph. There are four volumetric measurements to be studied; 3.00

More information

UNCC Biotechnology and Bioinformatics Camp. Dr. Jennifer Weller Summer 2010

UNCC Biotechnology and Bioinformatics Camp. Dr. Jennifer Weller Summer 2010 UNCC Biotechnology and Bioinformatics Camp Dr. Jennifer Weller Summer 2010 Using Micropipettes Lab Intro Micropipettes How do you control volume in the microliter range? How do you verify that the volume

More information

VOLUMETRIC TECHNIQUES

VOLUMETRIC TECHNIQUES REVISED 10/14 CHEMISTRY 1101L VOLUMETRIC TECHNIQUES Volume measurements are important in many experimental procedures. Sometimes volume measurements must be exact; other times they can be approximate.

More information

Measuring Mass and Volume

Measuring Mass and Volume Measuring Mass and Volume Experiment 2 Expt 2 Measurement.wpd INTENT The purpose of this experiment is to introduce some fundamental aspects of the measurement making process as well as to introduce some

More information

Any laboratory is equipped with specific tools, equipment,

Any laboratory is equipped with specific tools, equipment, Use of Laboratory Equipment and Supplies 3 When you have completed this exercise, you will be able to: 1. Use a balance. 2. Use pipettes and graduated cylinders to measure the volume of liquids. 3. Use

More information

Pipetting Small Volumes

Pipetting Small Volumes Pipetting Small Volumes Introduction Serological and micropipettes are used to accurately transfer small liquid volumes (micro-liter to milli-liter) accurately and precisely. Continuously adjustable Can

More information

INTRODUCTION TO THE SPECTROPHOTOMETER AND PIPETTING SKILLS

INTRODUCTION TO THE SPECTROPHOTOMETER AND PIPETTING SKILLS INTRODUCTION TO THE SPECTROPHOTOMETER AND PIPETTING SKILLS Section A: Intro to the spectrophotometer A commonly used instrument in the analysis of cellular extracts is the Spectrophotometer. Today you

More information

Lab Equipment ANALYTICAL BALANCE

Lab Equipment ANALYTICAL BALANCE Lab Equipment ANALYTICAL BALANCE Analytical balances are used for very accurate, quantitative measurements of mass to the nearest 0.001 g. (Some read to 0.0001 g.) These are delicate instruments, subject

More information

Lab Skills Practice: Pipetting Small Volumes. B3 Summer Science Camp at Olympic High School 2016

Lab Skills Practice: Pipetting Small Volumes. B3 Summer Science Camp at Olympic High School 2016 Lab Skills Practice: Pipetting Small Volumes B3 Summer Science Camp at Olympic High School 2016 Pipetter types Serological and micropipettes are used to accurately transfer small liquid volumes (micro-liter

More information

University of New Haven DEPARTMENT OF CHEMISTRY and CHEMICAL ENGINEERING

University of New Haven DEPARTMENT OF CHEMISTRY and CHEMICAL ENGINEERING University of New Haven DEPARTMENT OF CHEMISTRY and CHEMICAL ENGINEERING A. Instructions: Student: Read carefully the following laboratory rules, safety precaution, and regulations. Your laboratory conduct

More information

1. Determining Solution Concentration

1. Determining Solution Concentration In this exercise you will determine the concentration of salt solutions by measuring samples with known concentration and making a calibration curve. You will review units of concentration, and how to

More information

Experiment #2. Density and Measurements

Experiment #2. Density and Measurements Experiment #2. Density and Measurements Goals 1. To measure and record length, volume and mass accurately with the correct number of significant figures 2. To use significant figures correctly in calculations.

More information

CHM250 Calibration and Measurement Lab. Balance Calibration

CHM250 Calibration and Measurement Lab. Balance Calibration CHM250 Calibration and Measurement Lab Green Profile Balance Calibration Introduction: Balances that are properly operated, calibrated and maintained are crucial for laboratory operations. The accuracy

More information

Laboratory #2 Pipetting Technique and Micropipette Calibration Skills=40 pts

Laboratory #2 Pipetting Technique and Micropipette Calibration Skills=40 pts Laboratory #2 Pipetting Technique and Micropipette Calibration Skills=40 pts Objectives: Upon completion of this unit, the student should be able to: 1. List and describe 3 categories of pipets. 2. List

More information

Laboratory Activity Measurement and Density. Average deviation = Sum of absolute values of all deviations Number of trials

Laboratory Activity Measurement and Density. Average deviation = Sum of absolute values of all deviations Number of trials Laboratory Activity Measurement and Density Background: Measurements of mass and volume are very common in the chemistry laboratory. The analytical balance is used to measure mass, and the graduated cylinder,

More information

MOLEBIO LAB #1: Microquantity Measurement

MOLEBIO LAB #1: Microquantity Measurement MOLEBIO LAB #1: Microquantity Measurement Introduction: This lab introduces micropipetting and sterile pipetting techniques used throughout this course. Mastery of these techniques is important for good

More information

Hands-On Experiment Density and Measurement

Hands-On Experiment Density and Measurement Hands-On Experiment Density and Measurement GOALS: 1. To measure liquid volume as accurately as possible with graduated cylinders. 2. To measure the volume of irregular shaped solid objects by liquid volume

More information

EXPERIMENT 1 BASIC LABORATORY TECHNIQUES AND TREATMENT OF DATA MEASUREMENTS

EXPERIMENT 1 BASIC LABORATORY TECHNIQUES AND TREATMENT OF DATA MEASUREMENTS EXPERIMENT 1 BASIC LABORATORY TECHNIQUES AND TREATMENT OF DATA MEASUREMENTS Introduction In the following experiment you will be required to use a Bunsen burner, balance, a pipet, graduated cylinder, flask,

More information

EXPERIMENT 2. Laboratory Procedures INTRODUCTION

EXPERIMENT 2. Laboratory Procedures INTRODUCTION EXPERIMENT 2 Laboratory Procedures INTRODUCTION Begin each experiment by taking the necessary safety precautions. All materials that will not be used in the lab should be placed out of the laboratory working

More information

Chapter 2. Pipetting techniques. Guide to Pipetting

Chapter 2. Pipetting techniques. Guide to Pipetting Chapter 2 Pipetting techniques 16 Guide to Pipetting 2.1 Adjust the volume display CHAPTER 2 Reading and adjusting the volume The volume is shown on the volumeter Hold the body of the micropipette in one

More information

Adjust the Volume Display

Adjust the Volume Display PIPETTING TECHNIquES Chapter 2 PIPETTING TECHNIquES Adjust the Volume Display The volume is shown on the volumeter Reading and Adjusting the Volume Hold the body of the micropipette in one hand and use

More information

BASIC LABORATORY TECHNIQUES (Revised )

BASIC LABORATORY TECHNIQUES (Revised ) BASIC LABORATORY TECHNIQUES (Revised 1-6-13) A. WEIGHING The determination of the quantity of matter in a sample is most directly determined by measuring its mass. The process by which we determine the

More information

Pipetting and Determining Protein Concentration

Pipetting and Determining Protein Concentration Pipetting and Determining Protein Concentration Background Information: When performing experiments in Cell Biology, it is often necessary to use very small volumes of reagents sometimes because the reagents

More information

How to Measure R7.1. Reference. I. Linear dimensions

How to Measure R7.1. Reference. I. Linear dimensions How to Measure Written by Connie Russell I. Linear dimensions Measuring linear dimensions (the distance between two points) is usually associated with using a ruler or a tape measure. For measuring objects

More information

Calibration of Volumetric Glassware

Calibration of Volumetric Glassware Calibration of Volumetric Glassware Introduction This set of laboratory experiments is designed to introduce you to some of the apparatus and operations you will be using during the remainder of this course,

More information

The Gas Laws: Boyle's Law and Charles Law

The Gas Laws: Boyle's Law and Charles Law Exercise 6 Page 1 Illinois Central College CHEMISTRY 130 Name The Gas Laws: Boyle's Law and Charles Law Objective The simple laws governing the properties of gases can be readily demonstrated experimentally.

More information

CHM 2045L Physical Properties

CHM 2045L Physical Properties CHM 2045L Physical Properties Purpose: To observe and record some common physical properties. Background: Physical properties can tell us a lot about an unknown chemical. In this experiment you will look

More information

Purpose. Introduction

Purpose. Introduction Purpose The objective of this experiment is to determine the density of an unknown liquid and solid. The students will become familiar with the techniques for measuring mass and volume of several samples

More information

BASIC LABORATORY TECHNIQUES (Revised )

BASIC LABORATORY TECHNIQUES (Revised ) BASIC LABORATORY TECHNIQUES (Revised 1-2-16) (See Appendix II: Summary for making Spreadsheets and Graphs with Excel and Appendix III parts C, C1 and C2: Significant figures, scientific notation and rounding)

More information

Boyle s Law VC 09. Experiment 9: Gas Laws. Abstract

Boyle s Law VC 09. Experiment 9: Gas Laws. Abstract Experiment 9: Gas Laws VC 09 Abstract In this laboratory activity, you will experimentally confirm Boyle s Law, determine absolute zero from Gay-Lussac's Law, and determine the molecular weight of acetone,

More information

Lab 1. Instrumentation Familiarity: Using Micropipetters and Serological Pipettes

Lab 1. Instrumentation Familiarity: Using Micropipetters and Serological Pipettes Instrumentation Familiarity: Using Micropipetters and Serological Pipettes Introduction: In molecular biology we sometimes need to measure volumes as small as one millionth of a liter (a liter is about

More information

Target Density Lab SCIENTIFIC. Density Inquiry Lab Activities. Introduction. Concepts. Materials. Safety Precautions. Preparation

Target Density Lab SCIENTIFIC. Density Inquiry Lab Activities. Introduction. Concepts. Materials. Safety Precautions. Preparation Target Density Lab Density Inquiry Lab Activities SCIENTIFIC Introduction The concept of density is reinforced as students measure the volume and mass of an unknown liquid in a graduated cylinder, graph

More information

Inquiry Module 1: Checking the calibration of a micropipette

Inquiry Module 1: Checking the calibration of a micropipette Inquiry Module 1: Checking the calibration of a micropipette 1. Introduction Larger volumes (1mL and more) are usually measured using pipets or measuring cylinders. Such cylinders and pipets are labelled

More information

THE UNIVERSITY OF NEWCASTLE - DISCIPLINE OF MEDICAL BIOCHEMISTRY

THE UNIVERSITY OF NEWCASTLE - DISCIPLINE OF MEDICAL BIOCHEMISTRY THE UNIVERSITY OF NEWCASTLE - DISCIPLINE OF MEDICAL BIOCHEMISTRY Page: 1 of 9 1. Risk Assessment: This risk assessment has been prepared using the National Safety Council of Australia Risk Score Calculator

More information

CHEMISTRY FACULTY LABORATORY SAFETY CONTRACT CENTRAL CAMPUS

CHEMISTRY FACULTY LABORATORY SAFETY CONTRACT CENTRAL CAMPUS CHEMISTRY FACULTY LABORATORY SAFETY CONTRACT CENTRAL CAMPUS Potential hazards exist in all chemical laboratories and some can cause serious accidents. Fortunately, most accidents can be prevented if each

More information

EXPERIMENT XI. Careful!! Improper handling of the vacuum line may result in the release of SO 2 which is an irritating and suffocating gas.

EXPERIMENT XI. Careful!! Improper handling of the vacuum line may result in the release of SO 2 which is an irritating and suffocating gas. Chem 366-3 Page XI - 1 EXPERIMENT XI INFRARED SPECTRUM OF SO2 (S&G, 5th ed. Expt 36, 6th ed. Expt. 35) 1. Pre-Lab preparation. The description of this experiment has disappeared from the more recent editions

More information

Accuracy and Precision

Accuracy and Precision Accuracy and Precision Introduction Scientists use many skills as they investigate the world around them. They make observations by gathering information with their senses. Some observations are simple.

More information

Lab: Safety Due: Lab # 0

Lab: Safety Due: Lab # 0 Name: Lab Section: Lab: Safety Due: Lab # 0 Purpose Science is a hands-on laboratory class. You will be doing many laboratory activities which require the use of hazardous chemicals. Safety in the science

More information

CH2250: Techniques in Laboratory Chemistry. Outline Measuring Mass Measuring Volume Significant figures. Mass Measurement

CH2250: Techniques in Laboratory Chemistry. Outline Measuring Mass Measuring Volume Significant figures. Mass Measurement CH2250: Techniques in Laboratory Chemistry Outline Measuring Mass Measuring Volume Significant figures Mass Measurement Mass Measurement Measure mass not weight Mass is measured with a balance (a scale

More information

Standard Operating Procedure. Air Displacement Pipette Calibration

Standard Operating Procedure. Air Displacement Pipette Calibration University of Colorado at Denver October 28, 2003 - Revision 1.00 Page 1 of 7 1 Background: Standard Operating Procedure An accurate pipette is one of the most important tools in performing accurate analytical

More information

Armfield Distillation Column Operation Guidelines

Armfield Distillation Column Operation Guidelines Armfield Distillation Column Operation Guidelines 11-2016 R.Cox Safety SAFETY GLASSES ARE REQUIRED WHEN OPERATING THE DISTILLATION COLUMN Wear gloves when mixing alcohol feedstock The column will become

More information

LABORATORY TECHNIQUES. Pouring Liquids

LABORATORY TECHNIQUES. Pouring Liquids LABORATORY TECHNIQUES Working in the chemistry laboratory you will be handling potentially dangerous substances and performing unfamiliar tasks. This section provides you with a guide to the safe laboratory

More information

Pipettor. User Manual

Pipettor. User Manual Pipettor User Manual Product Code Description Single Chanel Pipettor Variable 550.002.055 Volume 0.5 to 10ul 550.002.060 2 to 20ul 550.002.065 10 to 100ul 550.002.070 20 to 200ul 550.002.075 100 to 100ul

More information

Technical Procedure for General Laboratory Equipment

Technical Procedure for General Laboratory Equipment Technical Procedure for General Laboratory Equipment 1.0 Purpose - This procedure specifies the required elements for the use of general laboratory equipment. 2.0 Scope - This procedure applies to all

More information

Vapor Pressure of Liquids

Vapor Pressure of Liquids Vapor Pressure of Liquids In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask shown in Figure

More information

Check-In, Lab Safety, Balance and Volumetric Glassware Use, Introduction to Statistics, and MSDS Familiarization

Check-In, Lab Safety, Balance and Volumetric Glassware Use, Introduction to Statistics, and MSDS Familiarization Check-In, Lab Safety, Balance and Volumetric Glassware Use, Introduction to Statistics, and MSDS Familiarization Before coming to lab: Read Chapter 2 of your textbook before coming to lab. This chapter

More information

CHEM 321 Experiment 1

CHEM 321 Experiment 1 CHEM 321 Experiment 1 Basics Review and Calibration of Volumetric Glassware There are three types of containers used in lab to contain or deliver liquids: volumetric, ordinary and disposable glassware.

More information

EXPERIMENT 1 TOOLS FOR LAB MEASUREMENT

EXPERIMENT 1 TOOLS FOR LAB MEASUREMENT EXPERIMENT 1 TOOLS FOR LAB MEASUREMENT INTRODUCTION A course in chemistry, one of the physical sciences, differs from a course in, say, literature or history. A main difference is that chemistry usually

More information

Experiment 1 Introduction to Some Laboratory Measurements

Experiment 1 Introduction to Some Laboratory Measurements Experiment 1 Introduction to Some Laboratory Measurements Introduction In this experiment you will familiarize yourself with the English & metric systems of measurement, weigh with a centigram balance,

More information

Prepared By: Lisa McAvoy 30/Nov/17 dd/mmm/yy. Approved By: Veronica Harris-McAllister 30/Nov/17 dd/mmm/yy

Prepared By: Lisa McAvoy 30/Nov/17 dd/mmm/yy. Approved By: Veronica Harris-McAllister 30/Nov/17 dd/mmm/yy Standard Operating Procedure Pipettes SOP Number: SOP-P-01 Category: Lab Equipment Supersedes: N/A Effective Date: December 1, 2017 Pages 5 Subject: Pipettes Prepared By: Lisa McAvoy 30/Nov/17 dd/mmm/yy

More information

Read over Techniques #2, 4, 5, 6, and 9 in the Demonstrations of Nine Practical Lab Techniques booklet.

Read over Techniques #2, 4, 5, 6, and 9 in the Demonstrations of Nine Practical Lab Techniques booklet. Practical Assessment 1 includes: Technique #2 - Use of a Pipette Technique #4 Weighing Technique #5 Use of a Bottle-Top Dispenser Technique #6 Gravity Filtration Technique # 9 Rotary Evaporator Student

More information

PerkinElmer Aanalyst100

PerkinElmer Aanalyst100 Using of AAS Model PerkinElmer Aanalyst100 Mr.Pisipong Meunprasertdee Scientist Instrument Center Faculty of Science and Technology 1 Using of AAS Model PerkinElmer Aanalyst100 2 AAS Training Jan 5-6,

More information

The Ideal Gas Constant

The Ideal Gas Constant Chem 2115 Experiment # 8 The Ideal Gas Constant OBJECTIVE: This experiment is designed to provide experience in gas handling methods and experimental insight into the relationships between pressure, volume,

More information

Flinn Scientific's Student Safety Contract

Flinn Scientific's Student Safety Contract Flinn Scientific's Student Safety Contract Purpose Science is a hands-on laboratory class. You will be doing many laboratory activities that require the use of hazardous chemicals. Safety in the science

More information

Standard Operating Procedure Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) - Thermo Scientific icap 6300

Standard Operating Procedure Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) - Thermo Scientific icap 6300 Standard Operating Procedure Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) - Thermo Scientific icap 6300 The Thermo Scientific icap 6300 Inductively Coupled Plasma Optical Emission

More information

Research Question How does the concentration of catalase affect the speed of the decomposition reaction of Hydrogen Peroxide into oxygen and water?

Research Question How does the concentration of catalase affect the speed of the decomposition reaction of Hydrogen Peroxide into oxygen and water? Research Question How does the concentration of catalase affect the speed of the decomposition reaction of Hydrogen Peroxide into oxygen and water? Aim To observe the effect of increasing enzyme (catalase)

More information

RayPette Plus Autoclavable Pipette. User Manual

RayPette Plus Autoclavable Pipette. User Manual RayPette Plus Autoclavable Pipette User Manual CONTENTS 1. YOUR NEW PIPETTE... 1 1.1. Adjustable volume pipettes... 1 1.3 Fully autoclavable... 2 2. UNPACKING... 3 3. INSTALLING THE PIPETTE HOLDER... 4

More information

Student Information & Laboratory Safety Contract

Student Information & Laboratory Safety Contract Student Information & Laboratory Safety Contract Mrs. Mawhiney Student Information Last Name First Name Preferred Name Home Address (including ZIP) Home Phone student e-mail Parent/Guardian Name Relationship

More information

Take Home Test Score:

Take Home Test Score: STUDENT I, (Student s name) have read and agree to follow all of the safety rules set forth in this contract. I realize that I must obey these rules to insure my own safety, and that of my fellow students

More information

II. MATERIALS REQUIRED FOR PERFORMANCE TESTING

II. MATERIALS REQUIRED FOR PERFORMANCE TESTING TSP-016 P/N L038-058 4-001 Rev. D February 8, 2000 Page 1 of 14 DISTRIBUTION: VistaLab Technologies Customers EQUIPMENT: MLA Pipettes SUBJECT: Pipette Performance Verification Protocol PURPOSE: To evaluate

More information

FLUORESCENCE DETERMINATION OF OXYGEN

FLUORESCENCE DETERMINATION OF OXYGEN FLUORESCENCE DETERMINATION OF OXYGEN Objectives This experiment will familiarize the students with the principles of fluorescence quenching as well as the Ocean Optics FOXY Fiber Optic Sensor System. Spectra

More information

CHM 100 / Introductory Laboratory Experiment (r10) 1/11

CHM 100 / Introductory Laboratory Experiment (r10) 1/11 CHM 100 / 110 - Introductory Laboratory Experiment (r10) 1/11 Purpose This introductory exercise will familiarize you with a few of the measurements we make in the chemistry laboratory and the level of

More information

Using a micropipette to transfer exact liquid measurements in scientific experiments By: Nicole Hume

Using a micropipette to transfer exact liquid measurements in scientific experiments By: Nicole Hume Using a micropipette to transfer exact liquid measurements in scientific experiments By: Nicole Hume Introduction A micropipette is a scientific tool used to transfer small, exact volumes of liquid between

More information

Register your instrument! Eppendorf Research plus. User Adjustment

Register your instrument!   Eppendorf Research plus. User Adjustment search nt plus stment N) Register your instrument! www.eppendorf.com/myeppendorf User Adjustment Copyright 2013 Eppendorf AG, Hamburg. No part of this publication may be reproduced without the prior permission

More information

The pipettes cover a volume range from 0.1µl to 10ml.

The pipettes cover a volume range from 0.1µl to 10ml. CONTENTS 1. YOUR NEW PIPETTE 1 1.1. Adjustable volume pipettes 1 1.2. Fixed volume pipettes 2 1.3 Fully autoclavable 3 2. UNPACKING 3 3. INSTALLING THE PIPETTE HOLDER 4 4. PIPETTE COMPONENTS 5 5. PIPETTE

More information

Salt Lowers the Freezing Point of Water

Salt Lowers the Freezing Point of Water Salt Lowers the Freezing Point of Water Topic Sodium chloride (NaCl), salt, lowers the freezing point of water. Introduction Salt is added to ice in ice cream freezers because salt lowers the freezing

More information

CHM Introductory Laboratory Experiment (r17sd) 1/13

CHM Introductory Laboratory Experiment (r17sd) 1/13 CHM 110 - Introductory Laboratory Experiment (r17sd) 1/13 Purpose This introductory exercise will familiarize you with a few of the measurements we make in the chemistry laboratory and the level of uncertainty

More information

BASIC LAB SKILLS: EIGHING BALANCE AND BUNSEN

BASIC LAB SKILLS: EIGHING BALANCE AND BUNSEN Experiment 1 Name: 74 W BASIC LAB SKILLS: EIGHING BALANCE AND BUNSEN 5 B URNER This lab is designed to familiarize students with various pieces of common lab equipment. The following are general procedures

More information

Location and Use of Safety Equipment. Extinguisher Shower Fire Blanket

Location and Use of Safety Equipment. Extinguisher Shower Fire Blanket Lab Safety General Guidelines No food or drink at any time Never work alone Follow all teacher instructions Read Lab Procedures before performing lab Keep work areas and aisles clear No HORSE PLAY! Location

More information

MULTICHANNEL. Labnet International, Inc.

MULTICHANNEL. Labnet International, Inc. Labnet International, Inc. A B A1 A2 C F D H E 4A 4B 4C 4D G CONTENTS 1 - INTRODUCTION 2 - VOLUME SETTING 3 - METHOD OF PIPETTING 4 - RECOMMENDATIONS - RECALIBRATION 6 - CLEANING AND STERYLIZATION 7 -

More information

Experiment 1 Basic Laboratory Operations

Experiment 1 Basic Laboratory Operations Experiment 1 Basic Laboratory Operations INTRODUCTION LECTURE OUTLINE This is the first experiment that most students perform in the laboratory. Oftentimes, the stone is cast in this first laboratory session.

More information

Evaluation copy. Vapor Pressure of Liquids. computer OBJECTIVES MATERIALS

Evaluation copy. Vapor Pressure of Liquids. computer OBJECTIVES MATERIALS Vapor Pressure of Liquids Computer 10 In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask

More information

Determination of the Gas-Law Constant (R) using CO2

Determination of the Gas-Law Constant (R) using CO2 Determination of the Gas-Law Constant (R) using CO2 EXPERIMENT 11 Prepared by Edward L. Brown and Miranda Raines, Lee University The student will become familiar with ideal gases and how their properties

More information

Recording Significant Figures

Recording Significant Figures Recording Significant Figures Having the correct significant figures in your lab reports begins with recording the correct significant figures from the data you obtain in lab. This packet will demonstrate

More information

Measurements. Metric System

Measurements. Metric System Measurements Measurements are basic to any scientific pursuit. A measurement has both a magnitude (numeric value) and a unit. Metric units are used in the sciences. Metric System In science, the metric

More information

D. De La Matter 2004 Swimming Pool Chemistry STUDENT ACTIVITIES:

D. De La Matter 2004 Swimming Pool Chemistry STUDENT ACTIVITIES: D. De La Matter 2004 Swimming Pool Chemistry STUDENT ACTIVITIES: Good News! Flinn Scientific Inc. has developed a classroom kit of experiments based on these activities. The Kit Catalog # is AP6599. Ordering

More information

Vapor Pressure of Liquids

Vapor Pressure of Liquids Experiment 10 In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask shown in Figure 1, it

More information

Appendix: Simplified Instructions for Operating the HP 5890 GC/FID and Air Sampling Systems

Appendix: Simplified Instructions for Operating the HP 5890 GC/FID and Air Sampling Systems Appendix: Simplified Instructions for Operating the HP 5890 GC/FID and Air Sampling Systems The bucket brigade air sampler. For the square Tedlar bags with the push/pull valves: Put the valve of a tedlar

More information

Analysis of Deuterium Enrichment by Fourier Transform Infrared Spectrometry (FTIR): Practice. Christine Slater PhD

Analysis of Deuterium Enrichment by Fourier Transform Infrared Spectrometry (FTIR): Practice. Christine Slater PhD Analysis of Deuterium Enrichment by Fourier Transform Infrared Spectrometry (FTIR): Practice Christine Slater PhD Nutrition Specialist C.Slater@iaea.org International Atomic Energy Agency Preparation of

More information

UNH Department of Forensic Sciences

UNH Department of Forensic Sciences UNH Department of Forensic Sciences LABORATORY SAFETY RULES, PRACTICES AND AGREEMENT (Professors, Graduate Students, Research Assistants, Teaching Assistants, Students Working on Research Projects and

More information

Wolfson Campus Natural Science Department. Biology Laboratory. Student Safety Contract

Wolfson Campus Natural Science Department. Biology Laboratory. Student Safety Contract Wolfson Campus Natural Science Department Biology Laboratory Student Safety Contract July 2000 Wolfson Campus Student Safety Contract-Biology Laboratory Purpose The Biology laboratory is a hands-on learning

More information

QAM-I-117 Volumetric Equipment Calibration Verification

QAM-I-117 Volumetric Equipment Calibration Verification 1. Applicability and Purpose This procedure applies to all adjustable and fixed volume pipetters and any labware used to deliver measured volumes of liquid by laboratory analysts at the Texas Institute

More information

BIOSAFETY SELF AUDIT PRINCIPAL INVESTIGATOR/PERMIT HOLDER: CONTAINMENT LEVEL: 1 2 (Shaded) RISK GROUP: 1 2 AUDIT TO BE COMPLETED BY (DATE):

BIOSAFETY SELF AUDIT PRINCIPAL INVESTIGATOR/PERMIT HOLDER: CONTAINMENT LEVEL: 1 2 (Shaded) RISK GROUP: 1 2 AUDIT TO BE COMPLETED BY (DATE): Page 1 of 5 BIOSAFETY PROGRAM BIOSAFETY SELF AUDIT PRINCIPAL INVESTIGATOR/PERMIT HOLDER: SELF AUDIT COMPLETED BY: LABORATORY ROOM NUMBER: CONTAINMENT LEVEL: 1 2 (Shaded) RISK GROUP: 1 2 DATE OF AUDIT:

More information

Figure 1. Example of volume of water required for an unknown sample

Figure 1. Example of volume of water required for an unknown sample Experiment Three Density Procedure Part 1.The density of a solid Obtain a solid unknown sample from your instructor. Write down the number of the unknown in your notebook. Determine the of your unknown

More information

THE DECOMPOSITION OF POTASSIUM CHLORATE This lab is derived almost entirely from a lab used at the United States Naval Academy

THE DECOMPOSITION OF POTASSIUM CHLORATE This lab is derived almost entirely from a lab used at the United States Naval Academy THE DECOMPOSITION OF POTASSIUM CHLORATE This lab is derived almost entirely from a lab used at the United States Naval Academy PURPOSE: The purpose of this experiment is to study the decomposition of potassium

More information

Lab #1: Introduction to Lab Techniques INTRODUCTION

Lab #1: Introduction to Lab Techniques INTRODUCTION Name Lab #1: Introduction to Lab Techniques INTRODUCTION Our goals in this experiment are (1) to make some measurements using a metric ruler, (2) to learn how to determine volumes with a graduated cylinder,

More information

Objective To identify a pure liquid substance using the physical properties of solubility, density, and boiling point.

Objective To identify a pure liquid substance using the physical properties of solubility, density, and boiling point. Chemistry 1020 Identification of an Unknown Liquid Objective To identify a pure liquid substance using the physical properties of solubility, density, and boiling point. Text reference solubility, density,

More information

Aerobic Respiration. Evaluation copy

Aerobic Respiration. Evaluation copy Aerobic Respiration Computer 17 Aerobic cellular respiration is the process of converting the chemical energy of organic molecules into a form immediately usable by organisms. Glucose may be oxidized completely

More information

Improving Pipetting Techniques

Improving Pipetting Techniques Improving Pipetting Techniques for Better Accuracy and Performance 49 Basic pipetting techniques Pipette cycle Specifications - How to select the optimal volume range for your pipette Basic techniques

More information

CHM 317H1S Winter Section P Procedures and Tables

CHM 317H1S Winter Section P Procedures and Tables CHM 317H1S Winter 2018 Section P Procedures and Tables Procedures Page 1 Standard Operating Procedures Throughout the laboratory portion of this course, you will be required to perform a number of operations

More information

SCIENCE LABORATORY SAFETY INSTRUCTIONS & CONTRACT

SCIENCE LABORATORY SAFETY INSTRUCTIONS & CONTRACT 8 February, 2018 SCIENCE LABORATORY SAFETY INSTRUCTIONS & CONTRACT Dear Parents / Guardians This letter is to inform you of the College s efforts to create and maintain a safe Science laboratory environment.

More information

Cover Page for Lab Report Group Portion. Head Losses in Pipes

Cover Page for Lab Report Group Portion. Head Losses in Pipes Cover Page for Lab Report Group Portion Head Losses in Pipes Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 02 February 2012 Name 1: Name 2: Name 3: [Name 4: ] Date: Section

More information

PURDUE UNIVERSITY TEFLON CORE PCB THRU-HOLE PREPARATION FOR BLACK HOLE APPLICATION RF LAB. Professor in charge: William Chappell MSEE 289

PURDUE UNIVERSITY TEFLON CORE PCB THRU-HOLE PREPARATION FOR BLACK HOLE APPLICATION RF LAB. Professor in charge: William Chappell MSEE 289 RF LAB Professor in charge: William Chappell MSEE 289 AUTHOR: BOB SALISBURY DATE: 12/5/2007 12/6/2007 page 1 of 7 TABLE OF CONTENTS 1 SCOPE... 3 2 PURPOSE... 3 3 REFERENCE DOCUMENTS... 3 4 MATERIALS...

More information

download instant at Experiment 2 A Submarine Adventure: Density Saves the Day

download instant at  Experiment 2 A Submarine Adventure: Density Saves the Day Experiment 2 A Submarine Adventure: Density Saves the Day Instructor Notes and Lab Preparation: Chemicals and Equipment: various metal shapes of copper, nickel, lead, aluminum, brass, iron and magnesium

More information

Tips for Proper Pipette handling and Maintenance. D. Muruganand, Ph.D ILQA - Bangalore, Feb 2014

Tips for Proper Pipette handling and Maintenance. D. Muruganand, Ph.D ILQA - Bangalore, Feb 2014 Tips for Proper Pipette handling and Maintenance D. Muruganand, Ph.D ILQA - Bangalore, Feb 2014 Liquid handling tools Manual pipettes Electronic pipette and dispenser Automated systems Principles of Pipetting

More information

Quantitative Analysis of Hydrocarbons by Gas Chromatography

Quantitative Analysis of Hydrocarbons by Gas Chromatography Quantitative Analysis of Hydrocarbons by Gas Chromatography Introduction Gas-liquid chromatography (GLC) accomplishes a separation by partitioning solutes between a mobile gas phase and a stationary liquid

More information

Transferpette -8/-12

Transferpette -8/-12 Transferpette -8/-12 Testing Instructions (SOP) May 2009 1. Introduction The standard DIN EN ISO 8655 describes both the design and the testing of the piston operated pipette Transferpette 8/ 12. The following

More information